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Abstract

Background

A low proportion of P. vivax-exposed individuals acquire protective strain-transcending neu-

tralizing IgG antibodies that are able to block the interaction between the Duffy binding pro-

tein II (DBPII) and its erythrocyte-specific invasion receptor. In a recent study, a novel

surface-engineered DBPII-based vaccine termed DEKnull-2, whose antibody response tar-

get conserved DBPII epitopes, was able to induce broadly binding-inhibitory IgG antibodies

(BIAbs) that inhibit P. vivax reticulocyte invasion. Toward the development of DEKnull-2 as

an effective P. vivax blood-stage vaccine, we investigate the relationship between naturally

acquired DBPII-specific IgM response and the profile of IgG antibodies/BIAbs activity over

time.

Methodology/principal findings

A nine-year follow-up study was carried-out among long-term P. vivax-exposed Amazonian

individuals and included six cross-sectional surveys at periods of high and low malaria trans-

mission. DBPII immune responses associated with either strain-specific (Sal1, natural

DBPII variant circulating in the study area) or conserved epitopes (DEKnull-2) were moni-

tored by conventional serology (ELISA-detected IgM and IgG antibodies), with IgG BIAbs

activity evaluated by functional assays (in vitro inhibition of DBPII–erythrocyte binding). The

results showed a tendency of IgM antibodies toward Sal1-specific response; the profile of

Sal1 over DEKnull-2 was not associated with acute malaria and sustained throughout the

observation period. The low malaria incidence in two consecutive years allowed us to
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demonstrate that variant-specific IgG (but not IgM) antibodies waned over time, which

resulted in IgG skewed to the DEKnull-2 response. A persistent DBPII-specific IgM

response was not associated with the presence (or absence) of broadly neutralizing IgG

antibody response.

Conclusions/significance

The current study demonstrates that long-term exposure to low and unstable levels of P.

vivax transmission led to a sustained DBPII-specific IgM response against variant-specific

epitopes, while sustained IgG responses are skewed to conserved epitopes. Further studies

should investigate on the role of a stable and persistent IgM antibody response in the

immune response mediated by DBPII.

Introduction

Plasmodium vivax is characterized by dormant liver stage hypnozoite-parasites responsible for

high frequency of relapses [1], which imposes a challenge for the current policies of malaria

control and elimination. With great potential for transmission from first generation of blood-

stage infection [2, 3] and lower levels of parasitemia often undetected by routine surveillance

[4, 5], the proportion of malaria infections attributed to P. vivax has increased in areas of rela-

tively low transmission [6].

Although there are major hurdles for vivax malaria elimination, clinical immunity to P.

vivax is acquired much more rapidly than for P. falciparum [revised in [7, 8], even in low trans-

mission settings, which make the development of an effective vaccine worth pursuing. Duffy

binding protein II (DBPII) is a leading P. vivax malaria vaccine candidate that binds the Duffy

antigen receptor for chemokines (DARC) on reticulocytes is critical for reticulocyte invasion

[9, 10]. Although naturally acquired DBPII antibodies tend to be biased towards strain-specific

responses [11–13], our project identified the epitope targets of protective neutralizing IgG

antibody response to overlap conserved residues essential for receptor binding and DBP

dimerization [12, 14–19]. Individuals able to produce these broadly binding-inhibitory anti-

bodies (BIAb) to DBPII present reduced risk of clinical P. vivax malaria [20, 21]. In pursuing a

structural vaccinology approach, our project created surface-engineered DBPII vaccine candi-

date, DEKnull-2, that retains the conserved functional epitopes needed for receptor binding

and DBP dimerization but removed residues of variant nonfunctional epitopes associated with

strain-specific immune responses [22]. Naturally-occurring protective immunity associated

with induction of long-term memory IgG responses have anti-DBPII BIAb and DBPII reactive

cells that are highly reactive with DEKnull-2.

While it is well established that naturally acquired IgG antibody responses are associated

with protective clinical immunity to blood-stage malaria [23, 24], the role of IgM is not well

defined [25, 26]. A recent study in a murine model of malaria demonstrated that Plasmodium-

specific IgM memory B cells are somatically hypermutated, high-affinity, and dominate the

early memory response to recurring malaria infections [27]. Likewise, the production of pro-

tective IgM antibodies during experimental malaria provides evidence of additional mecha-

nisms by which the immune system controls Plasmodium infection [28, 29]. These results

might explain recent data associating the depth and breadth of Plasmodium-specific IgM anti-

bodies with genetic resistance to malaria infection [30], and with the reduced risk of clinical
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malaria in a cohort of children [31]. Taken together, we are in accordance with other that sug-

gest that IgM antibodies seem to be much more than just an early responder to malaria infec-

tion [32], and should be investigated during the development of vaccines.

Therefore, the goal of this study is to understand the mechanisms that underlie the broader

humoral immune responses against the novel engineered DBPII vaccine candidate, DEKnull-2

[22], including the IgM response. For that, we took advantage of the long-term follow-up

study previously carried out in the Amazon rainforest, where different profiles of DBPII-spe-

cific IgG responders were identified [33]. We have examined the frequency and distribution of

DBPII-specific IgM and IgG antibodies during a 9-years follow-up period. As IgM antibodies

may be necessary to sustain an optimal long-term protective IgG response [34–36], we also

investigate whether a stable DBPII-specific IgM response could interfere with the profile of

antibodies able to block the interaction ligand-receptor.

Materials and methods

Study area and population

The study was carried-out in the agricultural settlement of Rio Pardo (1˚46’S—1˚54’S, 60˚

22’W—60˚10’W), Presidente Figueiredo municipality, Northeast of Amazonas State in the

Brazilian Amazon region. The study site and malaria transmission patterns were described in

detail elsewhere [37–39]. In this area, malaria transmission is considered hypo to mesoen-

demic, and the majority of residents were natives of the Amazon region [37]. Inhabitants of

the settlement live on subsistence farming and fishing along the small streams. In the study

area, P. falciparum malaria incidence has decreased drastically in recent years, and P. vivax is

now responsible for all clinical malaria cases reported (S1 Fig).

Study design and cross-sectional surveys

A population-based open cohort study was initiated in November of 2008, and included three

cross-sectional surveys carried at six-months interval (baseline, 6 and 12-months) as previ-

ously reported [37, 39]. Briefly, (i) interviews were conducted through a structured question-

naire to obtain demographical, epidemiological, and clinical data; (ii) physical examination,

including body temperature and spleen/liver size were recorded according to standard clinical

protocols; (iii) venous blood was collected for individuals aged five years or older (EDTA, 5

mL), or blood spotted on filter paper (finger-prick) for those aged<5 years; and (iv) examina-

tion of Giemsa-stained thick blood smears for the presence of malaria parasites by light

microscopy. The geographical location of each dwelling was recorded using a hand-held

12-channel global positioning system (GPS) (Garmin 12XL, Olathe, KS, USA) with a posi-

tional accuracy of within 15 m. Additional cross-sectional surveys were carried-out six (August

2014), seven (July 2015) and nine years later (July 2017) [22, 33]. During the long-term follow

up study, the number of malaria cases fluctuated in the study area, reflecting period of high (I

and III) and low (II) malaria transmission (S1 Fig). For the current study, the non-eligible cri-

teria were (i) refusal to sign the informed consent; (ii) children, as clinical immunity is not

prevalent in Amazon children [40]; (iii) pregnant women; (iv) any other morbidity that could

be traced; and (v) individuals who were unable to be recruited during at least two consecutive

cross-sectional surveys. The 163 participants who were eligible to the current study matched

the original adult population (n = 300) for age, sex, malaria exposure [33]. Eighty-eight (54%)

and 77 (47%) out of 163 eligible subjects could be recruited six and nine years later, respec-

tively. Fifty-seven (35%) subjects presented consecutive samples throughout the 9-years fol-

low-up period.

PLOS ONE IgM and IgG DBPII-based antibody responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0232786 May 7, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0232786


The ethical and methodological aspects of this study were approved by the Ethical Commit-

tee of Research on Human Beings from the René Rachou Institute (Reports No. 007/2006, No.

07/2009, No.12/2010, No. 26/2013 and CAAE 50522115.7.0000.5091), according to the Resolu-

tions of the Brazilian Council on Health (CNS-196/96 and CNS-466/2012).

Laboratory diagnosis of malaria

At the time of blood collection, all individuals were submitted to a finger-prick for malaria

diagnosis by light microscopy. The Giemsa-stained thick blood smears were prepared and

examined by experienced local microscopists, according to the malaria diagnosis guidelines of

the Brazilian Ministry of Health (2009) [41]. Species-specific PCR assays targeting different

plasmodial targets (18S rRNA gene and non-ribosomal Pvr47/Pfr364 sequences) were carried-

out essentially as previously described [42]. For this, genomic DNA was extracted from either

whole blood samples collected in EDTA, or from dried blood spots on filter paper using the

Puregene blood core kit B (Qiagen, Minneapolis, MN, USA) or the QIAmp DNA mini kit

(Qiagen), respectively, according to manufacturers’ instructions.

Recombinant blood stage P. vivax proteins

DBPII-related antigens. Recombinant DBPII-related proteins included amino acids

243–573 of the Sal-1 reference strain, DBPII-Sal1 [43], and an engineered DBPII termed

DEKnull-2 [22]. These proteins were expressed as a 39kDa 6xHis fusion protein, properly

refolded, as previously described [16, 22].

Immunoglobulin (Ig) M and IgG detection assays

A conventional enzyme-linked immunosorbent assay (ELISA) for antigen-specific IgM and

IgG antibody response was carried out as previously described [38], with plasma samples

diluted at 1:100 (IgG) or 1:400 (IgM). Recombinant proteins were used at a final concentration

of 3 μg/ml (DBPII and DEKnull-2). For each protein, the results were expressed as ELISA reac-

tivity index (RI), calculated as the ratio of the mean optical density (OD at 492 nm) of each

sample to the mean OD plus three standard deviations of samples from 20–30 unexposed vol-

unteers. Values of RI > 1.0 were considered positive.

Anti-DBPII erythrocyte-binding-inhibitory antibodies

The functional proprieties of DBPII antibodies (binding-inhibitory activity, BIAbs) were per-

formed on a subset of the study population comprising 57 individuals matched for age, sex

and malaria exposure. Plasma samples were tested for inhibition of DBPII-erythrocyte binding

at 1:40 dilution by the standard COS7 cell assay as described [44]. A pool of P. vivax immune

serum able to inhibit erythrocyte binding, and naïve serum was used as positive and negative

control respectively. Binding was quantified by counting rosettes observed in 10–20 fields of

view (x200). Percent binding-inhibition was quantified by assessing the percentage of rosettes

in wells of transfected cells in the presence of test plasma relative to rosettes in wells in the

presence of negative control plasma sample. Plasma samples with more than 50% inhibition of

DBPII-erythrocyte binding were considered inhibitory.

Statistical analysis

A database was created using Epidata software (http://www.epidata.dk). The graphics and the

analysis were performed using GraphPad Prism version 7—GraphPad Software, La Jolla Cali-

fornia USA, and R statistical software (version 3.3.3). Differences in proportions were
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evaluated by chi-square (Χ2) test or Fisher’s exact tests, as appropriate. The Shapiro-Wilk test

was performed to evaluate normality of variables. Differences in means were tested using

either the one-way ANOVA, with Turkey’s post hoc, or the Mann-Whitney test or Kruskal–

Wallis tests, with Dunn’s post hoc test, as appropriate. Linear correlation between variables,

such as levels of antibodies and recent episodes of malaria, was determined by using the Spear-

man’s correlation coefficient. Only variables associated with statistical significance at the 5%

level were maintained in the final models.

Results

Subject characteristics and antibody profiles to DBPII-related antigens at

enrollment

The median age of individuals included in the study was 42 years (IQR: 28–53) with a 1.1:1

proportion of male to female (Table 1). The age was significantly associated with a subject’s

time of malaria exposure in the Amazon area (r = 0.75; p<0.0001, Spearman’s correlation

test). At the time of their first blood collection, the overall prevalence of malaria was 13%, with

all infections caused exclusively by P. vivax; 3% of infections were detected by conventional

microscopy, and 10% by a species-specific Real-Time PCR.

To determining whether DBPII antibody responses included both strain specific and broadly

reactive antibodies, two different DBPII allelic variants were tested, Sal1, a common variant cir-

culating in the study area and the DBPII reference strain, and the engineered DEKnull-2 whose

antibody response target conserved DBPII epitopes. While 39% of the individuals enrolled in

the study had IgM antibodies to DBPII-Sal1, only 23% had detectable IgM antibodies to the

conserved DEKnull-2 (X2 = 9.698 p = 0.018). Considering IgG antibodies, a similar proportion

of individuals (46–43%) responded to each of recombinant protein assayed (p>0.05).

Table 1. Demographic, epidemiological and immunological characteristics of 163 individuals at enrolment.

Characteristics

Median age, years (IQR) 42 (28–53)

Gender, male: female 1.1: 1

Previous malaria self-reported episodes, median (IQR) 5 (3–15)

Years of residence in Amazon area, median (IQR) 35 (24–50)

Location of residence in Amazon area, riverine: non-riverine 1: 1

Acute P. vivax infection:

Patent P. vivax infection1, n (%) 5 (3)

Sub patent P. vivax infection2, n (%) 17 (10)

Total, n (%) 22 (13)

Antibody response3, positive n (%):

IgM� DBPII-Sal1 64 (39)

DEKnull-2 37 (23)

IgG DBPII-Sal1 75 (46)

DEKnull-2 69 (43)

IQR = InterQuartile Range.
1Positive P. vivax infections detected by conventional light microscopy.
2Positive P. vivax infections detected by real-time PCR.
3Evaluated by conventional ELISA serology using recombinant proteins against P. vivax Duffy binding protein

region II (DBPII).

�Statistically different (Chi Square test with Yates correction, X2 = 9.698; p = 0.018).

https://doi.org/10.1371/journal.pone.0232786.t001
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Composition and dynamics of strain-specific and strain-transcending

DBPII antibody repertoire over a nine-year period

IgM DBPII-related response. Over three cross-sectional surveys at 6-month intervals

(high transmission, Phase I), between 40% and 37% of individuals had DBPII-Sal1 IgM anti-

bodies, as detected by conventional serology (S2 Fig). Broadly reactive antibodies (DEKnull-2)

were detected at significantly lower frequencies (24–16%). During all follow-up period

DBPII-Sal1 IgM antibodies predominate over DEKnull-2 antibodies, and it was independent

of the levels of malaria transmission in the study area (phase I, II and III). The levels of anti-

bodies (evaluated here by medians of reactivity) showed a similar tendency towards strain-spe-

cific IgM antibodies (S2 Fig and S1 Table).

IgG DBPII-related response. The frequencies and levels of IgG antibody response to

both DBPII proteins were similar over the first 12-months period (phase I) (S3 Fig). Despite of

that, antibody levels varied among responders, including individuals with strong IgG antibody

response (RI > 10) to both DBPII-related antigens. Of interest, the intensity of malaria trans-

mission influenced in the proportion of Sal-1 versus DEKnull-2 immune responses. In the low

transmission period (phase II), a significant decrease in strain-specific IgG antibodies was

observed while the frequencies and levels of DEKnull-2 remained similar to the baseline (47%

vs. 45–39%) (S3 Fig and S1 Table). The profile of DEKnull-2 over Sal1-specific IgG response

was maintained until the end of the study (phase III, high transmission).

Ratio IgG to IgM antibodies. The ratio IgG/IgM to each recombinant protein confirmed

that IgG but not IgM Sal1-antibodies were sensitive to malaria transmission intensity (Fig 1).

Anti-Sal1 IgG antibodies decreased during a transmission period, and this profile remained

until the end of the study. The low malaria transmission period strengthened DEKnull-2 anti-

bodies, especially for IgG antibodies (Fig 1B).

Influence of acute infection in the DBPII antibody repertoire

During the 9-years follow-up study period, 42 (26%) out of 163 studied individuals had a

detectable P. vivax infection, most of them detected only during the first 12-month period

(n = 36, Phase I). Although this subgroup was not differentiated from the study population by

age (42 vs. 39 yrs-old), gender (1.3:1 vs. 1.1:1), or time of malaria-exposure (34 vs. 33 yrs), the

majority of them were classified as riverine population (30 out of 42, 71%).

In these long-term exposed individuals, there was a predominance of sub patent (PCR-posi-

tive) over patent (microscopy-positive) P. vivax infections, and acute infection was not associ-

ated with the presence of either IgM or IgG antibody responses to any of the proteins, i.e., Sal1

or DEKnull-2 (Fig 2). Specifically, individuals with persistent malaria infection (for example,

RP553 and RP555) did not present DBPII-related IgM antibodies, and vice-versa, a persistent

IgM antibody response to both proteins (RP416 and RP516) was not associated with a poten-

tial booster by blood-stage infections. The absence of correlation between infection and anti-

body response was also observed for IgG antibodies (RP405, RP416 and RP433). This data is

confirmed by the Spearman’s correlation coefficient between IgG and IgM antibody responses

(S4 Fig).

IgG and IgM antibodies repertoire according to the immunological

background

Plasma samples were screened for anti-DBPII BIAbs to investigate the relationship between

IgM/ IgG antibody responses and the profile of BIAbs responders’ DBPII inhibitory immune

responses. These were classified as persistent non-responders (NR) characterized by the
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absence of BIAbs antibodies; temporary responders (TR) whose BIAbs response alternated

between positive/negative, and persistent responders (PR) whose BIAbs were stable through-

out the study (Fig 3). During the low transmission period (Phase II), IgG responses were con-

sistently detected against both recombinant proteins (DBPII-Sal1 and DEKnull-2) for the

persistent BIAbs responders and, less with the temporary BIAbs responders. All but one

(RP416) of PR subgroup (93%, n = 15) had DEKnull-2 IgG antibodies, while only 7 out of 13

(54%) of TR reacted to DEKnull-2. As expected, the majority of NR did not have detectable

long-term IgG. IgM antibody responses were not associated with any profile of BIAbs

responders, with some individuals with broadly and long-term IgM responses detected in all

subgroups (Fig 3).

Fig 1. Ratio of IgG to IgM antibody responses against DBPII-Sal1 and DEKnull-2 during the 9 years follow-up study period. (A) The ratio between IgG and IgM

response against DBPII-Sal1 (blue line) and DEKnull-2 (red line) for all subjects enrolled in the study was represented for each cross-sectional survey. The longitudinal

study comprised six cross-sectional surveys, which included periods of high (phase I and III) and low (phase II) malaria transmission; the first three cross-sectional

surveys were carried-out during the first year (baseline, 6 and 12 months), and three carried-out 6th, 7th and 9th years later. Individual responses towards IgG were

represented on left (white) and towards IgM on right (grey). Individuals with equal IgG and IgM responses were show on central dotted line. (B) Pie charts

representing the percentage of subjects with the following IgG and IgM response profiles: DBPII-Sal1 skewed, equal, and DEKnull-2 skewed during the three phases of

transmission.

https://doi.org/10.1371/journal.pone.0232786.g001
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Discussion

In an Amazonian community exposed to low levels intermittent malaria transmission, we

sought to investigate the relationship between anti-DBPII IgM and IgG antibody responses

reactive with strain-specific (Sal1) or strain-transcending (DEKnull-2) immune responses

[22]. In general, the frequencies and levels of IgM antibodies showed a tendency towards

strain-specific antibodies (Sal1). Interestingly, the response profile of Sal1 over DEKnull-2

IgM antibodies was sustained throughout the 9-years observation period, including in conse-

cutive years in which malaria transmission dropped drastically in the study area (Phase II).

Fig 2. IgM and IgG antibody responses to DBPII-Sal1 and DEKnull-2 during P. vivax infections. Each line represents one subject who had

detectable P. vivax blood stage infection at any time of the follow-up study. The longitudinal study comprised six cross-sectional surveys, which

included periods of high (I and III) and low (II) malaria transmission; the first three cross-sectional surveys were carried-out during the first year

(zero, 6 and 12 months; 0-12m), and three carried-out 6th, 7th and 9th years later (6-9y). Forty-two subjects were positive for P. vivax infections and

classified into sub patent and patent infection accordingly to PCR or conventional microscopy diagnosis, respectively (red color variation). In the

right panel, the green color variation in the heatmap shows IgM and IgG responses for each cross-sectional survey. ELISA antibody responses were

expressed as Reactivity Index (RI) calculated by dividing the mean optical density (OD at 492 nm) of each sample to the mean OD plus three

standard deviations of samples from unexposed volunteers. Values of RI> 1.0 were considered positive (on a green scale).

https://doi.org/10.1371/journal.pone.0232786.g002
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Although the majority of high IgM responses (RI> 3) were no longer detected in the low trans-

mission period, the results suggest that individuals in P. vivax-endemic Amazonian communi-

ties were able to sustain their DBPII-specific IgM antibody responses. These results may

explain recent findings showing that IgM-expressing memory B cells are expanded in malaria

patients living in endemic areas [27], and confirm data from other studies, which suggest that

IgM antibodies may play an underappreciated role in immune response against malaria infec-

tions [29–31]. Although scant longitudinal data are available about secondary IgM responses

in P. vivax-exposed populations, a recent prospective study undertaken in a low transmission

area of Western India demonstrated that P. vivax alters peripheral B-cell profiles and induces

Fig 3. Profile of IgM and IgG antibody responses of Rio Pardo subjects previously classified according to the

DBPII Binding Inhibitory Antibodies (BIAbs). According to their BIAbs response, malaria-exposed individuals

(n = 57) were previously characterized as [22]: i) Persistent responder (PR), who had BIAbs response during the 9 years

of follow-up; ii) Temporary responders (TR), who had variable BIAbs response during those cross-sectional surveys and

iii) Persistent non-responders (NR), who had no BIAbs detected any time in the study. Each line represents individual

IgM and IgG antibody responses against DBPII-Sal1 or DEKnull-2, in each cross-sectional survey. Colored symbols

indicate positive antibody response at ELISA (IR> 1) and white symbols negative response at ELISA (IR� 1). ELISA

results were expressed as Reactivity Index (IR), with Reactivity Index (RI)> 1 considered positive.

https://doi.org/10.1371/journal.pone.0232786.g003
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parasite-specific IgM that persisted post recovery [45]. While the results from India are in con-

cordance with a persistent IgM response, antigen-specific antibody responses were evaluated

only over a short period-of time, i.e., during acute infection and upon 30 days post-treatment.

Here, we demonstrated that long-term P. vivax exposure to low and unstable levels of malaria

transmission can lead to a sustained DBPII-specific IgM response. At this time, it is not possi-

ble to define if this persistent DBPII-related IgM response could indicate that IgM-experienced

B cells needs to be constantly activated or if this response is rather associated with a bona-fide

memory [29, 46]. Of relevance, P. falciparum-specific IgM antibodies were detected for more

than 6 months in Australians returning from malaria endemic areas [31]. Together, the find-

ings of long-term IgM response emphasize the need to understand the role of the IgM specific

antibodies in both natural infection and vaccine antigens.

Our results showing an absence of correlation between antigen-specific IgM antibodies and

acute malaria infection are intriguing, considering that in response to infection the antibodies

made initially are usually IgM confined to the intravascular pool [26, 47]. Although unknown,

we hypothesize that antigenically distinct DBPII variants could be responsible to new blood-

stage infections, including relapses. Still, this hypothesis may not explain many of the acute

infections since Sal1 was the most prevalent DBPII variant circulating at that time in the study

area [37]. As sub patent infections predominate in the study area (77% by PCR vs. 23% by

microscopy), one may speculate that these low parasite densities were not sufficient to provide

a booster of IgM antibody response. However, recent findings in experimental malaria infec-

tions demonstrated that secondary IgM response was not affected by either challenge dose or

the time of rechallenge [27]. Perhaps a more plausible and not mutually exclusive explanation

for why IgM antibodies were not associated with peripheral blood stage infections is the rela-

tive underrepresentation of P. vivax asexual stages in patient blood [48, 49]. Nowadays, a con-

siderable body of evidence indicates a tissue reservoir, such as bone marrow, where most P.

vivax parasite burden resides [50]. Consequently, we cannot exclude that P. vivax-specific IgM

production is dependent upon tissue parasite persistence, a phenomenon that needs to be

investigate. In different experimental models, low-level of chronic infection may provide suffi-

cient antigen to maintain IgM plasmablasts in the bone marrow either through inflammation

[51] or antigenic stimulation [52].

From high to low malaria incidence in two consecutive years of the study was critical to elu-

cidate the relative contribution of IgG versus IgM antibodies to DBPII immune response. Var-

iant-specific IgG but not IgM antibodies waned over time, which resulted in IgG skewed

reactivity to the DEKnull-2 antigens lacking the variant epitopes but retaining the conserved

epitopes. This profile of IgG response was not unexpected as we previously demonstrated that

a significant number of long-term malaria-exposed individuals mount a strong and stable IgG

response toward conserved DEKnull-2 epitopes [22, 33]. Of further interest, the levels of IgM

antibodies were not related to IgG antibodies, and the lack of correlation occurred to both

DBPII-related antigens. It has been proposed that the correlation (or not) between IgG/IgM in

malaria may reflect inherent structural differences between antigens, including the relative

conservation of the epitopes that are targeted; for example, strong correlations between IgG

and IgM was observed to MSP2, whereas this was not seen with MSP1-19 and AMA-1 [53]. In

the case of P. vivax MSP1, antibody response to different regions of the protein appeared dis-

tinct, with the N-terminal portion predominantly associated with IgM antibodies and C-termi-

nal with IgG response [54–57]. In the case of DBPII, several studies have mapped functional

immunoreactive B cell epitopes associated with broadly neutralizing IgG antibody response

[12, 14, 15, 18], but no data is available about IgM response.

It has been shown that IgM antibodies may be necessary to sustain an optimal long-term

protective IgG response [34–36]. Assuming that functionally acquired IgG antibodies able to
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broadly inhibit DBPII-DARC interaction (BIAbs) are associated with a reduced risk of clinical

P. vivax malaria [20, 21], we sought to investigate whether a stable DBPII-specific IgM

response could interfere with the profile of BIAbs responder. It is particularly relevant as we

demonstrated that long-term DEKnull-2 responders with high levels of IgG antibodies are able

to produce a persistent BIAbs response [22]. Stratification of the DBPII BIAbs responders

(persistent, temporary and no-responder) showed no association (positive or negative)

between antigen-specific IgM response and the profile of BIAbs. Additional investigation may

help define the contribution (if any) of anti-DBPII IgM antibodies in the immune response

mediated by P. vivax.

The present study has limitations that must be considered when interpreting the results. As

DBPII sequences from all cross-section surveys were not available, antibody response against a

DBPII variant circulating in the study area (Sal1) was used to characterize species-specific

immune response. Our previous studies confirm Sal1 as major local DBPII variant [37, 58, 59],

whose antibody response is highly prevalent in Amazonian exposed-individuals [33, 38]. Con-

sequently, we are confident that Sal1 is a key DBPII variable for assessing the species-specific

immune response in the study area. Taken together, our results demonstrated that IgG (but

not IgM) variant-specific DBPII antibodies were poorly sustained at low transmission period,

which confirms that IgM antibodies may be more indicative of continuous exposure to

malaria, whereas epitope-conserved IgG antibodies are relatively stable and associated with

BIAbs response. The reason for the persistence of the IgM response in our cohort merits fur-

ther investigations.

Supporting information

S1 Fig. Temporal distribution of malaria cases in the agricultural settlement of Rio Pardo

(Amazonas, Brazil) during 9 years follow-up study. P. vivax (blue) and P. falciparum (red)

microscopy diagnosed case report data in Rio Pardo were provided by the National Malaria

Surveillance Information System (SIVEP-Malaria) and plotted per month. The longitudinal

study comprises six cross-sectional surveys during 2008–2017, which includes periods of high

(dark-grey, phase I and III) and low (light-grey, phase II) malaria transmission; the first three

cross-sectional surveys were carried-out during the first year (baseline, 6 and 12 months);

three carried-out 6th, 7th and 9th years later. Modified from Pires et al., 2018 [33].

(TIF)

S2 Fig. The levels of IgM antibody response against DPBII-Sal1 and DEKnull-2 during the

study period. The IgM responses were expressed as Reactivity Index (RI), with Reactivity

Index (RI)>1.0 considered positive. The individual values are represented by blue (DBPII--

Sal1) and red (DEKnull-2) open circles. Transversal lines indicate medians and interquartile

ranges. The cross-sectional surveys were carried-out as described in legend to S1 Fig. The fre-

quency of seropositive subjects (Pos (%)) on each cross-sectional survey is represented below

each graphic. Different number of asterisks indicate the variation on p value (�p< 0.05 to
��p<0.0001; Fisher’s exact test), for significance differences between the frequency of DBPII--

Sal1 and DEKnull-2 response.

(TIF)

S3 Fig. The levels of antibodies IgG response against DPBII-Sal1 and DEKnull-2 during

the study period. The IgG responses were expressed as Reactivity Index (RI), with Reactivity

Index (RI)>1.0 considered positive. The individual values are represented by blue (DBPII--

Sal1) and red (DEKnull-2) open circles. Transversal lines indicate medians and interquartile

ranges. The cross-sectional surveys were carried-out as described in legend to S1 Fig, with IgG
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original data obtained from Pires et al., 2018 [33]. The frequency of seropositive subjects (Pos

(%)) on each cross-sectional survey is represented below each graphic. Different number of

asterisks indicates the variation on p value (�p< 0.05 to ��p<0.0001; Fisher’s exact test), for

significance differences between the frequency of DBPII-Sal1 and DEKnull-2 response.

(TIF)

S4 Fig. Spearman correlation between IgM and IgG antibody responses against DBPII-Sal1

(red) and DEKnull-2 (blue) of subjects with or without acute P. vivax infections. The corre-

lation between IgM and IgG antibodies response were performed separately to subjects with

acute P. vivax infections (closed triangle) and non-infected individuals (open circles) to each

protein.

(TIF)

S1 Table. Levels of IgM and IgG antibodies response against P. vivax DBPII-proteins dur-

ing the 9 years follow-up study.
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