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Fitting mathematical models of 
biochemical pathways to steady 
state perturbation response data 
without simulating perturbation 
experiments
Tapesh Santra

Fitting Ordinary Differential Equation (ODE) models of signal transduction networks (STNs) to 
experimental data is a challenging problem. Computational parameter fitting algorithms simulate a 
model many times with different sets of parameter values until the simulated STN behaviour match 
closely with experimental data. This process can be slow when the model is fitted to measurements 
of STN responses to numerous perturbations, since this requires simulating the model as many times 
as the number of perturbations for each set of parameter values. Here, I propose an approach that 
avoids simulating perturbation experiments when fitting ODE models to steady state perturbation 
response (SSPR) data. Instead of fitting the model directly to SSPR data, it finds model parameters 
which provides a close match between the scaled Jacobian matrices (SJM) of the model, which are 
numerically calculated using the model’s rate equations and estimated from SSPR data using modular 
response analysis (MRA). The numerical estimation of SJM of an ODE model does not require simulating 
perturbation experiments, saving significant computation time. The effectiveness of this approach is 
demonstrated by fitting ODE models of the Mitogen Activated Protein Kinase (MAPK) pathway using 
simulated and real SSPR data.

Computational modelling of STNs is about formulating the biochemical reactions of these networks using systems 
of differential equations. These models help us understand how environmental stimuli, growth factors, stress sig-
nals etc. induce various cellular phenotypes via sequences of biochemical reactions1. ODE models can also be used 
to make quantitative predictions about the behaviour of SNTs, when experimental measurements are unavailable. 
These models have many parameters which represent physicochemical quantities such as rates of biochemical reac-
tions, synthesis and degradation rates of macromolecules, delays incurred in transcription and translation of genes 
and proteins etc. The values of these parameters cannot always be experimentally measured and are often inferred 
using computational algorithms. The basic strategy of these algorithms is to simulate the model repeatedly with 
different sets of parameter values, and then compare the simulated activities of the STN with experimental data, 
until a close match is found. Inferring parameter values using computational algorithms can be slow, because there 
are infinitely many possible parameter values to explore. Additionally, numerical simulation of ODE models can 
also be computation intensive. To speed up the process, existing methods2–11 focus on developing (a) clever search 
algorithms which quickly narrow down the potential values of parameters from infinitesimally large number of pos-
sibilities to a relatively manageable set of likely values2,4–9, (b) fast numerical simulators to simulate the ODE models 
or solve its rate equations. Despite significant progresses in both avenues, fitting even moderately large ODE models 
involving more than ten biochemical species to multi-perturbation datasets can be computationally challenging. A 
particularly popular type of multi-perturbation data which are quantified by perturbing the STNs using chemical 
inhibitors, siRNAs, viral vectors or plasmids; letting all components of the STN to relax into a steady state following 
each perturbation; and subsequently measuring the phosphorylation levels of each component2,12–15. SSPRs are rel-
atively easy to generate using multiplexed antibody arrays such as Luminex, Reverse Phase Protein arrays etc. and 
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highly useful in reconstructing the wiring diagrams of the STN2,12–18. However, using this data to fit ODE model 
parameters can be challenging. This is because, existing algorithms work by matching simulated SSPRs with the 
experimental data, i.e. these methods need to simulate all perturbation experiments using the ODE model for each 
set of parameter value. For instance, if a dataset contains the SSPR responses of an STN to twenty drugs or inhibitors, 
a parameter calibration algorithm will need to simulate the ODE model twenty times for each potential set of param-
eter values. This can be computationally challenging. Additionally, in-order to simulate these perturbations using 
ODE models, one needs to know the exact targets of the perturbing reagents. This information is often unavailable, 
since most chemical inhibitors are known to influence proteins other than their designated targets. This makes sim-
ulating perturbation experiments infeasible.

Here, I propose a method which allows calibrating ODE model parameters using SSPR data without simu-
lating perturbation experiments. Instead of fitting the model to the SSPR data itself, the proposed method first 
estimates the SJM of the model from SSPR data using MRA12. For a given set of parameter values the SJM of an 
ODE model is calculated by analytically or numerically differentiating its rate equations, without simulating per-
turbation experiments. Any existing parameter search algorithm4–9,19 can then be used to explore different sets of 
parameter values until a reasonable match between the SJMs which are calculated from SSPR data and by differ-
entiating model equations is found. For the purpose of demonstration, I used the Adaptive Weight Approximate 
Bayesian Computation based Sequential Monte Carlo (AW-ABC-SMC)19 algorithm for exploring the parameter 
space, mainly due to its relative simplicity of implementation. The AW-ABC-SMC algorithm, combine with the 
SJM based parameter fitting method proposed in this study was used to calibrate two separate models of the 
MAPK pathway to simulated and real SSPR data respectively. In the following sections I describe the details of 
this algorithm and demonstrate its applicability using simulated and real SSPRs of the MAPK STN.

Method
Linking Jacobian matrix of ODE model with SSPR data using MRA.  Let us assume that an STN 
contains N nodes which regulate each other’s concentrations. A mathematical model (Mx) that formulates how 
the interactions between the different nodes influence their concentrations consists of a set of ordinary differen-
tial equations (ODE) of the form x t( )i  = fi(xri(t), Θi), i = 1, …, N; where x t( )i  represent the rate at which the con-
centration x t( ( ))i  of the ith node changes with time (t), fi is a continuous function, xri(t) are the concentrations of 
the regulators of node i including itself, Θi are the parameters of the function fi. The values of the parameters 
(Θ = {Θi, i = 1, …, N}) are unknown and needs to be estimated from experimentally observed data. The experi-
mental data is generated by perturbing the network many times using different biochemical reagents. Following 
a perturbation (pi) to each node (i), the STN is allowed to relax into a steady-state and the changes in the concen-
trations of all nodes (x = {xi, i = 1, …, N}) in response to each perturbation (pi) are measured. Our objective is to 
use this data to fit the parameters (Θ = {Θi, i = 1, …, N}) of the mathematical model (Mx) of the STN without 
simulating the perturbation experiments during the fitting process. To do so, we exploit a relationship between 
the Jacobian matrix (J(t)) of the ODE model and the experimentally observed SSPRs of the STN.

Note that at steady state (t = tss), x t( )i  = fi(xri(t), Θi) = 0 and therefore dfi(xri(t), Θi) = 0. Using chain rule of 
derivative
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of Eq. 2 are in fact (i, i)th and (i, j)th elements (Jii, Jij) of the STN’s Jacobian Matrix (J(t)) which is defined as 
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(tss)/xi(tss)) of the steady state concentrations of nodes j & i gives us

= = = −
=

r dln x t
dln x t

J t x t
J t x t

( ( ))
( ( ))

( ) ( )
( ) ( )

(3)

ij

dx t
x t
dx

x t
t

i

j t

ij j

ii i t t

( )
( )

( )

i

i

j t

j
ss

ss ss
( )



www.nature.com/scientificreports/

3Scientific ReporTS |  (2018) 8:11679  | DOI:10.1038/s41598-018-30118-0

rij is the (I, j)th element of the Jacobian matrix, scaled by the diagonal element in the same row and the ratio of the 
steady state concentrations of the ith and jth nodes. This quantity is formally known as the local response coeffi-
cient (LRC) of the regulation of node i by j and represents the change in the logarithmic steady state concentration 
of node i due to a small perturbation to node j, when all other nodes are disconnected. To be consistent with exist-
ing literature we shall refer to this quantity as local response coefficients or LRCs in short, instead of SJMs. It was 
shown by Kholodenko et al.12 that the local response matrix (r = {rij, i, j = 1, …, N} for notational convenience) 
can be calculated from the experimentally observed SSPRs by solving the following linear equations

= − −rR Rdg( (( ) )) (4)1 1

where R = {Rij, i, j = 1, …, N} is the global response matrix whose elements Rij = (Δln(xi)/Δln(xj)) are known as 
global response coefficients which represent the ‘global change’ (i.e. when the perturbation propagates through 
the network) in the logarithmic concentration of node i due to an infinitesimally small perturbation to node j. 
Experimental perturbations are never infinitesimally small, therefore Rij is calculated in an approximate sense 
from experimental SSPR data using the following formula12:
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here xi and xi
j is the experimentally measured steady state concentrations of node i prior to and following a per-

turbation to node j respectively.
Eq. 3 allows us to calculate the local response matrix (r) of and STN using its ODE models without explicitly 

simulating the perturbation experiments. Therefore, estimating the model parameters (Θ = {Θi, i = 1, …, N}) 
boils down to the following steps:

•	 Step1: Calculate the local response matrix (r) from experimentally observed SSPRs using Eqs 5 and 4
•	 Step2: Calculate the local response matrix (rs) using Eq. 3 for different values of model parameters and chose 

the sets of values which provide close match between r and rs.

Search for parameter values that minimizes the difference between r and rs out of infinitesimally many possi-
bilities can be performed using any existing parameter inference algorithm. For the purpose of demonstration we 
used AW- ABC-SMC19, an improved version of the original ABC-SMC7. The details of this algorithm is discussed 
in a later subsection.

Computational efficiency gained by the proposed approach.  Let us consider a dataset containing 
SSPRs of an STN to Np perturbations and measurements from a control experiment where the STN was unper-
turbed13,14, altogether the dataset contains Np + 1 sets of STN responses. Fitting an ODE model of the STN to this 
dataset in the traditional way requires simulating the model Np + 1 times for each set of parameter. However, to 
fit the model parameters using the approach proposed above, one needs to calculate the LRCs (rs, Eq. 3) of the 
ODE model for each set of parameter values. These calculated by differentiating the rate equations of the unper-
turbed model at steady-state, meaning that the steady-state of the model needs to be calculate once by solving the 
rate equations. No other model simulation is required. Therefore, when using the proposed approach the model 
equations need to be solved once for each set of parameter values as opposed to traditional methods which 
require Np + 1 ODE simulations; i.e. a typical parameter fitting algorithm will require only ≈ ×

+
100

N
1

1 p
% of the 

execution time by fitting parameters to local response matrices instead of the SSPR data, assuming that most of 
the execution time is spent by simulating/solving the ODE models. For a typical SSPR dataset containing 8–15 
SSPRs13,14, fitting model parameter to the local response matrix will take only 7–11% of the execution time of the 
alternative approach which requires simulating the perturbation experiments. The time saving is even more sig-
nificant when Np is larger.

Experimental requirements for the proposed approach.  Since the above approach relies on the local 
response matrix of the STN, there need to be enough experimental data to calculate this matrix. How much data 
is required to calculate local response matrix depend on the method being used for this calculation. The classi-
cal MRA12 requires exactly as many perturbations as the number of STN components to calculate this matrix. 
The total-least-square regression based MRA formulations requires at least as many perturbations as the clas-
sical MRA20. More recent Bayesian and Maximum Likelihood method based MRA realizations can calculate 
local response matrices using data from less number of perturbation experiments than required by the classical 
MRA2,13. There is no rule of thumb for estimating the minimum number of perturbations that are required for 
calculating local response matrices with reasonable accuracy. However, the Bayesian formulations of MRA was 
successfully2 used to calculate the local response matrices using SSPRs from half as many perturbations as the 
number of components in the STN.

Exploring the parameter space using Adaptive Weight ABC-SMC.  ABC is inspired by Bayesian 
Statistics and relies on Bayes principle which provides a framework for updating prior knowledge about an 
unknown variable or quantity using observed data. The prior and updated knowledge are represented in the 
form of probability distributions, known as prior and posterior distributions respectively, which formulates 
our initial guesses and updated estimates about the potential values of the unknown variables. Adaptive Weight 
ABC-SMC algorithm starts by assigning prior distributions (P(Θ)) to the model parameters (Θ), and initializing 
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a monotonically decreasing set of error thresholds (εt, t = 1, …, T, ε1 > ε2 > … > εT) which will be used to refine 
the posterior distribution (P(Θ|Dobs), (Dobs is the observed data, which, in our case, is the local response matrix, 
i.e. Dobs = r) of the model parameters (Θ) in a stepwise manner as described below (for details see7,19).

Step 1: In the first step (t = 1), a number of potential values (Θ1k, k = 1, ….) of the model parameters (Θ) 
are sampled from their prior distributions (P(Θ)). For each set of values (Θ1k) a local response matrix (rs

1k) is 
simulated using the ODE model (Mx), and the error between the simulated (rs

1k) and the SSPR derived (r) local 
response matrices are calculated using a distance measure (d(r, rs

1k)). If the error (d(r, rs
1k)) is less than the error 

threshold ε1, i.e. d(r, rs
1k) < ε1, then corresponding parameter values (Θ1k) are kept for next iteration, otherwise 

discarded. This process is repeated until a desired (NABC) number of parameters are kept (Θ1 = {Θ1n, n = 1, .., 
NABC}). Each of the selected values (Θ1n) is assigned a weight (ω1n = 1/Nabc).

Step 2: In the next step (t = 2), one (Θ1n) of the parameter values (Θ1) which were not discarded in the pre-
vious step is selected with probability p1n ∝ ω1n Kc(rs

1n, r) where Kc(rs
1n, r) measures the closeness between rs

1n 
and r. A new parameter value (Θ2k) is then proposed by sampling a proposal distributions (P(Θ2|Θ1n)) which is 
conditioned on the selected value (Θ1n). A local response matrix (rs

2k) is then simulated using this parameter 
value (Θ2k) and the error (d(r, rs

2k)) between the simulated (rs
2k) and the SSPR derived (r) local response matri-

ces is calculated. If the error (d(r, rs
2k)) is less than the error threshold ε2, i.e. d(r, rs

2k) < ε2, then newly sampled 
value (Θ2k) is kept, otherwise discarded. This process is repeated until a desired (NABC) number of parameters are 
kept (Θ2 = {Θ2k, k = 1, .., NABC}). The weights of the selected values are updated as follows ω2k ∝ P(Θ2k)/∑k ω1k 
P(Θ2k|Θ1k), where the proportionality constant is the sum over all weights (∑k ωtk).

Step 3: Step 2 is repeated T times (t = 3, 4, …, T) when the algorithm terminates. The last set of parameter 
values (ΘT) kept by the algorithm represent samples from the approximate posterior distribution of the model 
parameters (Θ).

Weighted Euclidean distance function was used for calculating errors (d(r, rs
1k)); Gaussian function was used 

for calculating both the closeness measures (Kc(rs
tk, r)) and proposal distributions (P(Θt|Θ(t-1)k)). The above algo-

rithm was parallelized in the following manner. In each step t, instead of sampling one set of parameter values 
at a time and checking whether it passes the error threshold, NB numbers of parameters values {Θtk, k = 1, …, 
NB} were sampled at a time. Simulating and evaluating the local response matrices using each of these sampled 
parameter values ({Θtk, k = 1, …, NB}) were performed in parallel using multiple processors. Since simulating 
each local response matrix requires solving an ODE model, which is computation intensive, performing several 
such simulations in parallel saves significant computation time.

Parameter identifiability issues and potential remedies.  An STN consisting of N proteins can have 
up to (N2 − N) possible interactions excluding self-regulation. The local response matrix (r) of the STN provides a 
quantitative representation of each of these interactions. However a typical STN has far less interactions (Nc) than 
theoretically possible, i.e. Nc ≪ (N2 − N). The LRCs corresponding to the non-self-regulatory interactions that are 
theoretically possible but do not occur in reality are close to zero12 and do not contribute in the parameter infer-
ence process. The remaining Nc LRCs are useful for fitting parameters. However, in a typical scenario, a mathe-
matical model requires more than Nc parameters to formulate Nc interactions, i.e. the number of parameters (Np) 
in the model is typically larger than the number of interactions (Nc) it formulates (Np > Nc). Generally speaking, 
fitting a model with less data points than the number of model parameters causes parameter identifiability and 
model overfitting problems. There are several ways of avoiding this problem as described below.

•	 One way of resolving the parameter identifiability problem is to generate SSPR data in different experimen-
tal conditions. For instance, the STN can be stimulated with different ligands or different doses of the same 
ligand, and following each stimulation the full set of perturbation experiments (including unperturbed meas-
urements) needs to be performed. This will allow one to calculate multiple local response matrices (rl, l = 1, 
2, …) for the same STN. The model can then be fitted to all local response matrices simultaneously using the 
same method described in the previous section. In this case, when using the proposed method of parameter 
fitting, the model equations need to be solved for each type or dose of ligand for each set of parameter values, 
but the individual perturbations at each type or dose of ligand need not be simulated. Therefore the gain in 
computational efficiency remain the same as discussed before.

•	 Network features other than the local response matrix can also be obtained from multi-conditional SSPR data 
and used for parameter fitting. For instance, the changes in the steady state concentrations (xl = {xl

i, i = 1,…, 
N}) of the STN components due to changes in the dose or type of ligand (l) can also be useful for parameter 
calibration. To elaborate, let the steady state concentrations of the STN components in response to ligand 
stimulation l (but no other perturbation) be denoted by xl = {xl

i, i = 1, …, N}. The ratio (ρjk
i) of the concentra-

tion of node i at two different types or doses of ligands (l = j, k), i.e. ρjk
i  = {xj

i/xk
i}, i = 1, …, N, represents the 

change in concentration of node i when the ligand or ligand concentration is changed from j to k. Therefore, 
these ratios (ρjk

i) quantify how different ligands influence the STN components, as opposed to local response 
matrices which contain information about how different nodes influence each other. Here, these ratios (ρjk

i, 
i = 1, …., N) contain information which is complementary to the local response matrices and can be aug-
mented with these matrices (Dobs  = {rl, ρjk

i; l = 1, 2, …; j, k = 1, 2 …, j ≠ k, i = 1, 2, …, N}) to further improve 
parameter identifiability. Incorporating the ligand response rations in the parameter fitting process does not 
require additional model simulation and therefore does not make noticeable difference in the computational 
complexity of the parameter fitting process.

•	 Any additional experimental data can also be incorporated in the parameter inference process, especially if 
it does not incur additional computational cost. For instance, time course measurements (xi(t)) of the con-
centrations of any node (i) of the STN can also be incorporated. Incorporating time course measurements 
do not incur any significant additional computational cost since the model needs to be simulated once per 
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ligand or ligand concentration, with or without such data. The only difference is, in case of time course data, 
the models needs to be simulated using ODE solvers which can be slower than the numerical solvers used to 
solve model equations at steady state. Nevertheless, one model simulation is not likely to incur computational 
cost comparable to Np ≫ 1 perturbation experiments.

Availability.  All source codes and data needed to replicate the results in this manuscript are available from 
https://github.com/SBIUCD/MRA_SMC_ABC1.

Results
Evaluating the proposed method using simulated data.  Simulating perturbation response of the 
MAPK pathway.  To test our algorithm we simulated SSPR data using a mathematical model of the ERK path-
way (Fig. 1A), which is a three tiered MAPK cascade that controls cell fate21–23. It comprises of three kinases, 
RAF, MEK and ERK. RAF is at the top of the cascade which is activated by RAS-GTP when ligands such as 
Epidermal Growth Factor (EGF) binds to EGF receptor on the cell surface. Activated RAF (aRAF) then activates 
MEK by phosphorylating it on two sites. Active MEK (aMEK) in turn activates ERK by doubly phosphorylat-
ing it. Activated RAF, MEK and ERK (aERK) are subsequently inactivated by phosphatases which de-phospho-
rylate them. Activated ERK (aERK) can inhibit the activation and assist in the inactivation of RAF and MEK 
respectively, thereby forming two negative feedback loops12,24,25. A few simplifying assumptions were made to 
develop a mathematical model of this pathway. For instance, while in relality EGF activates RAF via a network 
of adaptor proteins and RAS-GTPs, for the purpose of modelling it was assumed that RAF is directly activated 
by EGF. Additionally, the activations of RAF, MEK, ERK are two stage processes involving phosphorylations of 
two distinct sites on these kinases. For simplicity, we combined the two stage activation process of these kinases 
into one stage in which the inactive form of the kinase (iRAF, iMEK, iERK) are converted into their active forms 
(aERK, aMEK and aERK)26. Finally, the negative feedbacks from aERK to aMEK and aRAF operates via two 
different mechanisms. Finally, in reality the two ERK mediated negative feedback loops are mediated by two 
different mechanisms of inhibition of upstream kinase activities (aRAF and aMEK). However, for modelling, it 
was assumed that both feedback are caused by aERK mediated inactivation of aMEK and aRAF. Activation and 
inhibition of each kinase were formulated using Michaelis Menten functions as shown below

= −

−

= −

−

= −
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where, Ma(k, K, S, M) = 
+

kS M
K S

, M0(V, K, S) = 
+

V S
K S

, iRAF = (RAFTOT − aRAF), iMEK = (MEKTOT − aMEK), 
iERK = (ERKTOT – aERK), kf1 = 1, Kmf1 = 10, Vm1 = 2, Km1 = 10, kmf2 = 1, Kmf2 = 10, Vm2 = 1, Km2 = 10, kmf3 = 0.1, 
Kmf3 = 10, Vm3 = 10, Km3 = 10, kr1 = 1, Kr1 = 10, kr2 = 1, Kr2 = 10.

The following experimental scenario was simulated using the above mathematical model (Eq. 6). Following 
common practice13–15,26, it was assumed that the cells are starved prior to stimulation by EGF. Since the phospho-
rylation levels of kinases are negligible in starved cells, the initial concentrations (aRAFt = 0, aMEKt = 0, aERKt = 0) 
of aRAF, aMEK and aERK were set to zero. The starved cells are stimulated by adding EGF to the growth medium. 
This was simulated by setting the EGF level of the model to a positive constant. The cells are then allowed to 
relax until they reach steady state. This was simulated by running the model until steady state. Once the cells 
attained steady state, the concentrations of active RAF, MEK and ERK are measured using antibodies or fluo-
rescent reporters which amplify the changes in concentrations by several orders of magnitude. The amplifying 
effects of antibodies and reporters were simulated by multiplying the simulated concentrations by a large constant 
(kf ≫ 1)27. Biological measurements are typically noisy, which was simulated by adding random Gaussian noise to 
the amplified concentrations. Since biological data are typically generated in replicates, we generated six replicates 
for each measurements, each of which is a noisy realization of the amplified concentrations.

The above data represents active RAF, MEK and ERK in EGF stimulated, but otherwise unperturbed cells. 
To simulate perturbation experiments, it was assumed that the ERK pathway was perturbed by transfecting the 
cells with siRNAs targeting RAF, MEK, and ERK. Since siRNAs reduce the total concentration of their target 
proteins, the perturbations were simulated by reducing the total amount of RAF, MEK and ERK (aRAF + iRAF, 
aMEK + iMEK, aERK + iERK respectively) in the ODE model. Following each perturbation, the model was sim-
ulated until steady state, the steady state concentrations were amplified and measurement noise were added as 
described in the previous paragraph. Six replicate measurements were generated following each perturbation. 
These simulated concentrations of the aRAF, aMEK and aERK can be used to calculate the local response matrix 
of the ERK STN using Eqs 4 and 5. However, since the STN has three active components, the local response 
matrix is a 3 × 3 matrix whose diagonal elements are by definition −1 (see. Eqs 2, 3) regardless of the parameter 
values, leaving us with six LRCs, only four of which represent true interactions, to fit the model (Eq. 6) which 
has sixteen parameters. Since the model has significantly more parameters than the number of LRCs, it is evident 
the parameters of the model are not identifiable from a single local response matrix. To solve the model identifi-
ability issue, we generated data for four different levels of EGF (0.1 ng/ml, 1 ng/ml, 2 ng/ml, 5 ng/ml; see Fig. 1A). 

https://github.com/SBIUCD/MRA_SMC_ABC1
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To evaluate the robustness of our algorithm against experimental noise, we generated data for six different levels 
(standard deviation σ = 0, 2, 5, 10, 15, 20) of noise (Fig. 1A). Six replicate datasets were generated at each levels 
of EGF and noise (Fig. 1A).

Calibrating model parameters using simulated SSPR data.  The ODE (Eq. 6) was separately fitted to data con-
taining different levels of noise. At each level of noise (σ > 0) and EGF stimulation, the means of the steady 
state concentrations of aRAF, aMEK and aERK were first estimated by calculating sample mean of the replicate 
measurements. The mean concentrations of the perturbed and the unperturbed STNs were then used to calculate 
four global response matrices (RE, E = 0.1, 1, 2, 5 ng/ml), one for each EGF level, using Eq. 5. The global response 
matrices were then converted into local response matrices (rE, E = 0.1, 1, 2, 5 ng/ml) using Eq. 4. The ratios (ρE,0.1, 
E = 1, 2, 5 ng/ml) between the concentrations of aRAF, aMEK and aERK at EGF levels 1, 2, 5 ng/ml to those at the 
lowest EGF level (0.1 ng/ml) were also calculated and were used for model fitting.

Figure 1.  Parameter calibration using local response coefficients calculated from simulated data. (A) Schematic 
diagram of the MAPK model that was used to simulate perturbation response data, along with an outline of the 
data generation process. (B,C) Local response coefficients and steady state levels of aRAF, aMEK and aERK, 
simulated with the original (grey bars) and inferred parameters (coloured markers). Parameters were inferred 
from data contaminated with different levels (σ = 0, 2, 5, 10, 15, 20) of noise. The steady state levels of aRAF, 
aMEK and aERK at EGF levels 1,2,5 ng/mL are shown in terms of fold-change with respect to the same at 
EGF = 0.1 ng/mL. (D) aERK levels following stimulation by different doses of EGFs.
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Adaptive weight ABC-SMC algorithm19 was then used to calibrate the model parameters. Total concentrations 
of RAF, MEK and ERK were assumed to be known and therefore set to the same values that were used for data 
simulation. The initial concentrations of the model were set to zero reflecting characteristics of starved cells. The 
prior distributions of remaining sixteen model parameters was set to log-normal distributions with mean and 
standard deviations 2.3 and 2 respectively. For each set of parameter values, four local response matrices (rM

E, 
E = 0.1, 1, 2, 5 ng/ml), one for each EGF level, were calculated using Eqs 1–3. Three sets of ligand response ratios 
(ρM

E,0.1, E = 1, 2, 5 ng/ml) were also calculated. These were then compared with those (rE, E = 0.1, 1, 2, 5 ng/ml; 
ρE,0.1, E = 1, 2, 5 ng/ml) calculated from simulated data using weighted Euclidean distance. The overall distance 
(do) between four pairs of local response matrices (rE, rM

E , E = 0.1, 1, 2, 5 ng/ml) and three pairs of ligand response 
coefficients (ρE,0.1, ρM

E,0.1, E = 1, 2, 5 ng/ml) was calculated as

∑ ∑ ρ ρ=










+










ρ

. .

=
r rd

n
d

n
d1 ( , ) 1 ( , )

(7)

E
M
E

Mo
E r

E
E 1 2 5

E
E 0 1 E, 1

{ , , }

, 0

where nr
E = √(∑I,j,i≠j (rij

E)2) and ρnE = √ (∑i (ρi
E,0.1)2) are weights, d(x, y) represents Euclidian distances between x 

and y. At each stage (t) of the weighted ABC-SMC algorithm, NABC = 1000 sets of parameters were selected, for 
which the distance do is less than the error threshold εt. The set of parameters (ΘT = {ΘT

i, i = 1, …, Nabc}) that were 
selected at the final stage (t = T) of the algorithm were then used as samples from the posterior distributions of the 
parameters. Parameters were inferred separately from SSPR data sets containing different levels of noise. For 
national convenience, parameters sampled from data containing different levels of noise will be denoted by ΘT

σ 
hereafter. To see whether the sampled parameters provide a good fit to the data the LRCs and the ligand response 
ratios of the pathway were simulated from each set of sampled parameters (ΘT

σ, σ = 0, 2, 5, 10, 15, 20). The mean 
and standard errors of these quantities are shown using markers and error bars in Fig. 1B,C. Those calculated from 
noise-free SSPR data are also shown in these figures using bar charts. These figures suggest that the LRCs and 
ligand response ratios calculated from the noise free SSPR data and simulated using the sampled parameters 
match closely when the noise in the data is less than σ = 10. The model fit worsens at higher noise level.

Predicting active ERK levels in response to different doses of EGF using the calibrated models.  Depending on sev-
eral extrinsic and intrinsic factors such as types and concentrations of ligands, reaction rates etc. a biochemical 
pathways may take very different temporal trajectories to arrive at the same or very similar steady states28–30. 
Therefore, pathway models that are fitted to steady state data can only be expected to predict the steady state 
behaviour of the pathway but not its kinetic behaviour. To see if the calibrated models can predict the steady state 
behaviour of the in-silico MAPK pathway, we simulated steady state dose response of aERK using the parameters 
sampled at each noise level. We chose EGF doses (EGFs = 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4]; which were 
not used to simulate the training data. For each noise level (σ = 0, 2, 5, 10, 15, 20), aERK levels in response to dif-
ferent doses of EGFs were simulated using the sampled parameter values. The means and standard errors of aERK 
at different EGF doses were computed and plotted for each level of noise. The gold-standard in-silico aERK dose 
response was also plotted in the same diagram for comparison. The simulations by calibrated models (models 
fitted with sampled paramters) closely matched the gold-standard data when the parameters were inferred from 
less noisy data (σ < 20). The predictions were worse at the highest level of noise (σ = 20).

Influence of the prior parameters on model fitting.  We further investigated how the choice of the prior distri-
bution influence parameter inference. In the simulation study discussed above we chose log normal prior dis-
tributions with mean and standard deviations 2.3 and 2 respectively for all parameters. We varied the means of 
the prior distributions between 1 and 1000 (mean = 1, 5, 10, 20, 30, 50, 100, 1000) and for each prior mean we 
inferred parameters from SSPR data containing four levels of noises (σ = 0, 2, 5, 10). The inferred parameters were 
then used to estimate the mean local and legand response coefficients of the pathway, and the sum of squared 
(SSQ) distances between the estimated coefficients and the original data were calculated. The SSQs represent 
the model fitting errors for different prior means. The SSQs for different values of prior means at different noise 
levels are shown in Fig. 2. When the noise is low (σ = 0, 2, 5), the SSQs vary between 0.2–0.4 independently of 
the value of the prior mean. At higher noise (σ = 10), the SSQ vary between 4–6 independently of the prior mean. 
These results suggests the model fitting error is negligible when noise is small, it depends only on the level of noise 
in data and not the choice of prior mean. Therefore, the proposed algorithm is robust against choices of prior 
parameters.

Computation time.  Fitting the ODE model of the MAPK pathway as described above took an average of 
~13 minutes on a laptop computer with Intel Core i7 processor and 20 GB of RAM. When the model was fitted to 
the SSPR data directly it took ~47 minutes on the same computer. This roughly agrees with the general estimate of 
computational gain described in the methods section. It should be noted that the time complexity of the overall 
parameter fitting process depend on several factors related to the AW-ABC-SMC algorithm, e.g. the granularity 
of its error schedule, prior distribution and parallelization parameters. Therefore, the time complexity can be very 
different depending on the values of these factors. However, the relative gain between the proposed approach and 
those which require simulating perturbation experiments should be more or less the same.

Fitting an ODE model of the MAPK pathway using experimentally measured SSPR data.  
Calibrating an ODE model of the MAPK pathway using experimental data.  We further implemented the algo-
rithm on a real SSPR dataset that was generated to study an interesting biological phenomena involving PC12 
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cells which are derived from pheochromocytoma of the rat adrenal medulla. These cells proliferate and differ-
entiate when stimulated by EGF and Nerve Growth Factor (NGF) respectively despite the fact that both of these 
ligands activate the ERK pathway via the same receptor (the EGFR receptor). The molecular mechanism by which 
EGF and NGF induce two different phenotypes is a matter of continued research. Santos et. al. studied the ERK 
pathway in EGF and NGF stimulated cells to understand how these ligands induce different phenotypes via this 
pathway15. They treated PC12 cells by EGF or NGF after perturbing the components (RAF, MEK, and ERK) of the 
ERK pathway using siRNAs and also without any perturbation, and subsequently measured the phosphorylation 
levels of RAF, MEK and ERK. NGF induced sustained phosphorylation of the ERK pathway, but EGF medi-
ated phosphorylation was transient, which peaked (reached maximum level) at 5 minutes and then completely 
diminished at around 15 minutes15. Therefore, the SSPRs (~15 minutes) of ERK pathway were quantifiable in 
NGF stimulated cells but not in EGF stimulated cells15. However, 5 minutes after EGF stimulation, the phospho-
rylation levels of the ERK pathway reached maximum level, where the rate of change in phosphorylation levels 
is temporarily zero, attaining a pseudo-steady state. Therefore the perturbation responses of the ERK pathway 
following 5 minutes of EGF stimulation represent pseudo-SSPRs of this pathway. Santos et al. used the SSPRs 
and pseudo-SSPRs to calculated the LRCs for NGF and EGF stimulated ERK pathway (Fig. 3A)15 respectively. 
The LRCs indicated different topologies of ERK pathway in response to different ligand stimulation (Fig. 3A). 
When EGF was used, the interaction from ERK to RAF had a negative LRC indicating the presence of a negative 
feedback in this condition (Fig. 3A). But when NGF was used, the LRC of the same interaction was positive, indi-
cating the presence of a positive feedback loop. Additionally, the interaction from RAF to ERK had a relatively 
high positive LRC when the cells were treated with NGF, but this LRC was negligibly small in the presence of EGF. 
Therefore, it was concluded by Santos et. al. that there was a feedforward loop from RAF to ERK in presence of 
NGF, but this loop was not operational in presence of EGF (Fig. 3A). To test our method on Santos et al.’s dataset, 
an ODE model which accounted for the topological variations of the ERK pathway in response to EGF and NGF 
stimulations was developed. The model is shown below.
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where, Ma(k, K, S, M) = k.S.M/(K + S), M0(V, K, S) = V.S/(K + S),

Figure 2.  Effects of hyper-parameters on model fitting error. X-axis represents hyper-parameter values, Y-axis 
represent sum of square error between original and predicted LRCs and SSFCs. Error bars represent standanrd-
deviations. Panels (A–D) show the effect of hyper-parameter choice on the ABPIPRD algorithm at different 
levels of measurement noise (σ = 0, 2, 5, 10 respectively).
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The above model (Eq. 8) of the ERK pathway is in some ways different from the one (Eq. 6) used for the sim-
ulation study.

•	 Firstly, unlike in the previous case (Eq. 6), it is no longer assumed that EGF or NGF directly activates RAF. 
This simplification step is avoided to reflect the biological reality that RAF is activated by the RAS proteins 
which are activated by EGF and NGF via a series of biochemical interactions involving the receptor and adap-
tor proteins. The SSPR dataset does not encompass receptor, adaptor and RAS proteins, therefore these are 

Figure 3.  Fitting an ODE model of the MAPK pathway to experimental data. (A) LRCs of the ERK pathway 
and time-dependent relative pERK concentrations in EGF and NGF stimulated PC12 cells. (B) Schematic 
diagram of the ODE model that was fitted to the data presented in (A). (C) LRCs and time dependent pERK 
concentrations calculated using the fitted models. LRCs calculated from experimental data and experimentally 
observed pERK kinetics are also shown in this panel for comparison. Model fits represent average of an 
ensemble of one thousand models fitted to 1000 sets of parameters sampled by the variable weight ABC-SMC 
algorithm. Error bars represent standard error. Error bars are not visible due to having negligible standard error.
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not exclusively incorporated in the above model (Eq. 8). But, it is known that RAS, which directly activates 
RAF, experiences rapid activation and successive deactivation following ligand (EGF, NGF) stimulation26. 
This transient nature of the input signal to RAF was formulated using gamma functions (RAS_EGF(t), RAS_
NGF(t)) with unknown parameters (kdegf, kdngf) which were inferred from data.

•	 Secondly, the model in Eq. 8 incorporates the influence of NGF on the kinetics and the topology of the ERK 
pathway. Since EGF and NGF activate RAF via RAS at different rates, the influence of these ligands on RAF 
were formulated using two separate Michelis Menten functions (Eq. 8, Fig. 3B). Binary variables be and bn 
were used to characterize interactions which occur selectively in response to EGF and NGF respectively 
(Fig. 3B).

The resulting model has twenty four unknown parameters. Additionally, the total concentrations (RAFTOT, 
MEKTOT, ERKTOT) of RAF, MEK and ERK are also unknown and therefore need to be estimated. However, there 
are only two sets of LRCs, a total of 12 data points (excluding LRCs for self interactions which are by definition 
−1) available to fit the model. Fitting such a parameter rich model using such a small number of data points will 
almost certainly run into model identification problems. Additional data was incorporated in the inference pro-
cess. Santos et. al. measured the SSPR data at 5 and 15 minutes after EGF and NGF stimulation respectively since 
the PC12 cells were seen to reach pseudo steady statse at these time points. This implies that the rates of changes 
(d(aRAF)/dt, d(aMEK)/dt, d(aERK)/dt) in the phosphorylation levels temporarily became zero (d(aRAF)/dt = 0, 
d(aMEK)/dt = 0, d(aERK)/dt = 0) at these time points. This provides us six additional data points, i.e. the rates of 
changes in aRAF, aMEK, and aERK at 5 and 15 minutes after EGF and NGF stimulation respectively, totaling 18 
data points which is still too little to calibrate a model with 27 parameters. Therefore, phosphorylation levels of 
ERK measured at 0, 5, 10, 15, 30 and 60 minutes following EGF and NGF stimulation15 were also incorporated in 
our inference algorithm to supplement the LRCs and pseudo steady state data.

For parameter inference it was assumed that all model parameters and the total concentrations RAFTOT, 
MEKTOT and ERKTOT have log-normal prior distributions. The means of the prior distributions of all model 
parameters except those of the gamma functions (kdegf, kdngf) were set to 2, those of the gamma function param-
eters (kdegf, kdngf) were set to 0.2, and those of the total concentrations RAFTOT, MEKTOT and ERKTOT were set to 
25, 100 and 400 respectively. The standard deviations of all priors were set to 2. The initial concentrations of aRAF, 
aMEK and aERK were all set to 0 since in Santos et. al’s experiments cell were starved prior to stimulations. The 
Weighted ABC-SMC based algorithm was run using the above settings. LRCs of the ERK pathway model (Eq. 7) 
and temporal activities of aERK in response to EGF and NGF were simulated using the inferred parameters and 
then plotted against those derived from experimental data (Fig. 3C), showing a close match between the two. The 
inferred parameters were then used to predict different kinetic and steady state pathway behaviours which were 
not used for model calibration.

Predicting active RAF and MEK levels in EGF and NGF stimulated PC12 cells using the calibrated model.  Firstly, 
the relative changes in the concentrations of aRAF and aMEK within a 60 minutes period after EGF and NGF 
stimulations were simulated. Simulations suggested that aRAF and aMEK levels peak at 5 minutes after both EGF 
and NGF stimulations, but diminish much quicker after EGF stimulation than NGF stimulation. The simulated 
aRAF and aMEK activities (Fig. 4A) qualitatively reflected the experimental data15.

Predicting the effect of growth factor neutralizing antibodies on aERK level in PC12 cells.  The response of the 
ERK pathway to growth factor neutralizing antibodies applied at 10 minutes after EGF and NGF stimulation 
were simulated using the sampled parameters. The effect of the neutralizers were formulated by setting the ligand 
concentrations to zero after 10 minutes. The simulation results partially agreed with the experimentally observed 
behaviour (Fig. 4B). In simulation, aERK level diminished completely at 60 minutes after EGF stimulation; 
whereas following NGF stimulation aERK level diminished at ~22% of its peak value at the same time point 
(Fig. 4B). While these general trends were also observed in experimental data (obtained from15 and also shown 
in Fig. 4 for convenience), there were also some differences between the simulation and experimental data. The 
first noticeable difference is that aERK level diminished significantly faster between its peak at 5 minutes and 
10 minutes (when the growth factor neutralizing antibody was applied) after EGF stimulation in the experimental 
observations, compared to the simulation (Fig. 4B). The second obvious difference is that the aERK level peaked 
at 10 minutes after NGF stimulation in the biochemical experiments, but in simulation the peak occurred at 
5 minutes (Fig. 4B). In both cases, the differences between the experimental data and model simulation occur 
before the application of growth factor neutralizing antibodies. Therefore, it is unlikely that the difference is 
caused by error in simulating the effect of the neutralizing factors. A closer look at the two sets of experimentally 
measured phospho- ERK levels, one without the neutralizers and was used for model calibration (Fig. 3C) and 
the other with the neutralizers (Fig. 4B), reveals that these two sets of measurements are at odds with other. This is 
most likely due to biological variability between the samples used in these two experiments and/or batch effects. 
Therefore, in this case, the apparent differences in experimental data and model simulation can be attributed to 
these factors.

Predicting active ERK concentrations in response to different doses of EGF and NGF.  The response of aERK at 
five minutes following different doses of EGFs and NGFs were simulated (Fig. 5A) using the sampled param-
eters. The average simulated aERK levels in response to different doses of EGF and NGF are shown in Fig. 5A. 
Two different sigmoidal curves were fitted to the EGF and NGF dose responses of aERK, mainly to show that 
(at 5 minutes after stimulation) the concentration of active ERK has a sigmoidal relationship with those of these 
ligands (5 A). Similar sigmoidal relationship between ligand concentrations and active-ERK levels (at five minutes 
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after stimulation) were experimentally observed in PC12 cells (data obtained from31, also shown in Fig. 5A for 
convenience).

Predicting active ERK concentrations in response to different doses of NGF at single cell resolution.  The inferred 
parameters were used to simulate steady state response of aERK to different doses of NGF at a single cell level. 
To do so, each sampled set of parameter values were assumed to represent a single cell, thereby, the ensemble of 
all sampled parameter sets represents a cell population. Steady state aERK levels (at 60 minutes) were simulated 
for each set of parameter values at each level of NGF (0.01, 0.1, 1, 3, 5, 10, 30, 50, 100 ng/ml). The distribution of 
steady state aERK levels in a cell population in response to different doses of NGF were estimated using a kernel 
density estimator (https://uk.mathworks.com/help/stats/ksdensity.html). It was previously shown that at steady 
state, in response to NGF > 1 ng/ml phosphorylated ERK levels have bimodal distributions in populations of 
PC12 cells15. To see if the same is true for the simulated aERK levels, we fitted one or two Gaussian probability 

Figure 4.  Simulating temporal concentrations of pRAF and pMEK using the fitted models. (A) Time 
dependent relative concentrations of pRAF and pMEK in response to EGF (top two sub-panels) and NGF 
(bottom two subpanels). Experimental data are shown in the left sub-panels and the model simulations are 
shown in the right sub-panels. (B) Temporal response of pERK to the application of growth factor neutralizing 
antibody at 10 minutes. The left and right sub-panels show experimental data and model simulation respectively. 
Model simulations represent average of an ensemble of one thousand models fitted to different sets of 
parameters sampled by the variable weight ABC-SMC algorithm. Error bars represent standard error.

https://uk.mathworks.com/help/stats/ksdensity.html
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density functions to each of the aERK distributions depending on whichever produced the minimum fitting 
(SSQ) error. In all cases, two Gaussian Distributions provided better fits than a single Gaussian distribution, 
suggesting that, in our simulations, aERK has bimodal distribution at all levels (0.01, 0.1, 1, 3, 5, 10, 30, 50, 

Figure 5.  pERK concentrations at different doses of growth factors. (A) Simulated (shown in red) and 
experimentally measured (shown in black) relative pERK concentrations following five minutes of EGF and 
NGF treatments. A.U. means arbitrary units. The dashed lines represent 67% confidence interval. An ensemble 
of one thousand models fitted to different sets of parameters sampled by the VW-ABC-SMC algorithm were 
used to calculate mean response (solid red lines in panel A) and confidence intervals (dashed red lines in panel A).  
Bimodal distribution of steady-state (60 minutes after NGF stimulation) pERK levels following treatment by 
different doses of NGF. For each level of NGF, pERK levels were simulated using an ensemble of a thousand 
models. The empirical distributions (the blue lines in panel (B) of the simulated pERK levels are shown in blow. 
Individual Gaussian components that make up the empirical distributions are shown in red and green. The peak 
of the individual components are marked using dots of the respective colour.
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100 ng/ml) of NGF stimulation (Fig. 5B). However the locations of the different modes are nearly inseparable at 
NGF = 0.01 ng/ml and have the highest separations at or more than 1 ng/ml NGF. Therefore, the overall simu-
lation results largely reflects the experimental observation with one exception which occur at NGF = 0.1 ng/ml. 
At this concentration of NGF the simulated aERK levels were seen to have bimodal distribution whereas experi-
mentally observed phospho-ERK levels had a single mode. One possible reason behind this difference is that, in 
experiments, the phospho-ERK levels were measured at 16 hours after EGF stimulation. By that time, the ERK 
pathway is known to be influence by transcriptional events which are not accounted for in our model32–34. This 
might cause some differences between the dose responses of the model and the real ERK pathway.

Discussion
I proposed a method that can be used to calibrate ODE models to SSPR data without exclusively simulating the 
perturbation experiments during the calibration process. This has several benefits beyond reducing computa-
tional cost. In many scenarios exact mechanism or ‘direct’ effect of the biochemical perturbations are not known, 
making it impossible to simulate these experiments in the first place. For instance, the mechanism of action or 
the exact targets of biochemical inhibitors are often either not known or not straightforward to incorporate in a 
model without significantly increasing the model complexity. Therefore, the data produced by the perturbation 
experiments where such inhibitors are used are not useful for fitting ODE models in the traditional way. The 
proposed approach does not require detailed knowledge of the perturbation experiments, thereby expanding the 
periphery of usable data for fitting ODE models. It can also be used in any existing parameter fitting algorithm to 
speed up the overall calibration process when using SSPR data. The models fitted using this method were shown 
to be able to largely reproduce STN behavior both at population and single cell level.

However, this approach of model fitting is not without its caveats. It relies on fitting parameters of a model to 
the LRCs of the STN. In any condition, STNs only have as many LRCs as the number of their interactions. Since 
each of these interactions are formulated using kinetic equations that usually have more than one parameters, in 
almost all cases there are more parameters to fit than the number available LRCs. This becomes even more of an 
issue for large networks which have many interactions, each of which is formulated using kinetic equations that 
may have several parameters. In such cases the difference between the number of parameters to fit and the num-
ber of available LRCs become even more apparent. Model complexity also plays a role in parameter identifiability. 
Mathematical models containing detailed equations for various intermediate stages of biochemical interactions 
are parameter rich and therefore are not easy to calibrate using LRCs. There are various ways of determining 
which of the model parameters are identifiable, sensitivity analysis2 and Fisher Information Matrix35 are some 
of the popular options. A common way2 of circumventing the parameter identifiability issue is to first determine 
which parameters are not identifiable, assign these parameters reasonable fixed values, and then infer the values 
of the rest of the parameters from data. Further information about parameter identifiability issues and potential 
remedies are described in detail by Raue et al.36. A more straightforward way of improving parameter identifiabil-
ity is to following various ligand stimulation. The behavior of biochemical networks varies depending on the dose 
and type of ligand stimulations, and so do the LRCs of the systems. Therefore, it is possible to estimate LRCs of 
the STN in response to different doses or types of ligand stimulations and use these LRCs to calibrate model. The 
upside of performing perturbation experiments in multiple conditions is that the resulting data is more informa-
tive than data from only one condition, but downside is the increased experimental burden.

Another potential weakness of the proposed method also stems from its inherent reliance on the LRCs. For 
the method to be effective, it is crucial that the LRCs are accurately estimated from SSPR data. The accuracy of the 
estimated LRCs depend on many factors ranging from noise, numbers and types of perturbation experiments, 
number of replicate experiments in the SSPR data, to the nature of the MRA based algorithms used to estimate 
LRCs. There are currently no rule of thumb for either designing optimal perturbation experiments to produce 
the most informative SSPR data, or identifying an algorithm which will produce the most accurate estimates of 
LRCs from an SSPR dataset. Designing optimal experimental protocols and computational algorithms to obtain 
the most accurate estimate of LRCs is a matter of ongoing research.
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