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Soft tissues such as skin, muscle, and tendon are easily damaged due to injury

from physical activity and pathological lesions. For soft tissue repair and

regeneration, biomaterials are often used to build scaffolds with appropriate

structures and tailored functionalities that can support cell growth and new

tissue formation. Among all types of scaffolds, natural polymer-based scaffolds

attract much attention due to their excellent biocompatibility and tunable

mechanical properties. In this comprehensive mini-review, we summarize

recent progress on natural polymer-based scaffolds for soft tissue repair,

focusing on clinical translations and materials design. Furthermore, the

limitations and challenges, such as unsatisfied mechanical properties and

unfavorable biological responses, are discussed to advance the development

of novel scaffolds for soft tissue repair and regeneration toward clinical

translation.
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Introduction

Soft tissue injury is generally caused by traumatic or pathological lesions where

muscle or connective tissues get damaged (Henriksen et al., 2017). Biomaterials are used

to replace the impaired soft tissue or function as scaffolds to facilitate tissue regeneration

to repair the damaged soft tissue (Keane and Badylak, 2014; Gaharwar et al., 2020).

Though the direct replacement of the damaged soft tissue using inert implants or

autologous grafts is still commonly applied in current clinical practices, some adverse

effects exist, such as chronic pain and implant-related complications (Entekhabi et al.,

2021; Liang et al., 2021; Rodrigues and Raz, 2022). In comparison, scaffolds in two-

dimensional or three-dimensional forms can be used as templates for tissue regeneration.

The cells can bind to the scaffolds and then proliferate and differentiate (Avolio et al.,

2017; Turnbull et al., 2020; Abdollahiyan et al., 2021; Bianchi et al., 2021; Masson-Meyers

and Tayebi, 2021). In addition, growth factors can be incorporated into the scaffolds to

advance tissue regrowth and repair (Hormozi et al., 2017; Kakudo et al., 2020; González-

Pérez et al., 2021). To meet the clinical needs, the scaffolds for soft tissue repair should

have tissue-matching mechanical properties, excellent biocompatibility, and appropriate

biodegradability. Both synthetic polymers and natural polymers have been used to

fabricate scaffolds. The synthetic polymers include polylactic acid (PLA), polyglycolic
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acid (PGA), poly (lactic-co-glycolic acid) (PLGA), and poly-e-

caprolactone (PCL), while the natural polymers include proteins

and polysaccharides (Janoušková, 2018; Rao et al., 2018).

Compared with synthetic polymers, natural polymers such as

collagen, fibrin, silk protein, chitosan, and hyaluronic acid

generally present better biocompatibility but limited

processability (Naghieh et al., 2017; Caillol, 2020; Taghipour

et al., 2020). With the rapid development of processing

technology in recent years, more natural polymer-based

scaffolds have been successfully fabricated and applied in

biomedical applications. This mini-review summarizes the

status of the natural polymer-based scaffold in clinical

translation and the advanced processing techniques used for

making scaffolds for soft tissue repair.

Current status of natural polymer-
based scaffolds in clinical translations

Over the past decades, many natural polymer-based scaffolds

for soft tissue repair have been developed for biomedical

applications and some of them are commercially available.

Table 1 summarizes the natural polymer-based scaffolds either

commercially available or in clinical trials. These developed

TABLE 1 Status of natural polymer-based scaffolds in clinical use/translation.

Trade name/Product
name

Materials Company/Institution Applications References

Chongshu ® composite hernia
patch

Fibrinogen; poly (lactide-co-epsilon-
caprolactone)

Shanghai Pine and Power Technology
Co., LTD

Hernia repair Gang et al., (2021)

Haiao ® oral repair membrane Collagen Yantai Zhenghai Biotechnology Co. LTD Periodontal tissue repair -

GenossDES™ Cobalt-chromium platform scaffolds
containing sirolimus biodegradable
polymers

Genoss Company Limited, Suwon, Korea Coronary stent
implantation

Lee and Park.,
(2020)

BEGO® collagen membrane Collagen membrane BEGO Implant Systems Tissue engineering Al-Maawi et al.,
(2019)

Mucograft Collagen types I and III Geistlich Pharma AG, Wolhusen, Switzerland Gingival recession Rokn et al., (2020)

Collagen Graft and Collagen
Membrane

Collagen Membrane, Collagen Graf Genoss Company Limited, Suwon, Korea Cleft palate repair Ha et al., (2020)

PACG-GelMA Hydrogels Poly (N-acryloyl 2-glycine)/
methacrylated gelatin hydrogels

Tianjin Key Laboratory of Composite and
Functional Materials

Osteochondral
Regeneration

Gao et al., (2019)

PEG silk composite hydrogel Silk Research Institute of Agriculture and Life
Sciences, Seoul National University, Seoul,
South Korea

Articular cartilage repair Kim et al., (2021)

Elastin-silk fibroin double
raschel knitted vascular graft

Silk Tokyo University of Agriculture and
Technology, Fuchu, Japan

Artificial blood vessel Tanaka et al.,
(2020)

Chondrotissue® PGA, HA Chondrotissue, BioTissue AG, Zurich,
Switzerland)

Cartilage tissue
engineering

Kanatlı et al.,
(2017)

IC scaffold PLGA, COL Tissue Engineering Research Center, AIST
Kansai, Amagasaki Site

Cartilage tissue
engineering

Eviana Putri et al.,
(2020)

C2C1H scaffold PLA, COL, CH BioMediTech, Institute of Biosciences and
Medical Technology, Tampere, Finland

Cartilage tissue
engineering

Haaparanta et al.,
(2014)

Chitosan-modified PLCL
scaffold

PLCL, CH Tissue Engineering Program, Life Sciences
Institute, National University of Singapore,
Singapore

Cartilage tissue
formation

Yang et al., (2012)

CSMA/PECA/GO (S2)
scaffold

CSMA, MPEG-PCL-AC (PECA), GO State Key Laboratory of Biotherapy and
Cancer Center, West China Hospital, Sichuan
University

Cartilage tissue
engineering

Liao et al., (2015)

Hyalofast® Benzyl ester of hyaluronic acid Anika Therapeutics Inc., Bedford,
Massachusetts, United States

Osteochondral Injury Bajuri et al., (2021)

ChondroGide® Type I/III collagen Geistlich Biomaterials, Wolhusen, Switzerland Cartilage defects of the
knee joint

Niemeyer et al.,
(2008)

Cartipatch® Agarose and alginate Tissue Bank of France, TBF, Lyon, France Knee cartilage injury Clavé et al., (2016)

Silk Voice® Silk Sofregen, United States Wound healing -

NOVOCART® 3D Type I collagen, chondroitin sulfate TETEC, Reutlingen, Germany Isolated retro patellar
cartilage defects

Kayaalp et al.,
(2021)

CH, chitosan; COL, collagen; CSMA, methacrylated chondroitin sulfate; HA, hyaluronic acid; PCL, polycaprolactone; PLA, polylactic acid; PLLA, poly (l-lactide); PGA, poly (glycolic acid);

PLGA, polylactic-co-glycolic acid; ECM, extracellular matrix; PLCL, poly (l-lactide-co-ε-caprolactone); AC, acryloyl chloride; GO, graphene oxide.
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scaffolds are primarily composed of fibrinogen, collagen, silk, and

alginate. Through advanced processing, these materials can be

fabricated into functional scaffolds for various applications,

including wound repair, hernia repair, cartilage repair, and

blood vessel grafting. In some cases, the repairing efficacy can

be improved by incorporating bioactive materials such as growth

factors and antibacterial agents in the scaffolds. In recent years,

silk-based scaffolds have attracted much attention due to their

excellent mechanical properties and biocompatibility (Zhao and

Li, 2011; Zhou et al., 2018; Mao et al., 2021; Zhao et al., 2021).

Fabrication of natural polymer-based
scaffolds

An ideal scaffold for soft tissue repair should meet the

requirements for specific applications, including good

biocompatibility, suitable mechanical properties, satisfied

porosity, and controlled degradability. (Arbade et al., 2020)

(Janoušková, 2018) The satisfied pore size for soft engineering

is ~5–200 μM. (Janoušková, 2018) Regarding the mechanical

properties, constructing scaffolds with matching mechanical

properties to native soft tissues is very critical. Human tissues

span a broad spectrum of mechanical properties, where stiffness

of soft tissues typically ranges from 1 kPa (e.g., brain) to ~1 MPa

(e.g., nerve and cartilage). (Guimarães et al., 2020) Over the past

decades, numerous approaches have been developed for

fabricating natural polymer-based scaffolds, such as

electrospinning, freeze-drying, and 3D printing. In this

section, we provide a general overview of these approaches

and discuss their use in processing natural polymers into

functional scaffolds.

Electrospinning

Electrospinning offers a convenient approach to fabricate

fiber-based scaffolds for soft tissue repair. Nanofibers can be

fabricated through electrospinning from polymer solutions

under a high electrical field and further organized into

porous nanofiber-based mats. When designing an ideal

electrospun scaffold for soft tissue repair, some critical

factors need to be considered. These factors include

biocompatibility, mechanical properties, porosity, and the

ability to regulate cellular behavior (Zhong et al., 2022).

Many studies have been reported on fabrication of natural

polymer-based scaffolds using electrospinning. Lee et al.

fabricated electrospun nanofibrous gelatin sheets and

investigated the influence of electron beam (e-beam)

irradiation doses on the molecular weight, morphology, pore

structure, and cell proliferation profiles of the sheets (Lee et al.,

2017). In addition, electrospinning using a core-shell nozzle

was employed to make collagen/polyvinylpyrrolidone (PVP)

core-shell nanofibers where the collagen was encapsulated

within a shell of PVP. The PVP shell was then washed away

in a basic ethanol solution to yield anisotropic collagen

nanofibers which mimics the structures of the native

extracellular matrix (Wakuda et al., 2018). It is worth

mentioning here that the structure of the nanofiber-based

mats mimics the structure of the natural extracellular matrix,

providing a biomimetic microenvironment for cells to

proliferate and differentiate (Nie et al., 2020). Moreover,

some strategies have been developed to enhance the physical

properties and biofunctions of the scaffolds. These scaffolds

have been widely used in several soft tissue engineering, such as

skin, vascular tissue, cavernous nerve (CN) and cardiac tissues

(Ehrmann, 2021). For instance, Uibo et al. demonstrated that

the scaffold composed of salmon fibrinogen and chitosan could

promote wound healing without any complications (Laidmäe

et al., 2018). Jadbabaei et al. developed a novel approach to

enhance the electrospinnability of sodium alginate and made

alginate-PVA polymeric scaffolds for skin tissue engineering

applications (Jadbabaei et al., 2021). Zhang et al. successfully

fabricated silk-based scaffolds for cavernous nerve (CN)

regeneration using coaxial electrospinning. The scaffolds

with a core of RSF-VEGF and a shell of RSF-BDNF

promoted the regeneration of cavernous nerves and were

able to converse into nerve guidance conduit to facilitate

nerve regeneration (Figure 1A) (Zhang et al., 2016).

Recombinant spider silk protein (pNSR32) and gelatin (Gt)

were also used to enhance the cytocompatibility of electrospun

PCL scaffolds. The pNSR32/PCL/Gt composite scaffolds show

potential for small-caliber vascular tissue engineering (Xiang

et al., 2018). Wu et al. designed a scaffold for cardiac tissue

regeneration to guide the orientation of the cells by mimicking

the anisotropic cardiac structure (Wu Y. et al., 2017). The

scaffold within a hydrogel shell was composed of aligned

electrospun conductive nanofibers (NEYs-NET) which

contained the polycaprolactone, silk fibroin, and carbon

nanotubes. Cardiomyocytes (CMs) were aligned along the

nanofibers on each layer of the 3D nanofibrous scaffold in

the stable hydrogel environment (Figure 1B). Overall, the

electrospinning technique allows researchers to fabricate

ECM-mimic nanofibrous scaffolds with tunable fiber

diameters, surface areas, porosity depending on different

technique factors, such as solution viscosity and work

voltage. Furthermore, electrospinning provides the feasibility

for introducing and incorporating bioactive molecules for soft

tissue repair and regeneration (Arbade et al., 2019).

Freeze-drying

Freeze-drying is an easy and eco-friendly method that can be

readily used to fabricate 3D scaffolds with microporous

structures. For fabrication of natural polymer-based scaffolds,
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natural polymers were first dissolved in water to obtain aqueous

solutions, followed by freeze-drying. During freeze-drying, the

water in the frozen sample undergoes sublimation under a high

vacuum, leading to the scaffolds with porous structures. The pore

size in the scaffolds depends on the type of natural polymers and

the concentration of the solution. The porous structures

generated via freeze-drying benefit the cells to attach,

differentiate, proliferate, and mass transport. Indurkar et al.

showed that the physical parameters of the scaffolds, such as

surface roughness, porosity, interconnectivity, and contact angle

influence the transport of nutrition and waste products (Indurkar

et al., 2020). Furthermore, Afjoul et al. prepared alginate-gelatin

scaffolds through freezing dry and revealed that the ratio of

alginate to gelatin affects swelling, biodegradation, cell culture,

and mechanical properties of the scaffolds. The optimized

scaffolds showed good biocompatibility and satisfied outcomes

of wound healing in rats (Afjoul et al., 2020). In another study,

Chen et al. prepared a hybrid cobalt-doped alginate/waterborne

polyurethane 3D porous scaffold with nano-topology of a “coral

reef-like” rough surface via two-step freeze-drying (Chen et al.,

2021). The “coral reef-like” rugged surface topology and

bioactive cobalt dopant synergistically promote the neurite

outgrowth and up-regulate the synaptophysin expression of

neuron-like cells PC12 on the scaffold. In addition, two types

of cellulose-derived materials, oxidized cellulose and

carboxymethyl cellulose (CMC), were mixed with collagen to

fabricate scaffolds through freeze drying. The prepared scaffolds

showed good mechanical properties, hemostasis, and

antibacterial properties (Kacvinská et al., 2022). Protein-based

scaffolds have also been developed. For example, dual-

crosslinked silk fibroin scaffolds with EGDE have been

developed, where the researchers showed that an appropriate

dosage of crosslinking agent was critical to achieve good

mechanical properties, in vivo degradability, and mild

immune responses in soft tissue engineering (Mao et al.,

2021). The scaffold notably relieved the inflammatory

response of microglial cells BV2 with the transformation from

pro-inflammatory (M1) to anti-inflammatory (M2) phenotype.

FIGURE 1
The fabrication of natural polymer-based scaffolds via various methods: (A,B) Electrospinning. (C) Freeze-drying and (D) 3D printing. The
pictures got permissions from (Zhang et al., 2016), (Wu Y. et al., 2017), (Feng et al., 2021), (Luo et al., 2022), respectively.
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Regarding better control of the structure, morphology, and

density of scaffolds, Jiang et al. developed chitosan scaffolds

with tunable microchannels by combining a 3D printing-assisted

microfiber templates-leaching approach and a freeze-drying

approach (Jiang et al., 2021). Moreover, Feng et al. fabricated

a novel chitosan scaffold with lamellar structures by mimicking

the layered structure of the attached gingiva using a bidirectional

freeze-drying method (Feng et al., 2021). The bio-inspired

lamellar chitosan scaffold (LCS) with ordered porous structure

showed excellent mechanical properties, good cell-compatibility

and could promote the vessel formation and gingival tissue

regeneration in vivo. In addition, the LCS is found to be

capable of inducing macrophage differentiation to

M2 macrophages, which is thought to play an important role

in tissue regeneration (Figure 1C). Also, the microstructure of the

scaffolds could be controlled by optimizing the mold and freezing

parameters for a certain application. Brougham et al. developed

organ-specific collagen-based scaffolds geometries for tissue

engineering applications, where the geometries of the scaffolds

could be tailored by adjusting the mold patterns and freezing

parameters (Brougham et al., 2017). In a brief summary, freeze-

drying is a good method for natural polymer-based scaffold

fabrication since it is easily applied to obtain porous

structures without a high temperature or a washing step

though the fabrication time is relatively long (Boffito et al., 2014).

3D printing

Three-dimensional (3D) printing is a technique that can be

used to fabricate biomedical scaffolds in a controlled way

(Pérez-Köhler et al., 2021). Compared with traditional

thermal-based 3D printing, 3D bioprinting combines 3D

printing with living cells or other non-living biological

materials (e.g., growth factors, drugs) to construct scaffolds

for tissue engineering and tissue regeneration. 3D bioprinting

allows researchers to design 3D tissue-mimicking scaffolds

which provide tailored cellular environments to facilitate the

growth and proliferation of cells (Kim et al., 2016; Perez-

Puyana et al., 2020). A broad range of natural polymer-

based scaffolds have been fabricated using 3D bioprinting

and some studies have been reported. Regarding the

materials used for making the bioinks, a variety of materials

have been used including collagen, gelatin, alginate, silk fibroin,

and extra cellular matrix (ECM). For example, Jang et al.

fabricated the artificial skin based on decellularized ECM

derived from porcine skin via 3D bioprinting method (Jang

et al., 2021). The 3D printed artificial skin exhibited rapid re-

epithelialization and facilitate tissue regeneration on a mouse

chimney wound model, showing great potential of clinical

translation. In addition, alginate-based scaffolds with the

features of high cell viability and low concentration alginate

for potential nerve tissue engineering application were

developed (Naghieh et al., 2019). Moreover, Tijore et al.

developed a 3D bioprinting microchannel gelatin hydrogel

that promoted human mesenchymal stem cells (hMSCs)

myocardial commitment and supports native cardiomyocytes

(CMs) contractile functionality (Tijore et al., 2018). Luo et al.

used gelatin and alginate to fabricate scaffolds with

microporous structures and interconnected microchannels

using 3D bioprinting (Figure 1D) (Luo et al., 2022). The

fabricated scaffold could support vascularization and growth

of new tissues, promoting wound healing. Furthermore, Wang

et al. fabricated a hybrid hydrogel system using a combination

of decellularized extracellular matrix (dECM-G) and photo-

crosslinkable gelatin methacrylate (GelMA) for nerve

regeneration (Wang et al., 2022). The system showed good

printability and structural fidelity for facilitating neurite growth

and cell migration. Fabrication of scaffolds with designed

microstructures to guide cell growth also attracts a lot of

attention recently. Wu et al. precisely controlled

architectures of micro-structured and stretchable chitosan

hydrogels for guided cell growth (Wu Q. et al., 2017). The

hybrid bioink prepared with gelatin, sodium alginate, and

carbon nanotubes were used to fabricate cylindrical scaffolds

through a combination of the vertical directional extrusion of

printing nozzle and axial rotation of stepper motor module for

blood vessel regeneration (Li et al., 2020).

Challenges and opportunities

Natural polymer-based scaffolds have been rapidly

developed and applied in soft tissue repair in the past few

decades. Some products are now commercially available and in

clinical use. However, some limitations are associated with the

current products, such as unsatisfied mechanical properties,

uncontrolled degradability, and unfavorable immune response.

Some critical points need to be considered when developing

high-performance scaffolds that better meet clinical needs.

Firstly, advanced processing approaches are required to

achieve high-quality processing of natural polymers. For

collagen-based materials, how to maintain their bioactivity

during processing is a challenge. Secondly, rational materials

design and advanced fabrication technologies are needed since

the structures and properties of the scaffolds should be tailored

for different applications. For instance, for treating pelvic organ

prolapse, porous scaffolds with robust mechanical properties

and controlled biodegradability are required. In some

applications, an aligned scaffold is preferred to allow the

cells to grow directionally. Moreover, enhancing the

biocompatibility and mimicking the biological functions of

the extracellular matrix should be considered. Integrins and

cadherins can be grafted to the scaffolds since they are serving

as adhesion molecules for migration and localization of cells.

Furthermore, patient-oriented scaffold design with the
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assistance of the 3D printing fabrication technique is of great

potential to offer precise repair. Thirdly, scaffolds with

bioresponsiveness or biofunctions are promising since such

scaffolds allow better tissue repair control. For example,

scaffolds with the incorporation of antibiotics can effectively

prevent infections during the tissue regeneration process. In

addition, growth factors can be incorporated into scaffolds to

facilitate tissue repair. Lastly, a comprehensive understanding

of the materials-cell interactions is needed to support the

development of novel functional scaffolds. The fundamental

research would lay a solid foundation for novel material

designs, the development of advanced fabrication techniques,

and clinical translations.
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