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Objective: This study aims to compare the hemodynamic impact of stent-mesh and

stent-induced straightening of the parent artery in intracranial bifurcation aneurysms

using finite element method simulation.

Material and Methods: Three intracranial bifurcation aneurysms treated with different

stent-assisted coil embolization were evaluated. Simulation using the finite element

method was conducted for Solitaire, LVIS and Neuroform stents. Four models of each

stent were established, including a pre-treatment baseline, stenting without parent artery

straightening (presented as stent-mesh effect), no-stent with parent artery reconstruction

(to reveal the straightening impact), and stenting with straightening (categorized as

Models I–IV respectively). Hemodynamic characteristics of the four models for each stent

were compared.

Results: In the Neuroform stent, compared with the pre-treatment model (100%), the

mean WSS decreased to 82.3, 71.4, and 57.0% in Models II-IV, velocity to 88.3, 74.4,

and 62.8%, and high flow volume (HFV, >0.3 m/s) to 77.7, 44.0, and 19.1%. For the

LVIS stent, the mean WSS changed to 105.0, 40.2, and 39.8% in Models II to IV; velocity

to 91.2, 58.1, and 52.5%, and HFV to 92.0, 56.1, and 43.9%. For the Solitaire stent,

compared with the pre-treatment model (100%), the mean WSS of Models II-IV changed

altered by 105.7, 42.6, and 39.4%, sac-averaged velocity changed to 111.3, 46.6, and

42.8%, and HFV 115.6, 15.1, and 13.6%.

Conclusion: The hemodynamic effect of straightening the parent artery of intracranial

bifurcation aneurysms by stenting was noticeably improved over stent mesh diversion in

all three stents tested. Therefore stent-induced remodeling of the parent artery appears

to be the best method of decreasing recurrence in intracranial bifurcation aneurysms.
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INTRODUCTION

Stent-assisted coil embolization can decrease the recurrence rate
compared with simple coiling in intracranial aneurysms (1).
However, the stent has a scaffold function and can induce angular
deformation of parent arteries in the intracranial bifurcation
aneurysms (2–4). It canmigrate the flow impingement away from
the aneurysm neck to decrease recurrence (5–7). Meanwhile,
a stent with its mesh has a flow diverter effect by reducing
the WSS and velocity of the aneurysm sac (8). However,
the hemodynamic impact of the stent mesh vs. stent-induced
straightening of the parent artery of the intracranial bifurcation
aneurysm is unknown. This study aims to assess and compare
the hemodynamic characteristics of stent-meshes and stent-
induced straightening of parent artery in intracranial bifurcation
aneurysms based on computational simulations using the high-
fidelity finite element method.

MATERIALS AND METHODS

Study Design
Three intracranial bifurcation aneurysms treated with three
different stent-assisted coil embolization were evaluated. Stenting
methods including Solitaire, LVIS, and Neuroform were
simulated using the finite element method. Four models of each
stent, including pre-treatment (Model I), stenting without parent
artery deformation (Model II, presented as stent-mesh effect),
no-stent with parent artery reconstruction (model III) to reveal
the straightening effect, and stenting with straightening (model
IV) were established (Figure 1). Hemodynamic characteristics of
the four models in each stent were compared.

Patient Description and Aneurysm Model
Three patients with intracranial bifurcation aneurysms, treated
with stent-assisted coiling in real life, were included in this
study. In case 1, a 66-year-old male with an unruptured small
anterior communicating artery aneurysm (maximal diameter:
4.8mm; width: 2.53mm) was treated with a Neuroform (Stryker,
Kalamazoo, Michigan, USA; size: 2.5 × 15mm) stent-assisted
coiling embolization. For case 2, a 48-year-old female with a
ruptured anterior communicating artery aneurysm (maximal
diameter: 5.49mm; width: 4.09mm) was treated with LVIS
(MicroVention, Tustin, CA, USA; size: 2.5 × 17mm) stent-
assisted coiling. For case 3, a 57-year-old female with an
unruptured A2/3 bifurcation aneurysm (maximal diameter:
6.96mm; width: 7.22mm) was treated with Solitaire AB
(Covidien, Irvine, California; size: 4 × 20mm) stent-assisted
coiling embolization.

3D rotational angiographic images were obtained, while
3D segmentation and isolation of the region of interest
were performed through the open-source software VMTK
(www.vmtk.org). The segmented geometry before treatment is
shown in Figure 1. To simplify the simulation of stenting, part
of the adjacent parent artery with the aneurysm sac was isolated
from the whole parent vessel using the Geomagic tool (Geomagic
Inc., Morrisville, North Carolina). Our institutional review board
approved this retrospective study with consent waived.

Finite-Element Method Modeling of Stent
Deployment
Solitaire, LVIS, and Neuroform stents were virtually generated
using SolidWorks (Dassault Systems, SolidWorks Corp., MA)
and transferred into FEM software ABAQUS v6.14 (SIMULIA,
Providence, RI) to perform the remodeling of the aneurysm with
adjacent parent vessels.

The FEM-based workflow for stent deployment modeling
was conducted in ABAQUS/Explicit v6.14, where the stent was
modeled as Nitinol alloy. The material properties were obtained
from literature (9–11), as shown in Table 1. The simulation
consists of three steps: crimping, delivery, and deployment. The
crimping of the stent was performed and used for the initial
condition for the delivery process using the predefined field tool
in ABAQUS. The delivery path was generated with central points
of cross-sections of the blood vessel. Crimped stent within the
microcatheter was delivered through the path to the orifice of the
aneurysm as the actual delivery process during clinical treatment.
The crimped stent was assembled in a microcatheter in the global
coordinate system and delivered to the aneurysm orifice of the
pre-treatment model through a displacement load according to
the central points of the arterial wall along the delivery path.
The stent was released in the next step with the predefined
stress-strain field. A “general contact” algorithm in ABAQUS
was used for the complex interactions during the stent delivery
and deployment procedures, with a friction coefficient value of
0.15 (12).

During FEM analysis, the parent vessel was modeled as a rigid
wall in no deformation models (model I and II) and deformable
wall in straightened models (model III and IV). In the latter
models, Mooney-Rivlin’s stress-strain constitutive relationship
was implemented to simulate the hyperplastic behavior of the
vessel wall (13). A set of parameter values from the human
cerebral artery wall were adopted, where the parameters were
chosen as C1 = 0.174 MPa, C2 = 1.88 MPa (13). The cerebral
arterial wall and aneurysmal wall were modeled as membrane
elements with a thickness of 0.3mm (14) and 0.2mm (15),
respectively. In the end, the surface-based aneurysm and vessel
geometry model with the 3D representation of the stent were
used for the subsequent CFD analysis. The exact method can
be referenced in our previous study (7). The FEM simulations
matched the actual stent-deployment images, including the
parent artery straightening (Figure 2).

CFD Simulation
Computational models meshed with polyhedral grids with a
size of 0.1mm for the aneurysm and vessel and 0.03mm
for the stent using STAR-CCM+ meshing tool (CD Adapco,
Melville, NY). Incompressible Navier-Stokes equations under
steady flow conditions were solved with the finite volume
CFD solver, STAR-CCM+. The mean flow rate for the internal
carotid artery inlet was 4.6 ml/s and this was used as the inlet
boundary condition (16). Traction-free boundary conditions
were applied at all outlets and, the mass flow rate through
each outlet vessel was set to be proportional to the cube of its
diameter based on the principle of optimal work (17). With a
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FIGURE 1 | Four models of each stent (Neuroform stent, A-D; LVIS stent, E-H; Solitaire stent, I-L) were simulated. Pre-treatment (Model I, A,E,I), stenting without

straightening (Model II, B,F,J) presented as the stent-mesh effect, no-stent with reconstruction (Model III, C,G,K) to reveal the straightening effect, and stenting with

straightening (Model IV, D,H,L) were established.

TABLE 1 | Superelastic shape-memory alloys material properties for the Auricchio/Taylor superelasticity model (9–11).

Thermoelastic properties

EA EM vA vM

70 GPa 70 GPa 0.33 0.33

Phase diagram properties

σ
Ms

σ
Ms

C
σ
Mf σ

As
σ
Af CA CM T0

448 MPa 448 MPa 562 MPa 257 MPa 221 MPa 9.21 MPa/K 6.31 MPa/K 350 K

Transformation strain properties

H HV

4.7% 4.7%

density of 1,056 kg/m3 and a viscosity of 0.0035 N·s/m2, the
blood was modeled as a Newtonian fluid material (18), and
the vessel walls were simulated as a rigid wall with no-slip
boundary conditions (19).

Bifurcation angle was defined as the angle between the stented
branch and the proximal main trunk of the aneurysm. The
aneurysmal flow streamlines, iso-velocity surface (to measure
high flow region around aneurysmal neck plane), and wall shear

stress (WSS) were visualized for qualitative analysis. Iso-velocity
surface was the surface with equal velocity. As the threshold value
increased, the high flow region became focused on the aneurysm
neck (Figure 3). In this study, the threshold value for velocity was
set at 0.3 m/s. For quantitative analysis, the sac-averaged velocity,
high flow volume using iso-velocity surface (>0.3 m/s), and sac-
averaged WSS were calculated using the pre-treatment model as
a baseline (100%).
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FIGURE 2 | The FEM simulations of each stent matched the actual post-operative non-subtracted DSA images, including parent artery straightening. Neuroform stent

(A,D); LVIS stent (B,E); Solitaire stent (C,F).

FIGURE 3 | As the threshold velocity value increased in the virtual stenting with parent artery straigtening (Model IV), the high flow region (0.3 m/s) focused on the

inflow trunk of the aneurysm neck (arrows).

RESULTS

Bifurcation Angle Change
For the Neuroform stent model, the bifurcation angle change
was 42.47◦ from pre-treatment 96.42◦ to post-stenting 138.89◦.

The aneurysm experienced no recurrence in the 20-month DSA
follow-up. For the LVIS stent model, the bifurcation angle
changed from 112.27 to 135.90◦ after stenting. Follow-up DSA
after 30 months revealed no recurrence. The bifurcation change
in the Solitaire stent model was most dramatic, from 58.5 to
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TABLE 2 | Angular measurements and hemodynamics of four models in three different stents.

Bifurcation angle WSS Velocity High flow volume

(degrees) (Pa) (m/s) (mm3)

Neuroform

Model I 96.42 4.30 (100%) 0.180 (100%) 3.23 (100%)

Model II 96.42 3.54 (82.3%) 0.159 (88.3%) 2.51 (77.7%)

Model III 138.89 3.07 (71.4%) 0.134 (74.4%) 1.42 (44.0%)

Model IV 138.89 2.45 (57.0%) 0.113 (62.8%) 0.617 (19.1%)

LVIS

Model I 112.27 12.72 (100%) 0.434 (100%) 51.0 (100%)

Model II 112.27 13.36 (105.0%) 0.396 (91.2%) 46.90 (92.0%)

Model III 135.90 5.11 (40.2%) 0.252 (58.1%) 28.60 (56.1%)

Model IV 135.90 5.06 (39.8%) 0.228 (52.5%) 22.4 (43.9%)

Solitaire

Model I 58.50 9.70 (100%) 0.292 (100%) 64.2 (100%)

Model II 58.50 10.25 (105.7%) 0.325 (111.3%) 74.20 (115.6%)

Model III 168.27 4.13 (42.6%) 0.136 (46.6%) 9.67 (15.1%)

Model IV 168.27 3.82 (39.4%) 0.125 (42.8%) 8.70 (13.6%)

FIGURE 4 | For an anterior communicating artery aneurysm with Neuroform stenting, hemodynamic characteristics of four models are depicted. Wall shear stress,

velocity, and high flow volume in Models III and IV decrease slightly compared with Models I and II.

168.27◦, which almost became a side-wall aneurysm (Table 2).
The aneurysmwas not recurrent in the 10-monthDSA follow-up.

Qualitative Analysis
Compared with the pre-treatment baseline (Model I), stenting
with parent artery reconstruction (Model IV) in the three stents

performed the best in decreasing mean WSS, velocity, and
high flow volume. In LVIS and Solitaire stent groups, the WSS
of stenting without parent artery reconstruction (Model II)
increased compared with corresponding pre-treatment models.
In the Solitaire stent, the velocity and high flow volume of Model
II increased compared with Model I. In three stent groups, the
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FIGURE 5 | Hemodynamic characteristics of four models are illustrated in LVIS stenting for an anterior communicating artery aneurysm with a daughter sac.

Compared with Model I, wall shear stress increases, and velocity decreases while the high flow volume does not change significantly in Model II. Wall shear stress,

velocity, and high flow volume in Models III and IV decreased significantly compared with Model I.

WSS, velocity, and high flow volume ofModel III were lower than
these of Model II (Figures 4-6).

Quantitative Analysis
For the Neuroform stent, compared with the pre-treatment
model (100%), the mean WSS decreased to 82.3, 71.4, and 57.0%
in models II-IV, velocity to 88.3, 74.4, and 62.8%, and HFV to
77.7, 44.0, and 19.1%. For the LVIS stent, the meanWSS changed
to 105.0, 40.2, and 39.8% in models II-IV, velocity to 91.2, 58.1,
and 52.5%, and HFV to 92.0, 56.1, and 43.9%. With the Solitaire
stent, compared with the pre-treatment model (100%), the mean
wall shear stress (WSS) of Models II-IV changed to 105.7, 42.6,
and 39.4%, the sac-averaged velocity changed by 111.3, 46.6, and
42.8%, and the high flow volume (HFV, >0.3m/s) changed by
115.6, 15.1, and 13.6% (Figure 7).

DISCUSSION

This study simulated four models for each of three different
stents to reveal the hemodynamics induced by the stent
straightening effect. The hemodynamic effects of stent-induced
parent artery straightening are better than the stent-mesh
effect in different stent models. Hypothesized stenting without
a parent artery straightening model could produce adverse
effects. Fortunately, the actual stenting with the parent artery

straighening model plays the best performance in modifying the
aneurysm hemodynamics.

For the initiation of intracranial aneurysms, bifurcation
angulation plays an important role (20–22), with Song et al.
finding that a larger bifurcation angle was more prevalent on
the aneurysmal branch compared with the contralateral non-
aneurysmal middle cerebral artery bifurcation (23). Furthermore,
intracranial aneurysm presence was associated with abnormal
hemodynamics due to the abnormal bifurcation angle (23,
24). The stent-induced parent artery straightening concept has
been increasingly adopted clinically to transform a bifurcation
aneurysm into a sidewall aneurysm (25, 26). Stent-induced
straightening of the parent artery can decrease recanalization,
especially for intracranial bifurcation aneurysms (4, 26). In
computational fluid dynamics, Gao et al. (6) revealed that stent-
induced angular remodeling significantly altered bifurcation
apex hemodynamics in a favorable direction and narrowed
and migrated the flow impingement zone based on aneurysm-
capped simulation. In our study, stenting after parent artery
reconstruction (Model IV) directly confirmed that straightening
the parent artery decreased the wall shear stress and velocity and
migrate the high flow region in the aneurysm neck. Neointima
formation and thrombus organization are concurrent processes
during aneurysm healing (27). Conventional stents work as a
scaffold for neointima formation (28). However, stent-induced
straightening of the parent artery can decrease the high flow
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FIGURE 6 | Hemodynamic characteristics of four models for Solitaire stenting of an unruptured A2/3 bifurcation aneurysm are revealed. Velocity in Model II increased

significantly while wall shear stress and high flow volume in Model II do not change significantly compared with Model I. Wall shear stress, velocity, and high flow

volume in Models III and IV decreased significantly compared with Model I.

FIGURE 7 | Hemodynamic characteristics tendencies for the four models in three stents are analyzed. (A) Wall shear stress (WSS); (B) velocity (m/s); (C) high flow

volume (mm3).

volume in the aneurysm sac, facilitating thrombus in the
aneurysm sac.

Previous studies revealed that LVIS close mesh could divert
flow and double LVIS induced flow diverter effect could surpass a
Pipeline stent (8), although the unpredictability in overlapping
stent use. In this study, the Solitaire stent-mesh size is the
largest (29), indicating its weakest strut effect. However, the
Solitaire stent straightened the parent artery significantly and
transformed the bifurcation aneurysm into a sidewall one. The
hemodynamic straightening effect increased while the parent
artery angle changes increased. This study did not simulate a
Pipeline stent and compared its flow diverter hemodynamic effect
with straightening parent artery due to its off-label application
in intracranial bifurcation aneurysms. Clinically, flow diverter

embolization devices have been used in complex bifurcation
aneurysms beyond the circle of Willis in some centers. However,
the branch caliber reduction and asymptomatic occlusion of
covered cortical branches and silent perforator stroke are not
uncommon (30).

For sidewall aneurysms, a previous study demonstrated that
stent struts had a dual effect on flow velocity reduction than
straightening vessels (31). In contrast, our study revealed that the
hypothesized stenting without straightening could generate an
adverse hemodynamic impact in the bifurcation aneurysms. We
theorized that the stent struts could narrow the inflow jet typically
observed in bifurcation IAs and generate elevated flow inside the
aneurysm sac. Jeong et al. (5) also found an adverse effect due to
stenting of bifurcation aneurysms.
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WSS indicates the frictional force between blood and arterial
wall inner surface and can influence aneurysm initiation with
high WSS (32), and ruptures with low WSS (33). A low
aneurysmal WSS environment encourages inflammatory cell
infiltration and has been correlated with aneurysm rupture
status. Stagnant flow and excessively low WSS after stenting or
flow diverter may induce focal inflammation and subsequent
tissue destruction or degradation in the aneurysm dome, the
usual rupture site. Low WSS accelerates unstable red thrombus
formation, while high WSS facilitates stable white thrombus
after stenting. The three aneurysms in this study were treated
with stent-assisted coiling. Coiling may facilitate thrombus
formation in the aneurysm sac before aneurysm wall degradation
and rupture.

Some limitations must be noted. First, the sample is small,
which needs further extensive sample studies to demonstrate.
Second, we adopted several commonly used assumptions tomake
CFD tractable. Due to a lack of patient-specific information,
we assumed a constant, location-based inlet flow rate. Inlet
velocities were scaled according to the inlet diameter. This study
utilized the pretreatment model as a baseline and evaluated
the relative, not absolute hemodynamic change. Future studies
should consider utilizing a pulsatile flow profile instead of steady-
state to explore the detailed effect of vessel straightening and its
impact on hemodynamics within the aneurysm.

CONCLUSION

The hemodynamic effect of straightening the parent artery
induced by stenting was markedly better than that of stent

mesh flow diversion in all three different stents tested. Stent-
induced remodeling of the parent artery, transforming the
bifurcation aneurysms into sidewall aneurysms, should decrease
the recurrence rate in intracranial bifurcation aneurysms.
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