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Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive
(ERa+) and any ERa signaling pathways deregulation is critical for the progression of
malignant mammary neoplasia. ERa acts as a transcription factor that promotes the
expression of estrogen target genes associated with pro-tumor activity in breast cancer
cells. Furthermore, ERa is also part of extranuclear signaling pathways related to
endocrine resistance. The regulation of ERa subcellular distribution and protein stability
is critical to regulate its functions and, consequently, influence the response to endocrine
therapies and progression of this pathology. This minireview highlights studies that have
deciphered the molecular mechanisms implicated in controlling ERa stability and nucleo-
cytoplasmic transport. These mechanisms offer information about novel biomarkers,
therapeutic targets, and promising strategies for breast cancer treatment.

Keywords: estrogen receptor alpha, breast cancer, ERa stability, ERa nucleo-cytoplasmic transport, endocrine
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INTRODUCTION

Breast cancer is a collection of malignant mammary neoplasms that cause death in women
worldwide (1–4). Breast cancer is classified in the subtypes luminal A, luminal B, HER2-
overexpression, and basal-like (triple-negative) subtype, based on the detection mainly of ERa,
PR, and HER2 expression by immunohistochemistry analysis (5). ERa (ERa+ breast cancer) is
expressed in the luminal A/B and represents more than 70% of all cases of breast cancer (6, 7).
Therefore, ERa detection is central in breast cancer tumors and is a target of some endocrine
therapies, such as selective estrogen receptor downregulators (SERD) and selective estrogen
receptor modulators (SERMs). Aromatase inhibitors (AI) are also used in endocrine therapy;
however, they control the production of estrogens. A problem with these therapies is that patients
develop de novo or acquired resistance (8).

ERa is a 66 kDa protein, a member of the nuclear receptor subfamily that is encoded by the ESR1
gene, displaying conserved domains such as two activation function domains (AF-1 and AF-2), one
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DNA-binding domain (DBD), and one ligand-binding domain
(LBD) (9–12). Furthermore, ERa contains nuclear localization
signals (NLS) in the hinge region and nuclear export signals
(NES) in DBD and LBD (13–15). The structure and function of
ERa are modulated by different posttranslational modifications,
such as the phosphorylation of the AF-1 domain induced by E2
(estradiol) but also induced via growth factor signaling (16–19).
This minireview is focused mainly on the molecular mechanisms
that modulate the nucleo-cytoplasmic transport and stability of
ERa in breast cancer.
ERa SIGNALING AND ITS NUCLEO-
CYTOPLASMIC DYNAMICS IN
BREAST CANCER

ERa is localized in both the cytoplasm and the nucleus of
breast cancer cells. The ERa canonical signaling pathway
consists of the binding of E2 to the receptor LBD, triggering its
homodimerization, enrichment into the nucleus, binding to
estrogen-responsive element (ERE) in enhancers or promoters
of E2-responsive genes, and recruitment of coregulators via the
AF1/2 domains to induce gene expression (20, 21). Pioneer FTs
open up local chromatin, allowing ERa to interact with ERE and
recruit coregulators to modulate chromatin structure and gene
expression (22). Coregulators are recruited by the AF-1 and AF-2
domains in an E2-independent and -dependent manner, and
they are important for the interactions between ERa-dependent
enhancers and promoters to synergistically regulate transcription
Frontiers in Endocrinology | www.frontiersin.org 2
in breast cancer cells (23–25). ERa also acts as a coregulator for
diverse TF such as AP-1/c-Jun, ATF-2, NF-kappaB, p53, SP-1,
and STAT1, modulating the expression of several genes,
including late E2-target genes (16, 26–29). ERa can act as a
coregulator when it is phosphorylated in response to growth
factors, generating a crosstalk with other signaling pathways (30–35).
It has been reported that the levels of DLC1 (dynein light chain 1) are
increased in breast cancer and that DYNLL1, also named DLC1,
promotes ERa nuclear accumulation and its activity in response to E2
(36) (Figure 1). In addition, ERa is membrane-associated via its
palmitoylation, having the ability to respond to E2 at 3-15 min,
generating secondary messengers such as Ca2+, cAMP, and nitric
oxide. ERa also interacts with transmembrane receptors, such as RTK
(receptor tyrosine kinases), GABAB, and mGluR (37–41).

The nuclear export of ERa is mediated by non-canonical NES
in the DBD and LBD, which are recognized by CRM-1 exportin,
being an E2-dependent process in breast cancer cells (13, 15).
The ERa Y537F mutant is unable to associate with CRM-1,
resulting in its nuclear accumulation (42). The Y537 is the
phosphorylated site by Src, and the treatment with a Src
inhibitor (SU6656) or the expression of a dominant-negative
Src protein decrease E2-induced ERa phosphorylation and
nuclear export (15, 42, 43). In addition, the use of the CRM-1
inhibitor, LMB, decreases ERa transactivation, suggesting that a
nucleo-cytoplasmic dynamic is required for ERa nuclear
activity (44).

Moreover, E2 induces AKT-dependent phosphorylation of
FKHR, promoting the nucleo-cytoplasmic transport of the ERa/
FKHR complex (15, 43). In contrast, ATBF1 is another
transcription factor enriched in the nucleus of MCF-7 cells in
A B

FIGURE 1 | Proteins related to subcellular transport of ERa and its stability in breast cancer cells. (A) Principal proteins involved in the nuclear accumulation of ERa
in the nucleus (green), in the extranuclear localization of ERa (yellow), required for the nuclear export (white), and correlated with the nuclear translocation of ERa
(gray). (B) Interactome of proteins that increase the stability of ERa in breast cancer cells.
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response to E2 hormone and in an ERa-dependent manner,
whereas ATB1 is localized in the cytoplasm in those breast
cancer cell lines that do not express ERa (45). These data
suggest that the subcellular dynamics of some transcription
factors may be dependent on ERa status.

In addition, the extranuclear localization of ERa is facilitated by
its interaction with proteins such as MEMO (ErbB2-driven cell
motility), MNAR (modulation of non-genomic actions of the
estrogen receptor), and MTA1 (metastasis-associated 1). MEMO
increases Y537 phosphorylation in the ERa and enhances cell
proliferation and migration (46) (Figure 1). MNAR and
truncated MTA1 sequester ERa and increase its activities out of
the nucleus (47, 48). In contrast, the accumulation of ERa in the
nucleus is promoted by PTPH1 (protein-tyrosine phosphatase H1)
that reverts Src-dependent Y537 phosphorylation, and by the
phosphorylation of T311 by p38 MAPK (49–51). Phosphorylated
ERa at T311 has been found in human breast tumors (50), and
the Y537S, Y537C, and Y537N mutations have been detected in
metastatic mammary tumors that are resistant to endocrine
therapies (52, 53) (Figure 2). ERa can interact with a
signalosome complex that includes c-Src, PI3K, caveolin-1,
straitin, and MNAR (54–56).Caveolin-1, a protein enriched
mainly in caveolae, interacts with ERa, leading to the trafficking
of ERa to caveolae to promote its localization on plasmamembrane
and the activation of non-genomic pathways (56, 57).

ERa Distribution and Its Relationship
With Therapeutic Approaches for
Breast Cancer
Some studies suggest that ERa nuclear distribution is associated
with the sensitivity of breast cancer cells to endocrine therapy,
whereas extranuclear localization is related to endocrine
resistance. For example, Selinexor is a CRM-1 inhibitor that
combined with tamoxifen can restore the sensitivity of cells to
tamoxifen (58). In addition, when PTPH dephosphorylates
Y537, ERa is enriched in the nucleus, and breast cancer cells
are sensitive to tamoxifen and fulvestrant (49). Another example
is the use of Src inhibitors; among them, dasatinib, in
combination with tamoxifen, restores the nuclear distribution
of ERa and the sensitivity to endocrine therapy of tamoxifen-
Frontiers in Endocrinology | www.frontiersin.org 3
resistant cells (59, 60). Moreover, MCF-7 breast cancer cells that
overexpress HER2 display an ERa translocation nucleo-
cytoplasm and are resistant to tamoxifen (61–63). Nuclear
redistribution of ERa and re-sensitivity to endocrine therapy
are recovered using the HER2 inhibitor AG825 and anti-HER2
monoclonal antibody (61, 62).

Additionally, the methylation of ERa at R260 via PRMT1
(arginine methyltransferase) allows the formation of
methyl-ERa/Src/PI3K complex in response to estrogens. The
interactions ERa/Src/PI3K is enhanced in aggressive mammary
malignant tumors, promoting non-genomic signaling related to
resistance to tamoxifen and poor survival. Hence, methyl-ERa/
Src/PI3K complex has been proposed as a hallmark of
aggressiveness and resistance to tamoxifen. Consequently, the
disruption of functional interaction between ERa and PI3K,
using the combination of Src or PI3K inhibitors plus
tamoxifen or fulvestrant, has been proposed as a strategy in
the treatment of ERa+ breast cancer (64, 65).
ERa IS MODULATED VIA ITS MONO-
UBIQUITINATION AND
POLYUBIQUITINATION

The polyubiquitination of ERa at K302/K303 is induced by E2
and fulvestrant and is associated with its degradation via the UPS
(66). However, the turnover of ERa induced by E2 is also
important for its activity, since it has been reported that the
inhibition of ERa degradation reduces the recruitment of RNA
polymerase II to ERE, and the intranuclear dynamic of ERa is
affected by transcriptional or proteasome inhibitors (67, 68).
Moreover, ERa coactivators such as E6AP, RNF8, and SKP2 also
function as E3-ubiquitin ligases, suggesting an intriguing
interplay between ERa transcriptional activity and its
polyubiquitination/degradation (29, 67, 69–72).

ERamonoubiquitination at K302/K303 residues modulates cell
proliferation induced by E2 (73–76). These monoubiquitinations
catalyzed by BRCA-1/BARD1 confers receptor stability under basal
conditions (66, 73, 76). It has also been reported that E2 inhibits
FIGURE 2 | Other posttranslational modifications related to subcellular transport and stability of ERa in breast cancer. Structure of ERa protein and its functional
domains. Up: Modifications related to ERa stability. Down: Modifications involved in the subcellular transport in breast cancer cells.
April 2022 | Volume 13 | Article 867448
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ERa monoubiquitination (77). In addition, UBD or ubiquitin-
binding domains have been identified in the LBD of ERa
(L429 and A430 residues), allowing the association of this
receptor with ubiquitinated proteins. ERa monoubiquitination
and its activity are affected when UBD is mutated (78, 79).

ERa Stability in Breast Cancer
Several studies have identified proteins that interact with ERa
and inhibit its polyubiquitination and degradation (Figure 1).
The primary functions of the ERa-polyubiquitination inhibitor
proteins (EPIP) vary from being transcriptional coregulators,
kinases, E3-ubiquitin ligases, or deubiquitinases (Table 1). Most
of them are upregulated in breast cancer tissue, promoting ERa
stability and breast cancer progression. Thus, proteins
promoting ERa stability facilitates higher levels of this
receptor, and its actions are associated with the expression of
its target genes, cell proliferation, and endocrine resistance (71,
92, 94). One example of those proteins is the endonuclease FEN1,
which is increased in tamoxifen-treated breast cancer patients,
Frontiers in Endocrinology | www.frontiersin.org 4
promoting the transcriptional activity of ERa. Moreover, FEN1
inhibits ERa degradation and maintains its stability to increase
the expression of its target genes and cell proliferation. Inhibition
of FEN1 decreases ERa activity and proliferation in breast cancer
cells resistant to tamoxifen, suggesting the therapeutic potential
of FEN1 as a target molecule in endocrine therapy resistance
(101). Another example of EPIP is calcineurin, a Ca2+-dependent
protein phosphatase, which dephosphorylates the Ser294 in ERa
to inhibit its degradation via the UPS. Moreover, calcineurin
facilitates the ERa phosphorylation at Ser118 by mTOR to
increase its activation. A higher expression of calcineurin is
associated with a poor prognosis in patients receiving
endocrine therapy, suggesting that it is a key target for breast
cancer treatment (102).

Some EPIPs are E3-ubiquitin ligases that appear to play a
complex role in stabilizing the ERa via different mechanisms.
For example, most TRIMs (tripartite motif-containing) act as
E3-ligases. In breast cancer, TRIM11 and TRIM56 confer ERa
stability (96, 97), whereas TRIM8 increases ERa degradation in
TABLE 1 | Principal proteins involved in the ERa stability and subcellular transport in breast cancer cells.

Proteins associated with ERa stability

Protein Name Function Reference(s)

cABL Abelson tyrosine-protein kinase Kinase (80)
GSK3 Glycogen Synthase Kinase 3 Kinase (81)
LMTK3 Lemur Tyrosine Kinase 3 Kinase (82)
DNA-PK DNA-dependent protein kinase Kinase (83)
CK2 Casein kinase 2 Kinase (84)
PIN1 Peptidyl-propyl cis-trans isomerase NIMA-interacting 1 Isomerase (85)
MINDY Motif interacting with ubiquitin-containing novel DUB family Deubiquitinase (86)
OTUD7B OTU Deubiquitinase 7B Deubiquitinase (87)
USP7 Ubiquitin-specific protease 7 Deubiquitinase (88)
USP15 Ubiquitin-specific protease 15 Deubiquitinase (89)
USP35 Ubiquitin-specific protease 35 Deubiquitinase (90)
HOIL-1 Haem-oxidized IRP2 Ubiquitin Ligase-1 E3-ubiquitin ligase (91)
RNF8 RING finger protein 8 E3-ubiquitin ligase (71)
RNF31 RING finger protein 31 E3-ubiquitin ligase (92)
RNF181 RING finger protein 181 E3-ubiquitin ligase (93)
SHARPIN Shack-associated RH domain-interacting protein E3-ubiquitin ligase (94)
SMURF1 SMAD ubiquitination regulatory factor E3-ubiquitin ligase (95)
TRIM11 Tripartite Motif Containing 11 E3-ubiquitin ligase (96)
TRIM56 Tripartite Motif Containing 56 E3-ubiquitin ligase (97)
BRCA-1/BARD1 Breast cancer type 1/BRCA1 associated RING domain 1 E3-ubiquitin ligase (73, 76)
RB Retinoblastoma Tumor suppressor

Transcriptional regulator
(98)

MUC1 Mucin 1 Transcriptional regulator (99)
ZNF213 Zinc finger protein Transcriptional regulator (100)
FEN1 Flap Structure-Specific Endonuclease 1 Endonuclease (101)
Calcineurin Calcium and Calmodulin dependent serine/threonine protein phosphatase 2B. Phosphatase (102)
CaM Calmodulin Multifuntional Ca2+-binding protein (103, 104)

Proteins associated with the subcellular distribution of ERa
CRM1 Chromosomal Maintenance 1 Exportin (105)
DYNLL1 Dynein light chain 1 Motility (36)
MEMO Mediator of ERBB2-driven cell motility Motility (46)
MNAR Modulator of non-genomic activity of estrogen receptor Scaffold (47)
MTA1 Metastasis-associated protein MTA1 Transcription regulator (48)
PTPH1 Protein Tyrosine Phosphatase H1 Phosphatase (49)
HER2 Human epidermal growth factor receptor 2 Transmembrane receptor (61, 62)
Cav1 Caveolin-1 Protein of caveolae (57)
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the cytoplasm (106). Furthermore, TRIM11, RNF8, RNF31, and
SHARPIN catalyze the ERa monoubiquitination and inhibit its
degradation (71, 92, 94, 96). Smurf1, TRIM56, and HOIL-1 block
ERa degradation by inhibiting K48-specific polyubiquitination
(91, 95, 97), whereas RNF181 induces K63-linked ubiquitination,
which stabilizes ERa in BC cells (93).

Interestingly, some kinases affect the activity and stability of
ERa receptor. For example, the LMTK3, GSK3 and cABL kinases
interact with and phosphorylate ERa, avoiding its degradation
(80–82). DNA-PK (DNA-dependent protein kinase)
phosphorylates ERa at Ser-118 to stabilize it, promoting its
transcriptional activity, and the proliferation of breast cancer
cells (83). Furthermore, the S282 residue of ERa can be
phosphorylated by CK2, resulting in the stability of this
receptor in breast cancer cells (84).

Proteins with deubiquitinase activity are also central to
regulate ERa stability in breast cancer, such as USP7, USP15,
USP35, OTUD7B, and MINDY. For example, MINDY has a
positive correlation with ERa levels, and promotes poor
prognosis in breast cancer by stabilizing the ERa via the
inhibition of its K48-polyubiquitination (87).

Furthermore, the calmodulin (CaM) protein modulates ERa
transactivation in a Ca2+-dependent manner (107, 108). The
residues Pro-295 to Ser-317 localized between hinge and LBD of
ERa are central for binding of CaM. Mutations in these sites
decrease the ERa interaction with CaM and the E2-dependent
gene transcription (108–110). Studies using a synthetic peptide
containing these major determinants (ERa17p: P295-T311)
compared to control peptides with Lys-302 and Lys-303
mutated to alanines or glycines (ERa17pAA or ERa17pGG)
evidenced that this sequence has an auto-inhibitory activity,
which may be relieved by CaM binding (103, 104, 109, 110).
Hence, this ERa motif seems to be essential to interact with
proteins implicated in its regulation. Interestingly, CaM interacts
with ERa and protects it from proteolysis by inhibiting the
E6AP-dependent degradation of this receptor (111, 112).

Posttranslational modifications, such as methylation (by SET7 at
K302) and palmitoylation (by DHHC7 and DHHC21 at C447) also
contribute to ERa stability, inhibiting its degradation (37, 113, 114).
In addition, O-GlcNAcylation at T553/S554 residues in ERa
mediated by GREB inhibits ZNF598 ubiquitin ligase-dependent
degradation, leading to ERa stability (115). In addition, other
stimuli, such as the aluminum salts present in antiperspirants,
have been associated with ERa stability and accumulation in the
nucleus, with an increase in gene expression (116). However, ERa
stability is also conferred via indirect mechanisms. For example,
PEBP4 (phosphatidyl-ethanolamine-binding protein 4) decreases
ERa degradation induced by its Src-dependent phosphorylation,
since PEBP4 inhibits the association between Src and ERa (117).
The Y537 residue in ERa is phosphorylated by Src kinase to recruit
the E6AP protein, which is an E3-Ub ligase that polyubiquitinates
ERa for its degradation in breast cancer cells. The interaction of
PIN1 with ERa inhibits its phosphorylation (at Y537) and its
interaction with E6AP, conferring stability (70, 85, 117).

The proteolysis of ERa can be affected by ERa protein
accumulation (118–120), which leads to non-classical
Frontiers in Endocrinology | www.frontiersin.org 5
mechanisms called concentration-inducible ERa function,
where ERa is active in a manner stimuli-independent
(E2 signal, or growth factor signals), promoting changes in the
expression of its target genes, resulting in new E2-induced genes
(121, 122). These data suggest that alterations in the interplay of
proteolysis and stability of ERamay have crucial implications in
malignant mammary tumors.

Although the higher levels of ERa by increasing its stability
are associated with cancer progression and endocrine resistance,
the reduction of ERa levels by an increase in its degradation is
also related to endocrine resistance, considering that ERa is the
target for SERMs and SERDs. Hence, CUEDC2 induces ERa
degradation via the UPS, and some malignant mammary tumors
with resistance to tamoxifen show high levels of CUEDC2
protein with low levels of ERa (123, 124). In contrast, RB is a
protein that stabilizes ERa and protects it from its degradation.
Increased ERa degradation through the UPS has been reported
in RB-knockdown breast cancer cell lines (98), whereas ERa–
mammary tumors display alterations in the expression and
function of RB (125, 126).

ERa Stability and Its Relationship With
Therapeutic Approaches
Fulvestrant, a SERD clinically used as first-line endocrine
therapy to inh ib i t tumor growth , promotes ERa
polyubiquitination and degradation. Other SERDs are being
investigated to improve their effects, availability, and
administration routes (127–133). Intriguingly, when the
expression of large tumor suppressor kinases 1 and 2 (LATS1
and 2) is reduced, the sensitivity to fulvestrant of breast cancer
cells is decreased. LATS1/2 (two mediators of the Hippo
pathway) are associated with the induction of ERa
degradation. High levels of LATS1/2 are detected in patients
with breast cancer ERa– and short relapse-free survival (134).

ERa mutations, such as Y537S/N/C, D538G, E380Q, or
S463P have been associated with endocrine resistance. In
particular, the mutations Y537S, Y537N, Y537C, D538G, and
E380Q localized in the LBD of ERa cause an E2-independent
activity of ERa (135, 136). These mutations have been detected
mainly in metastatic breast cancer (137) and affect gene
expression (138) and ERa-dependent cistrome (139).
Mutations in the Y537 residue (Y537S, Y537C, and Y537N)
can affect the degradation of this receptor, which is associated
with metastasis and resistance to endocrine therapy in patients
(52, 53, 70, 140). After cells acquire endocrine resistance, Y537C
and Y537S are detected, which may be due to long-term E2
deprivation (141).

Mutations in the Y537 residue do not affect fulvestrant and
AZD9496 treatments, suggesting the use of SERD to treat
endocrine resistance. However, an interesting study showed
that when the E2-induced polyubiquitination of ERa is
decreased, the ERa stability is increased only in invasive
lobular breast carcinoma but not in invasive ductal carcinoma.
Fulvestrant was effective in both breast cancer subtypes; however,
the SERD AZD9496 does not have the same effect in the
reduction of ERa stability in invasive lobular breast carcinoma,
April 2022 | Volume 13 | Article 867448
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suggesting that ERa stability and its functional implications are
regulated differentially by SERD therapies in both histological
subtypes of breast cancer (142).

In addition to SERDs, other modulators of ERa that diminish
its stability are being studied. For example, MHO7 (6-epi-
ophiobolin G) is a compound that inhibits the synthesis of
ERa mRNA and increases the degradation of this receptor via
the UPS, postulating it as a drug candidate to promote ERa
downregulation and block breast cancer progression (143).
DISCUSSION

Most cases of breast cancer are ERa+, where this receptor
displays pro-tumoral activity, and the molecular mechanisms
that regulate its activity are crucial. Some patients with breast
cancer have or develop resistance to SERMs and AI, whereas the
treatment with SERDs as fulvestrant is not affected by mutations
in ERa related to endocrine therapy. The anti-tumor effect of
SERDs is based on ERa degradation via the UPS. Interestingly,
E2 induces ERa degradation through UPS, both in the cytoplasm
and nucleus, whereas fulvestrant induces the degradation of this
receptor in the nuclear matrix. Additionally, ERa protein can be
downregulated by E2-dependent lysosomal degradation (144),
dynamin II-dependent autophagy (145), and via its association
with caveolin 1/2 (146), and the clathrin-heavy chain (CHC)
endocytic protein (147).

In recent years, many investigations on ERa stability and its
nuclear export in breast cancer suggest that these events affect the
nuclear and extranuclear activity of this receptor and the cell
response to endocrine therapies. For example, Src-dependent
phosphorylation at Y537 is required for nuclear export and
E6AP-dependent degradation in breast cancer cells, suggesting
that ERa subcellular distribution may be associated with its
stability (42, 70, 140, 148). Posttranslational modifications of
ERa, such as phosphorylation and poly-/mono-ubiquitination,
appear to be central for the modulation of its stability, transport,
and localization, and some may compete by the same site to
modulate ERa stability and activity; for example, K303 is
acetylated, mono- and poly-ubiquitinated in breast cancer cells
Frontiers in Endocrinology | www.frontiersin.org 6
(66, 73, 76, 113, 149), and some mutations at K303 exist in
premalignant breast lesions (150, 151). Moreover, many proteins
participate to protect ERa from degradation and affect its
subcellular distribution in breast cancer, denoting a complex
interplay among these elements, and some of them may be
potential therapeutic targets. Furthermore, all data indicate
that the response to endocrine therapy requires a dynamic in
ERa stability/degradation and its subcellular transport.

ERa proteolysis is key to the design of new therapeutic
strategies to treat breast cancer, such as PROTACs (proteolysis
targeting chimeric) technology, which are modulators of ERa
and its mutants (136, 152). PROTACs contain a module for
binding to the target protein and another module for the
recognition of E3 ligase. Hence, PROTACs bind to their target
protein to promote its ubiquitination and degradation, and
different PROTACs have been developed to degrade ERa via
the UPS in breast cancer cells, exhibiting antitumor activity.
PROTACs are being evaluated in patients with metastatic breast
cancer and may become promising therapies (153). It is
important to consider the implications of ERa stability in
malignant mammary neoplasia to avoid some resistance to
SERD or PROTAC treatments.

In conclusion, more studies focusing on ERa stability and
nuclear export in breast cancer are required. However, several
investigations have emerged to date, indicating that therapeutic
strategies based on controlling ERa abundance and distribution
in breast cancer may improve the status of patients with
endocrine resistance.
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