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As one of the most recent members of the omics family, large-scale quantitative metabolomics data
are currently complementing our systems biology data pool and offer the chance to integrate the
metabolite level into the functional analysis of cellular networks. Network-embedded thermo-
dynamic analysis (NET analysis) is presented as a framework for mechanistic and model-based
analysis of these data. By coupling the data to an operating metabolic network via the second law of
thermodynamics and the metabolites’ Gibbs energies of formation, NET analysis allows inferring
functional principles from quantitative metabolite data; for example it identifies reactions that are
subject to active allosteric or genetic regulation as exemplified with quantitative metabolite data
from Escherichia coli and Saccharomyces cerevisiae. Moreover, the optimization framework of NET
analysis was demonstrated to be a valuable tool to systematically investigate data sets for
consistency, for the extension of sub-omic metabolome data sets and for resolving intracompart-
mental concentrations from cell-averaged metabolome data. Without requiring any kind of kinetic
modeling, NET analysis represents a perfectly scalable and unbiased approach to uncover insights
from quantitative metabolome data.
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Introduction

Ultimately, systems biology strives to gain a quantitative
systems-level understanding of complex and highly inter-
related cellular processes and phenomena. The various
interactions between the cellular domains and the mere
number of the components involved, however, represent a
complexity beyond intuitive comprehension. For this reason,
mathematical models are required as tools to integrate the ever
increasing biological knowledge and the data originating from
the diverse cellular domains and, in a further step, to infer
novel insight from the integrated available knowledge and
data (Kitano, 2002; Stelling, 2004).

In order to fully exploit the wealth of information
contained in genome-scale data, the mathematical
model to be used to extract insight from the data should
ideally have the same dimensionality. Unfortunately,
the only existing class of genome-scale models are
stoichiometric models (Borodina and Nielsen, 2005), whose
development was pioneered by Palsson (Reed and
Palsson, 2003). As these models only reflect the metabolic
capabilities of an organism, today’s basis for model-based

mechanistic integration and analysis of genome-scale data
is rather limited.

Nevertheless, already the stoichiometric models were
demonstrated to be valuable tools for integration and analysis
of a number of different omics data sets, such as fluxome data
(Blank et al, 2005), high-throughput growth phenotyping data
(Covert et al, 2004) and transcriptome data (Covert et al, 2004;
Patil and Nielsen, 2005). Owing to the development of
affordable and powerful mass spectrometers, large-scale sets
of quantitative metabolite data are currently emerging into the
area of systems biology (Goodacre et al, 2004; Nielsen and
Oliver, 2005), and it is desired to also integrate these data in
order to infer novel insight (Stitt and Fernie, 2003; Sato et al,
2004; Nielsen and Oliver, 2005).

A natural approach for model-based analysis of metabolome
data would be the extension of stoichiometric models by
kinetic rate expressions for each enzymatic reaction. However,
there is no comprehensive knowledge about in vivo reaction
mechanisms and parameters. In addition, the continuing
challenges in the area of measurement (Lafaye et al, 2005;
Wu et al, 2005) and computational analysis (Voit et al, 2005)
make it very unlikely that large-scale kinetic models will be

& 2006 EMBO and Nature Publishing Group Molecular Systems Biology 2006 1

Molecular Systems Biology (2006) doi:10.1038/msb4100074
& 2006 EMBO and Nature Publishing Group All rights reserved 1744-4292/06
www.molecularsystemsbiology.com
Article number: 2006.0034



available in the near future. For these reasons, large-scale sets
of metabolome data cannot yet be assimilated into mathema-
tical models (Nielsen and Oliver, 2005). Consequently, insight,
for instance into underlying regulatory mechanisms, can
hardly be inferred.

In attempts to deal with the lack of detailed knowledge
on parameters and mechanisms, fundamental thermodynamic
principles have been increasingly applied in systems biology
and metabolic engineering. In this regard, the second law of
thermodynamics was incorporated into stoichiometric models
(Beard et al, 2002; Price et al, 2002; Yang et al, 2005) or Gibbs
energies of reaction were used to analyze metabolic pathways
or small networks (Mavrovouniotis, 1993; Pissarra and
Nielsen, 1997; Beard and Qian, 2005; Henry et al, 2006).

In this work, we also draw on these fundamental principles
and present a computational thermodynamics-based frame-
work for the analysis of quantitative metabolome data. The
mapping of such data onto a stoichiometric reaction network
allows extraction of novel insight without requiring any kind
of kinetic modeling. In the proposed network-embedded
thermodynamic analysis (NET analysis), large-scale qualita-
tive intracellular fluxes (derived from metabolic flux analysis)
and metabolite concentrations are coupled to each other via
the second law of thermodynamics and the metabolites’ Gibbs
energies of formation, and an optimization algorithm is
employed to compute network-constrained, feasible ranges
of Gibbs energies of reaction.

After illustrating the novel concept, first, we will apply the
NETanalysis tool to a small set of quantitative metabolite data
acquired from Escherichia coli to demonstrate the practical
application of the optimization framework as a tool (i) for
consistency analysis of measured metabolite concentrations,
(ii) for prediction of metabolite concentrations beyond the
actually taken measurements and (iii) for identification of
putative active sites of genetic or allosteric regulation. Then,
we analyze a larger data set obtained from Saccharomyces
cerevisiae in order to illustrate that the method is also
applicable to more complex systems such as organisms with
subcellular structures.

Network-embedded thermodynamic analysis

Assuming constant pressure and a closed system, according to
the second law of thermodynamics a reaction occurs only in
the direction of negative Gibbs energy of reaction, DrG. This
can be expressed in the inequalities

DrGo0 8r40
DrG40 8ro0

ð1Þ

where r denotes the reaction rate, or in other words the net flux
between metabolites participating in a reaction. Here, a
negative reaction rate signifies a flux in backward direction.

The Gibbs energy of a reaction j can be calculated from the
Gibbs energies of formation of the participating reactants i,
DfGi, and the reactants’ stoichiometric coefficients in the
reaction j, sij,

DrGj ¼
X

i

sij Df Gi ð2Þ

In turn, a metabolite’s Gibbs energy of formation can be
calculated from its standard Gibbs energy and its thermo-

dynamic activity. In biochemistry, thermodynamic activities
are typically replaced by molar concentrations, whereas the
effect of ionic strength is taken into account by an adequate
standard Gibbs energy. Moreover, possible reactant dissocia-
tion forms are lumped into a single reactant, and thus
transformed Gibbs energies of formation, DfGi

0, are used,
which in turn are calculated from the standard transformed
Gibbs energies of formation, DfGi

00, and the concentration ci

of the particular metabolite i (Alberty, 2003),

Df G
0
i ¼ Df G

00
i þ RT lnðciÞ ð3Þ

For simplicity, ‘transformed Gibbs energies’ will only be
referred to as ‘Gibbs energies’ in the following.

The presented equations form the foundation for NET
analysis. Metabolite concentrations and metabolic fluxes are
linked via thermodynamics and the stoichiometric network.
The metabolites’ Gibbs energies of formation determine,
together with the stoichiometry, the Gibbs energies of reaction.
These Gibbs energies of reaction and the flux directions are
then coupled via the second law of thermodynamics to identify
thermodynamically feasible ranges for the Gibbs energies of
reaction and for concentrations of non-measured metabolites.
Figure 1 provides an illustration of the input data required for
NET analysis (i.e. metabolite concentrations, flux directions,
a metabolic network model and Gibbs energies of formation)
and the various insights, which can be obtained.

In the NET analysis, as an extension to an earlier employed
method (Mavrovouniotis, 1993; Pissarra and Nielsen, 1997;
Stephanopoulos et al, 1998), the Gibbs energies of reaction are
constrained by the mutual thermodynamic interdependencies
of reactions in a network (i.e. the reactions’ simultaneous
action in the network). This way metabolite concentrations
have to be feasible not only in view of one specific reaction
but with respect to the functioning of the entire network
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Figure 1 Illustration of the network-embedded thermodynamic analysis (NET
analysis). a, b and c denote alternatives, white and grey boxes are actions and
inputs, respectively, and ellipses indicate outputs.
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(cf. Figure 2). As we will show below, this significantly limits
the feasible ranges of Gibbs energies of reaction and therefore
also the feasible concentration ranges of unmeasured meta-
bolites.

In the following, we will outline the optimization procedure
that underlies the NET analysis. The optimization determines
the feasible range (i.e. upper and lower bounds) of the Gibbs
energy of a particular reaction k, DrGk

0, using metabolite
concentrations, reaction directionalities, a metabolic network
and thermodynamic data:

min =max DrG
0
k

s:t: DrG
0
jo0 8 rj40 ðaÞ

DrG
0
j40 8 rjo0 ðbÞ

DrG
0
j ¼

P
i

sijDf G
0
i ðcÞ

Df G
0
i ¼ Df G

00
i þ RT lnðciÞ ðdÞ

cmin
i pcipcmax

i ðeÞ

ð4Þ

In this optimization, the Gibbs energy for the reaction k is
minimized and maximized under the following constraints:
All reactions j in the network (including the considered
reaction k) can only proceed in the direction of a negative
Gibbs energy of reaction (equations 4(a) and (b)). In turn, the
Gibbs energies of reaction are determined by the reaction
stoichiometries and the reactants’ Gibbs energies of formation
(equation (4c)), which are a function of the predetermined
standard Gibbs energies of formation and the metabolite
concentrations (equation (4d)). The latter are by default
constrained to typical intracellular concentration ranges (see
Materials and methods). These ranges should be defined
cautiously such that they surely cover the possible variation in
concentration under the considered experimental conditions.
Measured concentration values are also considered with these
constraints, which, owing to the fact that measurement

uncertainties cannot be excluded, are typically allowed to vary
by 10% around the measured values.

With an analogous procedure, we can determine feasible
concentration ranges rather than Gibbs energies of reaction.

As mentioned above, a prerequisite for the NET analysis is
the knowledge of the directions of intracellular fluxes (cf.
Figure 1). These can either be defined based on preexisting
knowledge (a), determined from experimental data (b), or (in
case experimental flux data are not available) computed using
flux balance analysis (FBA) (c). FBA employs linear program-
ming to optimize a suitable cellular objective, while assuming
steady state for the mass balances (Kauffman et al, 2003; Price
et al, 2003).

In the context of assigning flux directions, it is important to
note that one does not necessarily need to provide directions
for all fluxes. If in doubt about a certain flux, no direction
should be assigned to the particular reaction. In consequence,
fewer constraints are imposed on the NET analysis optimiza-
tion. This results in a larger solution space meaning that the
computed ranges of feasible Gibbs energies of reaction and
concentrations eventually become wider. Thus, neglecting a
reaction can only lead to less insight from the measurement
data but in no case will such an omission lead to wrong results.
The same holds true for missing or unknown pathways: If a
pathway is not considered, also only less insight is obtained.

Results

In the following, to first demonstrate the type of results
that can be obtained from our method, we will analyze a set
of measured metabolite concentrations from E. coli as a
representative from the prokaryotic domain. After having
approved the method for the simple test case, we demonstrate
its general applicability on a larger data set from S. cerevisiae.
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Figure 2 Illustration of the mutual thermodynamic interdependencies of reactions in a network. The presented sample network comprises the reactants A, B, C and D,
for which only ranges of concentrations are known. Possible ranges for the reactants’ Gibbs energies of formation, taking into account only these concentration ranges,
are shown with confined vertical bars. Owing to the provided flux directions and the cooperative action of the reactions in the network, however, the thermodynamically
feasible ranges are smaller, which is highlighted by the bold parts of the bars. A flux can only flow from a higher to a lower level of Gibbs energy of formation. Thus, the
planes indicating the lower and upper bounds of the thermodynamically feasible Gibbs energies of formation are not allowed to incline against the direction of the flow.
The space between the displayed planes, which is defined by the thermodynamic and network-derived constraints (equations (1)–(3)), consists of the thermodynamically
feasible Gibbs energies of formation and, thus, describes the feasible concentration space.
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Before presenting the actual results, the effect of embedding
the reactions into the metabolic network is illustrated for the
analyzed E. coli data. Possible ranges of Gibbs energies of
reaction, only defined by the concentrations of the participat-
ing reactants, were compared to the thermodynamically
feasible ranges calculated using the NET analysis. A compar-
ison of the two ranges is shown in Figure 3 for several
reactions. From this figure, it can be seen that only small parts
of the concentration-defined ranges are feasible, when also
considering the operation of the reaction network.

For example, the reactions pgk, gapd, pgm, eno, rpi and tpi
are restricted to a range of Gibbs energy of reaction close to
zero when the network operation is taken into account. The
reactions udh and fba do not operate at equilibrium. Had these
two reactions been analyzed separately from the network, the
employed concentration limits would have allowed for that.
These examples demonstrate that in cases where only a limited
set of metabolite concentrations is available, the NETanalysis-
based integration of the reactions leads to narrower feasible
ranges of Gibbs energies of reaction, and thus to a more precise
classification of the reactions.

Thermodynamic consistency of metabolome data

Despite the recent tremendous advances in mass spectrometry,
small dynamic ranges of these instruments and effects such as
ion suppression still impose serious difficulties on reliable
quantification, and consequently quantitative metabolomics
still requires sophisticated means to circumvent these
problems (Lafaye et al, 2005; Wu et al, 2005). Testing for

thermodynamic feasibility of a data set can constitute a part of
the necessary assessment of a measurement’s reliability.

Thermodynamically feasible sets of measured concentra-
tions are a prerequisite for the NET analysis, as the measured
concentrations need to allow for negative Gibbs energies
of reaction for each preset flux, so that a solution for the
optimization problem (equation (4)) exists. Here, we demon-
strate that NET analysis can indeed be used as a tool to
determine thermodynamic consistency of the data.

For the E. coli data set we analyzed, consistency was
approved. In contrast, employing the NET analysis to other
published quantitative E. coli metabolome data, we found that
out of seven available data sets, only four were thermodyna-
mically feasible (Lowry et al, 1971; Emmerling et al, 1999;
Peng et al, 2004; Siddiquee et al, 2004). In case a data set
is classified as infeasible, it is furthermore possible to identify
the erroneous concentration combinations by systematically
omitting measured concentrations from the data set until a
feasible solution for the optimization problem is established.
The measured adenylate energy charge and NADH/NADþ

ratio of the data set in Buchholz et al (2001) lay outside
physiological ranges (Penfound and Foster, 1996; Berg et al,
2003). The NET analysis revealed further that in two of the
three infeasible cases, flux through glycolysis was inhibited by
too high an F6P/G6P ratio (explanations for the metabolite
abbreviations are provided in the legend of Figure 4)
(Buchholz et al, 2001) and by too high a PEP/F16P ratio
(overarching the lower part of glycolysis) (Chassagnole et al,
2002). For the last one (Hoque et al, 2005), the OXA/MAL, the
G3P/DHAP and the R5P/RU5P ratios were too high, so that the
measurements were not consistent with the assumed fluxes
through the tricarboxylic acid cycle, glycolysis and pentose
phosphate pathway.

Quantitative metabolome data are now used in the area
of mathematical modeling. Thus, it is important that only
quantitatively correct data sets are employed in these
endeavors in order to prevent erroneous conclusions. For
these reasons, also the Yeast Systems Biology Network
working group (http://www.ysbn.org) recently stated that it
would be desirable to have a tool for quality control check that
is easily applicable to quantitative metabolome data sets
before their actual use in modeling efforts or their entry into
databases. Owing to its inherent control of thermodynamic
feasibility, NET analysis can fulfill parts of the quality control
check.

It is important to note that unknown pathways missing in
the used metabolic network model as well as unknown and
thus not specified flux directions, or unavailable thermo-
dynamic data for certain metabolites will never render a data
set infeasible, and thus NET analysis is rather conservative.
Further, thermodynamic feasibility is only a necessary but not
a sufficient condition for correct quantification of metabolite
concentrations. However, NET analysis as an easy-to-apply
tool can test for major experimental errors, while relying only
on indisputable (i.e. thermodynamic) facts.

Prediction of metabolite concentrations

In a next step, we tested whether NETanalysis can also be used
to predict concentrations of unmeasured metabolites. In the
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Figure 3 Ranges of Gibbs energies of reaction with and without considering
the respective reaction’s operation in the metabolic network. White bars indicate
possible ranges due to the provided concentration ranges (see Materials and
methods), whereas the black bars display thermodynamically feasible ranges
after introducing the constraints of the reaction network. Abbreviations:
me(NADH), malic enzyme (NADH dependent); pdh, pyruvate dehydrogenase;
nadk, NAD kinase; akgdh, a-ketoglutarate dehydrogenase; cs, citrate synthase;
udh, cytosolic transhydrogenase; atps, ATPase; fba, fructosebisphosphate
aldolase; me(NADPH), malic enzyme (NADPH dependent); mdh, malate
dehydrogenase; rpi, ribosephosphate isomerase; pgk, phosphoglycerate kinase;
gapd, glyceraldehyde 3-phosphate dehydrogenase; tpi, triosephosphate
isomerase; pgm, phosphoglycerate mutase; eno, enolase.
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E. coli data set we analyzed, besides a few actually measured
metabolites, the measurements provided only pooled concen-
trations of the isobaric molecules F6P/G6P, DHAP/G3P, 3PG/
2PG and R5P/RU5P/X5P. With the NET analysis, however, it
was possible to specify the concentrations of the individual
metabolites (see Figure 4). Furthermore, narrow concentration
ranges for the unmeasured metabolites 13DPG, 3PHPand AMP
could also be calculated.

This demonstrates that it is indeed possible to use the NET
analysis to specify narrow concentration ranges for unmea-
sured metabolites. This kind of prediction is particularly useful
for metabolites that are difficult to resolve experimentally

(such as isobaric molecules). Instead of putting efforts into
experimental resolution, this could also be achieved by a
subsequent NET analysis. As we will show below with the
S. cerevisiae data set, in a similar manner NET analysis is
even able to resolve compartmental concentrations from cell-
averaged metabolome data.

Prediction of potential active regulatory sites

Measured metabolite concentrations alone hardly provide any
insights into the organization of metabolism, that is, the
regulatory structure responsible for routing of matter via the
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xylulose 5-phosphate; S7P, seduheptulose 7-phosphate; E4P, erythrose 4-phosphate; 2DDG6P, dehydrodeoxy-6-phosphogluconate; ACCOA, acetyl-CoA; CIT, citrate;
ICIT, isocitrate; AKG, a-ketogluterate; SUCCOA, succinyl-CoA; SUCC, succinate; FUM, fumerate; MAL, malate; OXA, oxaloacetate; G1P, glucose 1-phosphate;
GLYC3P, glycerol 3-phosphate; 3PHP, 3-phosphohydroxypyruvate; SO3

2�, sulfide; H2S, hydrogen sulfide. (Summation of the inferred concentration ranges of the pooled
metabolites (e.g. 2PG and 3PG) can exceed the actually measured (pooled) concentration of these metabolites. The reason for this is the introduced uncertainty in the
measured concentrations of these pooled metabolites (in order to account for potential measurement uncertainties).)
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different metabolic pathways, the result of which is a certain
intracellular flux distribution. A flux distribution is established
by the fact that in comparison with the neighboring reactions,
the rates of some reactions are limited by the available
catalytic activity (either owing to low enzyme concentration or
activity), so that at branch points, mass flux is accordingly
distributed into the possible pathways. A limited catalytic
activity of a reaction manifests itself in a large Gibbs energy of
reaction. By the NETanalysis, such reactions can be identified
even on the basis of incomplete metabolome data via the
consideration of flux directions and of the simultaneous action
of the reactions in the network.

The relationship between the thermodynamic operational
mode of a reaction (far from or close to equilibrium) and its
regulation was established in the area of metabolic flux control
analysis: Reactions operating near equilibrium usually have
a large sensitivity of the reaction rate towards variations in
metabolite concentrations, and thus, such reactions have a
small determining effect on the flux through the respective
pathway (Nielsen, 1997; Visser et al, 2004). On the other hand,
reactions with large values of Gibbs energy of reaction do not
necessarily have an impact on flux control, as also other
parameters of the enzymatic rate expressions are influencing
the flux. However, it was found that reactions operating far
from equilibrium are more likely to impose flux control (Wang
et al, 2004), and it is assumed that the corresponding enzymes
are more likely to be regulated by the cell (Crabtree et al, 1997)
as only in these cases flux and thus phenotype can be affected.

The NET analysis, using the E. coli metabolome data,
classified reactions under the applied experimental conditions
whether they are potential active regulatory sites or not
(Figure 4). A first look at these results reveals that the pfk and
pyk reactions are operating far from equilibrium and thus may
represent regulatory enzymes of glycolysis, whereas most
other glycolytic reactions display only small absolute Gibbs
energies of reaction. As this assignment of regulatory enzymes
is in perfect agreement with earlier studies (for a review see
Romeo and Snoep, 2005) and as also most of the other findings
displayed in Figure 4 comply with our current knowledge (cf.
discussion in Supplementary information 4), this indicates
that NETanalysis of metabolome data is indeed able to provide
correct regulatory insight.

Another finding obtained from the E. coli data is related to
E. coli’s cytoplasmic transhydrogenase (udh): in glucose-
limited continuous cultivations, compared to the biosynthetic
demands, an excess of NADPH is produced (Nanchen et al,
2006). In order to eliminate the excess NADPH, the udh-
transhydrogenase converts NADPH into NADH. As revealed
by NET analysis, the udh reaction operates far from equili-
brium in the considered experiment signifying that this
reaction may be subject to regulation (Figure 4). By a
sensitivity analysis, we found that a regulatory control of the
udh-transhydrogenase is indeed required for physiological
reasons: further equilibration of the udh reactants, corre-
sponding to a shift of the NAD(H) pool to the reduced state,
would render the normal operation of some catabolic (i.e.
NAD-dependent) dehydrogenases infeasible. Of the reactions
considered in this work, glyceraldehyde 3-phosphate dehy-
drogenase is the most critical, because the conversion of G3P
to 13DPG would stop at NADH/NADþ ratios above 0.018.

The identification of the regulatory action being effective
on the udh-transhydrogenase and of its underlying design
principle underpins the value and power of the NETanalysis in
uncovering system properties. First, only by using the NET
analysis-based sensitivity studies, it was possible to classify
the udh reaction as operating far from equilibrium (cf.
Figure 3). Second, with NETanalysis, we were able to uncover
the reasons underlying the active udh regulation: they root
in reaction interdependencies that overarch various parts of
metabolism. Both findings could not have been obtained by
solely considering the available metabolite concentrations.

General applicability of NET analysis

So far, the conceptual idea and application of the NETanalysis
was demonstrated for E. coli as a simple prokaryote. In a next
step, we wanted to test the method’s applicability to more
complex systems such as eukaryotes with subcellular struc-
tures. For this, we extended the method and analyzed the
largest available set of quantitative data from S. cerevisiae
(Mashego et al, 2005).

First, using NET analysis, we could ascertain the thermo-
dynamic feasibility of the measured metabolite data. Also with
this data set, based on the computed feasible Gibbs energies of
reaction, reactions in central carbon metabolism (e.g. pfk,
icl or pdh) or the first steps in amino-acid synthesis (e.g.
asparagine transaminase or asparagine synthase) could be
identified as potential active regulatory sites (cf. Supplemen-
tary information 5). Interestingly, NETanalysis was even able
to resolve compartmental differences: in contrast to mitochon-
dria, the production of oxaloacetate via malate dehydrogenase
and aspartate transaminase is thermodynamically infeasible
in the cytosol as here the reactions display positive Gibbs
energies of reaction (cf. Supplementary information 5).
Obviously, these reactions are only needed under different
environmental conditions.

An inherent problem with all current omics analyses of
higher (i.e. compartmentalized) organisms is that the data
obtained only represent averages over the whole cell. Several
scientific questions, however, can be envisioned, for which
a subcellular resolution of the data would be advantageous.
Here, NETanalysis was revealed to be a tool that is able to infer
subcellular metabolite concentrations from cell-averaged
metabolite data, as it draws on additional information on
compartmentialized metabolic network topology and flux
distribution. Examples for subcellular metabolite concentra-
tions resolved from the present yeast data are given in Table I.
These values demonstrate the power of NET analysis
in inferring insight by an elegant, thermodynamics-based
integration of data.

Finally, we will demonstrate that NET analysis of metabo-
lome data can also assist in comprehensively analyzing
functional relationships in S. cerevisiae’s metabolism that
range over different compartments. NADH metabolism in
yeast is separated between the cytosol and mitochondria:
NADH produced in the cytosol (e.g. in glycolysis) has to be
reoxidized via the respiratory chain situated in the mitochon-
drial membrane. As pyrimidine nucleotides cannot cross this
membrane, yeast can use an NADH:ubiquinone oxidoreduc-
tase external to the mitochondrial membrane to reoxidize its
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cytosolic NADH. Alternatively, yeast has several redox shuttle
systems, which, by means of other metabolites, virtually
transfer the protons into the mitochondria for subsequent
oxidation (Bakker et al, 2001; Rigoulet et al, 2004). To date, the
true physiological role of these shuttle pathways is not fully
understood and thus still a subject of current research
(Påhlman et al, 2002; Cavero et al, 2003). In this context,
it was recently stated that here indeed the resolution of
compartmental concentrations could provide insight as whole-
cell analyses are unable to contribute to an understanding of
these processes, which, in total, have the same net outcome
(Bakker et al, 2001).

To investigate whether the four known shuttles (Bakker
et al, 2001) and the external NADH:ubiquinone oxidoreduc-
tase can be operational under the considered experimental
conditions, we tested each of these options for their thermo-
dynamic feasibility. On the basis of the present S. cerevisiae
metabolite data set, NET analysis revealed that under the
respective experimental conditions, NADH reoxidation can
only occur via the external NADH:ubiquinone oxidoreductase
or the glycerol 3-phosphate shuttle whereas the other three
shuttles (ethanol–acetaldehyde shuttle, malate–oxaloacetate
shuttle, malate–aspartate shuttle) cannot be operative for
thermodynymic reasons. Through laborious experimental
efforts employing a series of gene knockout studies, it was
found that here the external NADH:ubiquinone oxidoreduc-
tase reoxidizes the cytosolic NADH (Rigoulet et al, 2004). As
demonstrated, by employing a compartmentalized metabolic
network model, NET analysis is able to uncover functional
relationships from metabolome data that are related to
compartmentation and which otherwise can only be obtained
by elaborate experimental efforts.

Discussion

To gain insight from large-scale quantitative metabolome data,
a coupling to mechanistic models is required. Integration with
kinetic models will most likely remain a major challenge for
at least the near future. Consequently, we present a new
methodology that does not require the derivation of sophis-
ticated model structures but rather applies fundamental
physical laws to the interpretation of quantitative metabolite
data sets: the framework of the NET analysis maps metabo-
lome data to the stoichiometric network via thermodynamics

and metabolic fluxes. Insight can be obtained from even
limited data sets.

NET analysis is designed for the analysis of quantitative
metabolome data, as the optimization requires quantitative
concentrations (in terms of mmol/l) as input, and thus the
application is limited to respective data sets. Beyond, employ-
ing NET analysis further requires a (i) metabolic network
model, (ii) flux directions that reflect the metabolic state of
the organism under the analyzed experimental conditions and
(iii) the Gibbs energies of formation for a large number of
metabolites. It is important to note that pathways missing in
the metabolic network model, not completely defined flux
directions, and incomplete thermodynamic information do not
lead to wrong conclusions but only limit the extent of insight
that can be drawn from NET analysis. In essence, incorrect
conclusions can be avoided if solely assured information
is employed for NET analysis. As shown in this work, NET
analysis is not restricted to data from simple organisms but can
also be applied to data from more complex systems such as
organisms with subcellular structure.

In the NET analysis, the measurement data first undergo
a validation of thermodynamic feasibility. The necessity for
such a quality control is stressed by the fact that approximately
40% of the analyzed data sets of E. coli metabolite concentra-
tions originating from various research groups were found to
be infeasible. Actually, this percentage is even more dramatic
considering that thermodynamic feasibility is only a neces-
sary, but not a sufficient condition for correct data. As the
number of metabolites quantified from a single experiment
will constantly increase in the future and the metabolic
reactions are highly interconnected, however, the chance
to uncover thermodynamic infeasibility will increase. The
NET analysis can be used as an easy-to-apply tool to test
metabolome data for major experimental errors.

The ability of NET analysis to computationally resolve
intracompartmental metabolite concentrations, which in
general are hardly accessable experimentally, allows a more
detailed view of an organism with subcellular structure. This
capability opens up the possibility to elucidate cellular
functionalities that rely on compartmentation. Furthermore,
the NET analysis-based resolution of pooled metabolite
concentrations enables the design of more efficient analytical
methods as certain pooled metabolites do not have to be
separated experimentally.

The most prominent feature of NETanalysis, however, is the
ability to decode valuable insights from metabolome data:
besides unraveling functional relationships overarching sev-
eral parts of metabolism, NET analysis is able to identify
reactions most likely to be subject to active allosteric or genetic
regulation on the basis of metabolome data representing a
physiological snapshot at the final level in cellular hierarchy.
In this context, NET analysis could be particularly helpful for
screening of high-throughput metabolome data acquired from,
for example, libraries of single-ORF deletion mutants for
reactions, upon which the cell exerts either genetic or allosteric
regulatory action under the considered experimental condi-
tions. We envision that the superposition of this NETanalysis-
derived information obtained from different mutant strains
should ultimately facilitate identification of novel inter-
relationships in metabolic regulation. Such regulatory insight

Table I Resolved intracompartmental metabolite concentrations for the
S. cerevisiae data

Metabolite Cytosol (mM) Mitochondria (mM)

L-Aspartate 9.1–10 o0.07
Fumarate o0.23 40.3
L-Malate o1.6 1.56–7.15
Oxaloacetatea 41.56 o0.004
Phosphoenolpyruvate 2.21–4.21 43
Pyruvate 0.27–0.35 o0.07
L-Threoninea 0.004–2.1 o0.23

aNon-measured; for others, a cell-averaged measurement value was available.
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A Kümmel et al

& 2006 EMBO and Nature Publishing Group Molecular Systems Biology 2006 7



would tremendously enhance our knowledge about the
regulation of metabolic pathways, where, in stark contrast to
the regulation of genes encoding enzymes used to introduce
specific substrates into the central metabolism, only little is
known.

In contrast to detailed kinetic models, the NETanalysis does
not provide deterministic statements. However, as it is easy to
apply, perfectly scalable to the systems level and only relies on
indisputable facts, it represents a valuable tool to computa-
tionally decipher insight from quantitative large-scale meta-
bolome data. It can be easily envisioned that it will
significantly assist systems biology research and also will
support more applied fields such as metabolic engineering.

Materials and methods

Stoichiometric models

For the E. coli data set, we employed the genome-scale model iJR904
developed by Palsson and co-workers (Reed et al, 2003), which is an
elementally balanced stoichiometric network. The fully compartmen-
talized, elementally and charge balanced model iND750 (Duarte et al,
2004) was employed to analyze the set of metabolite concentrations
from S. cerevisiae. For our studies on the redox shuttles, transport
reactions between cytosol and mitochondria were added according to
Bakker et al (2001).

Thermodynamic data

A prerequisite for the NETanalysis is the availability of standard Gibbs
energies of formation for a large number of metabolites. With these
and values for intracellular pH and ionic strength (see below),
standard transformed Gibbs energies of formation specific for
intracellular conditions were calculated using the software Mathema-
tica (Wolfram Research Inc., IL, USA) and a Mathematica notebook
provided at http://library.wolfram.com/infocenter/MathSource/797
(Alberty, 2003). Standard transformed Gibbs energies of formation for
the metabolites involved in the pentose phosphate pathway and the
shikimate pathway were added by drawing on data from the NIST
database on thermodynamics of enzyme-catalyzed reactions (http://
xpdb.nist.gov/enzyme_thermodynamics) and from the literature
(Tewari et al, 2001, 2002).

In order to account for potential errors in the experimentally
determined equilibrium constants (from which the transformed Gibbs
energies of formation were derived), standard transformed Gibbs
energies of formation were allowed to vary in the NET analysis by
0.5 kJ mol�1 around the reported value. Converted to the concentra-
tion domain, this represents an uncertainty of approximately 20% for
the measured equilibrium concentration of a reactant.

In summary, for 137 of the 761 metabolites in the E. coli model,
standard transformed Gibbs energies of formation were available, and
consequently, for 154 out of the 922 biochemical reactions in the
metabolic model, it was possible to calculate Gibbs energies of
reaction. For the S. cerevisiae model, Gibbs energies of reaction could
be calculated for 232 (out of 1149) reactions with the available Gibbs
energies of formation for 128 (out of 645) metabolites.

Analyzed metabolome data set and input data
for E. coli

We examined a set of measured metabolite concentrations (Schaub
et al, 2006) obtained from an E. coli (W3110) chemostat culture that
was operated at a dilution rate of 0.1 h�1. The culture was fed with
M9 minimal medium containing 5 g l�1 glucose. The reactor with a
working volume of 1.5 l was aerated with 1 vvm and stirred at
800 r.p.m. in order to ensure a dissolved oxygen concentration above
60%. The concentrations of six metabolites (F13P, PEP, PYR, 6PGL,
ADP, ATP) and four groups of pooled metabolites (G6P/F6P, DHAP/

G3P, 2PG/3PG, R5P/RU5P/X5P) were measured on an ion-chromato-
graphy/single quadrupol mass spectrometer system (Dionex, Thermo
Finnigan) following a novel integrated sampling procedure (Schaub
et al, 2006).

Owing to the limited number of measured metabolites in the
analyzed data set, from a broad literature survey, metabolite data
obtained from aerobic E. coli growth experiments on glucose under
various conditions (batch, chemostat and substrate pulse experi-
ments) were gathered, and based on these data the concentration
ranges of 29 metabolites were further restricted (see Supplementary
information 2) assuming that these ranges reflect the typical variance
of metabolite homeostasis. In the NETanalysis, NAD(H) and NADP(H)
were considered with their ratios (NADH/NADþ and NADPH/
NADPþ ) and the adenylate nucleotides, ATP, ADP and AMP, as
adenylate energy charge (AEC, see Supplementary information 1 for
definition). Upper and lower bounds for these ratios were also defined
based on respective values obtained from the literature survey (see
Supplementary information 2). Beyond, the concentrations of all other
non-measured metabolites were, by default, restricted to ranges that
reflect the typical levels in the cytoplasm, which usually lie within the
mM to mM range (Fraenkel, 1992). Thus, for the NETanalysis, default
minimal and maximal concentration limits were set to 0.001 and
10 mM, respectively.

The standard Gibbs energies of formation were calculated for an
intracellular pH of 7.6 (Shimamoto et al, 1994) and an ionic strength of
0.15 M (Voets et al, 1999) to reflect E. coli’s intracellular conditions.
The energy required for transfer of protons from the cytosol to the
extracellular environment (or energy gained in the case of reflux) was
estimated using an experimentally determined proton motive force of
�150 mV (Riondet et al, 1999). Multiplication of this value with the
Faraday constant provided the respective Gibbs energy for proton
translocation (�15 kJ mol�1).

Analyzed metabolome data set and input data
for S. cerevisiae

Quantified metabolite concentrations of S. cerevisiae CEN.PK 113-7D
were obtained from an aerobic, glucose/ethanol-limited chemostat
culture at a dilution rate of 0.052 h�1 (Mashego et al, 2005).
Measurements were performed for 18 metabolites (AKG, F16P, F6P,
FUM, G1P, G6P, GLX (glyoxylate), MAL, PEP, PYR, SUCC, TRE
(trehalose), ATP, ADP, AMP, ALA (L-alanine), ASP (L-aspartate), GLU
(L-glutamate)) and three groups of pooled metabolites (2PG/3PG, CIT/
ICIT, NADH/NADþ ) either by mass spectroscopy on an LC-ESI-MS/
MS system, by IE-HPLC or enzymatically. We analyzed the metabolite
data obtained after eight generation cycles. By default, the measured
metabolite concentrations were considered as average concentrations
over all intracellular compartments using compartmental volume
fractions given in Supplementary information 3. If, however, according
to the metabolic model a metabolite could not enter a particular
compartment by diffusion and was not participating in any active
reaction, its concentration was assumed to be negligible in this
compartment under the assumption that available transporters are not
expressed. Analogous to the analysis of the E. coli data, default ranges
that reflect physiological conditions were set for the non-measured
metabolite concentrations, and ratios of pyridine nucleotides and the
AEC (see Supplementary information 3).

A cytosolic and mitochondrial pH of 7 and 7.5, respectively, was
assumed (JJ Heijnen, personal communication, 2006), whereas an
ionic strength of 0.15 M was used. To translocate ions against the
mitochondrial membrane potential of �180 mV (Ludovico et al, 2001),
the necessary energy was considered in the calculation of the
respective Gibbs energies of reaction.

Determination of flux directions

Experimentally determined fluxes for E. coli were obtained from
Nanchen et al (2006) and for S. cerevisiae from Daran-Lapujade
et al (2004) and Wu et al (2006). To obtain a flux distribution
(beyond the actually measured set of fluxes) that we used as input
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data, we employed the optimization approach introduced by Blank
et al (2005):

min
P

l

jrlj

s:t:
P

l

silrl ¼ 0 ðaÞ

rexp
m ð1 � dÞprmprexp

m ð1 þ dÞ ðbÞ
rmin
l prlprmax

l ðcÞ

ð5Þ

In this optimization, the L1 norm of all fluxes rl (including the
intracellular fluxes rj as well as the exchange fluxes with the
extracellular environment) is minimized under the constraint that
the mass balances hold (equation (5a); sil are the stoichiometric
coefficients including those of the intracellular reactions (sij), of the
exchange fluxes and of a pseudo-reaction describing biomass
synthesis). The fluxes rm, for which experimental data are available,
have to lie within a range d (here, 10%) around the measured values
rm
exp (equation (5b)). rl

min and rl
max are default flux boundaries defining

the reversibility/irreversibility of the intracellular and exchange fluxes
(equation (5c)).

Optimization

The optimization problems were solved using LINDO API (LINDO
Systems Inc., IL, USA) via the Matlab (The MathWorks Inc., MI, USA)
interface. The actual formulations of the optimization procedures
employed are presented in Supplementary information 1.

Supplementary information

Supplementary information is available at Molecular Systems Biology
website (www.nature.com/msb).
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