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Abstract

Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the
Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and
pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2
diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36
content was reduced in islets from hypercholesterolemic ApoE2/2 mice. Prolonged exposure to human native (nLDL) or
oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets.
Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective
disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels
suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor
etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E
cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely
correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-
induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data
demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to
oxLDL-induced beta-cell apoptosis.
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Introduction

Type 2 diabetes (T2D) originate from abnormalities in both

glucose and lipid metabolism leading to b-cell failure to

compensate insulino-resistance and adequately secrete the insulin

necessary to maintain glucose and lipid homeostasis [1,2].

The fine-tuning of insulin secretion in response to nutrient

stimulation relies on a closely coordinated functioning of

pancreatic b-cells. The importance of cell-to-cell communication

mediated by gap junction channels in that process is often

undervalued. In b-cells, gap junctions made solely of connexin36

(Cx36) contribute to synchronization of clusters, which appears

essential to maintain b-cell function [3,4,5,6] and survival [7]. We

further demonstrated that long-term exposure to high concentra-

tion of glucose or saturated free fatty acids (FFAs), alone and in

combination, result in a reduced expression of Cx36 in insulin-

secreting cells [4,8]. Given its key role in b-cell function and

survival, Cx36 down-regulation might thus contribute to b-cell
failure in relation to glucolipotoxicity.

Beside increased levels of circulating FFAs, the dyslipidemia

associated with T2D is characterized by low plasma levels of High

Density Lipoproteins (HDL), together with increased levels of

modified atherogenic oxidized LDL-cholesterol (oxLDL)

[9,10,11,12,13]. Alterations of these lipoproteins levels precede

the development of diabetes and may therefore contribute to the

progression of the disease [11,14,15]. Prolonged exposure of

insulin-producing cell lines as well as isolated human and rodents

islets to oxLDL particles at physiological cholesterol concentration

compromises insulin production and secretion and eventually

leads to b-cell apoptosis [16,17,18,19]. On the other hand, HDL

particles have been shown to protect the cells against harmful

effects of pro-apoptotic stressors including oxLDL [20,21]. Given

its role in b-cell survival, the purpose of this study was to determine

the involvement of Cx36 in the pro-apoptotic effect of oxLDL

particles on b-cells. We first evaluated the impact of prolonged
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hypercholesterolemia on Cx36 expression in vivo using the

hypercholesterolemic, pro-atherogenic ApoE deficient mouse

(ApoE2/2) [22,23,24] and observed that the Cx36 levels were

decreased in ApoE2/2 compared to WT mice. We next studied

the effect of isolated human lipoprotein particles on Cx36

expression in b-cells in vitro and demonstrated that prolonged

exposure to oxLDL but not native LDL (nLDL) particles down-

regulated Cx36 expression through a transcriptional mechanism

involving the overexpression of the inducible early repressor 1

(ICER-1). We further showed that Cx36 knock-down in INS-1E

cells sensitized b-cells to oxLDL-induced apoptosis and extended

this observation in primary islets using Cx36 KO (2/2) mice. In

contrast, Cx36 overexpression partially protected INS-1E cells

from the pro-apoptotic effect of oxLDL particles.

Materials and Methods

Lipoprotein Preparation
Blood was collected from healthy donors. Plasma LDL fractions

were isolated by sequential ultracentrifugation (LDL density,

1.063) and dialyzed against PBS. Samples were analyzed by SDS-

PAGE to assess the integrity of apolipoproteins and the purity of

the different fractions. The lipoprotein preparations contained less

than 0.112 unit of endotoxin/mmol of cholesterol as determined by

the kinetic chromogenic technique (Endotell, Allschwil, Switzer-

land). Oxidation of LDL particles was performed by incubation of

1 mg LDL protein/ml PBS with 5 mM CuSO4 at 37uC for 6–8 h.

The oxidation reaction was stopped at 4uC for 30 min by adding

300 mM EDTA. The oxidized as well as native LDL particles were

dialysed against PBS and subsequently against either DMEM or

RPMI medium without foetal calf serum. The oxidation reaction

was verified by determining the lipid peroxide content as

previously described [19].

Cell Culture
The rat insulinoma cell line INS-1E (kindly provided by Dr.

Pierre Maechler, CMU, University of Geneva [25]) was main-

tained in the complete RPMI 1640 medium as previously

described [25]. MIN6-B1 (kindly provided by Dr. Philippe.

Halban, CMU, University of Geneva [26]) were cultured in

DMEM as previously described [26].

Oil Red O Staining
Oil red O (Solvent Red 27 or Sudan Red 5B) was used to stain

endogenous lipid deposits. INS-1E cells grown or glass coverslips

were fixed for 30 min in 3.7% paraformaldehyde. After washing,

fixed cells were incubated for 20 min in oil red O (Sigma-Aldrich)

staining solution (0.5% in isopropanol), and counter-stained lightly

by dipping the coverslips in an hematoxyline solution [27].

Mouse Models and Langerhans Islets Preparation
Rat or mouse islets of Langerhans were isolated from the

pancreas by collagenase digestion, filtered on a 100 mM cell

strainer (BD Biosciences), hand-picked under a stereomicroscope

and cultured as previously described [4,7,28]. WT or ApoE2/24

months old male C57BL6 mice were generated, housed and cared

for as previously described [23,29]. Blood samples for plasma

analyses were taken by heart puncture. Concentrations of glucose

and lipids were measured in the plasma of mice sacrified while in

a fed state. Measurements were conducted at The Mouse

Metabolic Evaluation Platform facility from the Universty of

Lausanne (http://www.cardiomet.ch/en/cmet_home/cardiomet-

chercheurs/cardiomet-chercheurs-plateforme_metabolique.htm).

The Cx362/2 mice were generated, housed and cared for as

previously described [7,28].

Western Blot Analyses
Cells were washed once with cold PBS and directly lysed with

Laemmli buffer. Nuclear extracts for ICER-1, ICER-1c and

CREM immunoblots were prepared as previously described [4].

Lysates were then resolved by SDS-PAGE and transferred to

a PVDF membrane. Immunoblot analyses were performed as

previously described [4,30] using the following antibodies: Rabbit

polyclonal antibodies against Cx36 [4,8], monoclonal anti a-
tubulin antibodies (Fluka Chemie, diluted 1:2,000); rabbit poly-

clonal anti CREM-1 sc440 (Santa Cruz, 1:500). After incubation

at room temperature (1 h) with the appropriate secondary

antibody conjugated to horseradish peroxidase (Fluka Chemie,

diluted 1:20,000), membranes were revealed by enhanced

chemiluminescence (immobilon, millipore) using the Chemi-

DocTM XRS+ System and analyzed using the accompanying

proprietary program Image Lab (BETA2) version 3.0.01(Bio-Rad

Laboratories, Reinach, Switzerland ).

RNA Isolation, and Quantitative RT-PCR (Lightcycler�)
Cells were homogenized in the Tripure Isolation Reagent

(Roche Diagnostics) and total RNA was extracted using the kit

procedure. mRNA from freshly isolated mouse islets were isolated

using nucleospin RNA II columns (Macherey-Nagel). Transcripts

(1 mg) were reverse-transcribed using ImProm-2 Reverse tran-

scription System (Promega). Quantitative PCR was performed

using the SYBRH Premix ExTaqTM (Takara) in a Lightcycler

Instrument (Roche Diagnostics). cDNAs were amplified using the

following primers: rat Cx36: 59-ATACAGGTGTGAATGAGG-

GAGGATG-39 (sense); 59- TGGAGGGTGTTACAGATGAAA-

GAGG-39 (antisense). Rat ribosomal protein L-27 59-GATC-

CAAGATCAAGTCCTTTGTG-39 (sense); 59-

CTGGGTCTCTGAACACATCCT-39(antisense). Rat ICER-1:

59-CTGGGTCTCTGAACACATCCT-39 (sense) 59-

CACCTTGTGGCAAAGCAGTA-39(antisense). Rat Plin 9-

GCTTCTCTCCCCAAGGAAAC-39 (sense); 59-

TGCCCCTTAAAACCTGACTG-39 (antisense). Rat ACC1 59-

CAGGTTCAGAGCGAGAGATG-39 (sense); 59-AT-

GATGGCTCGGATGAAGAA-39 (antisense). Rat SOD1:59-

TTCCATCATTGGCCGTA-39 (sense); Rat SOD1: 59-

AAGCGGCTTCCAGCATTTC-39 (antisense). Rat-SOD2: 59-

TGGTGTGAGCTGCTCTTGATTG-39 (sense); Rat SOD2: 59-

GCCCCAACACAGAGATGGAATA-39 (antisense).

Transient Transfection and Luciferase Assays
INS-1E cells were co-transfected using lipofectamine 2000

(Invitrogen, Baesley, UK) with the internal control pRL-CMV

encoding Renilla luciferase (Promega, Madison, WI, USA),

various reporter plasmids containing the luciferase gene under

control of different fragments of the human Cx36 promoter,

together with an empty vector (pCDNA3), or a plasmid allowing

constitutive expression of ICER-1 [31] or an ICER antisense

plasmid [32], as previously described [4,8]. 24 hours after

transfection, the cells were incubated in presence or absence of

2 mM (78 mg/dl) nLDL or oxLDL particles. Sample preparation,

luciferase activities and values correction were performed as

previously described [4,8].

Rat Cx36 SilencerH Select pre-designed siRNA s132237

(siRNA#1) and s132238 (siRNA#2) were from Applied Biosys-

tems (Life Technologies Corporation, Carlsbad, California,

U.S.A). The Allstars Negative Control siRNA (Qiagen, Hom-

brechtikon, Switzerland), which has no effect on b-cell gene

oxLDL Down-Regulate Cx36 Expression
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expression and viability, was used as a control [30,33,34]. siRNA

transfections were conducted as previously described using

lipofectamin RNAiMax (Invitrogen) with a final concentration of

30 nM siRNA. The efficiency of transfection is .90% [30,33,34].

siRNA transfections under these conditions do not affect b-cell
function [30,34]. Cells were then cultured for a 48-hour recovery

period before being collected or treated as indicated.

ROS/RNS Superoxide Measurements
TheROS/RNS and superoxide productionweremeasured using

the total ROS/Superoxide Detection Kit (Enzo Life Sciences AG,

Lausen, Switzerland). Briefly, INS-1E cells were plated in 96 well

plates. Following a 48 h treatment with lipoproteins, cells were

washed once and incubated for 30 min in 100 ml of wash buffer

containing 2 mM of oxidative stress detection reagent (green) and

2 mM of superoxide detection reagent (orange). Fluorescence was

quantified using a fluorescence microplate reader and standard

fluorescein (Ex= 488 nm, Em=520 nm) and rhodamine

(Ex= 550 nm, Em=610 nm) filter sets.

Generation of Recombinant Adenoviruses and Cell
Infection
Control adenovirus encoding GFP (Ad-GFP) was generated as

previously described [35]. The adenovirus encoding rat Cx36 (Ad-

Cx36) was generated by Vector Biolabs, Philadelphia, PA, U.S.A.

using rat the complete rat Cx36 coding sequence (GenBank:

AJ296282.1) cloned using the TA cloning system pGEM-Teasy

(Promega). Infection was performed as previously described [5,30].

Assessment of Cell Viability
The percentage of viable, apoptotic and necrotic cells was

determined using the DNA-binding dyes Propidium Iodide (PI,

5 mg/ml) and Hoechst 33342 (HO, 5 mg/ml, Sigma-Aldrich) [36].

The cells were examined by inverted fluorescence microscopy

(Axiovert 200, Carl Zeiss, Zaventem, Belgium). A minimum of 500

cells was counted in each experimental condition by two

independent observers, one of them unaware of sample identity.

Total islet viability was evaluated by two independent observers,

both of them unaware of sample identity. At least 20 islets per

condition were counted, as previously described [37].

Statistical Analysis
Data are presented as means 6 SEM. Comparisons were

performed by two-tailed paired Student’s t-test or by one-way

ANOVA followed by t-tests with Bonferroni correction for

multiple comparisons. Non-parametric x2 tests were further used

to assess differences between non-Gaussian distributions. A p value

#0.05 was considered statistically significant.

Ethics Statement
Mouse care, surgery and euthanasia procedures were approved

by our institution and the Cantonal Veterinary Office (Service de

la Consommation et des Affaires Vétérinaires SCAV-EXPANIM).

Written, informed consent was obtained from all blood donors.

The study protocols for blood collection and lipoproteins

preparation were reviewed and approved by the clinical research

ethics committee of the Centre Hospitalier Universitaire Vaudois

(CHUV).

Results

To assess whether cholesterol participates in vivo to the control

of Cx36 expression, we characterized the expression of Cx36 in

ApoE2/2 C57BL6 male mice. As compared to WT mice,

ApoE2/2 mice displayed an 8 fold increase in total circulating

levels of cholesterol and a 70 fold increase in LDL levels (Table 1).

In addition there was also a 3 fold increase in triglycerides and a 2

fold increase in circulating FFA, whereas the glycemia remained

normal and similar in both groups (Table 1). As compared to

WT mice, Cx36 mRNA levels were significantly decreased in

ApoE2/2 mice, and there was a trend toward an increase in

ICER-1 mRNA level (P = 0,057; Figure 1A). Moreover, quanti-

tative assessment of Cx36 immunofluorescent labeling on frozen

pancreas sections (see Methods S1) from WT or ApoE2/2 mice

revealed a significantly decreased Cx36 punctate staining in

ApoE2/2 compared to WT mice (Figure S1).

We then investigated the in vitro effects of human native (nLDL)

or oxidized LDL (oxLDL) on Cx36 expression in insulin-secreting

cell lines and primary rat islets. Cx36 mRNA levels were decreased

by 50% in INS1-E cells, MIN-6B1 cells and primary rat islets

cultivated for 72 hours in medium supplemented with 2 mM

(78 mg/dl) of human oxLDL particles, but not nLDL (Figure 1B).

Time course analysis revealed that Cx36 mRNA expression was

already significantly reduced after 48 h of culture in presence of

oxLDL (Figure 1C). Subsequent experiments were performed after

48 h of exposure to lipoproteins. At the protein level, Cx36

expression was decreased in both INS-1E cells (Figure 1D) and

primary isolated islets (Figure 1E) exposed for 48 h to 2 mM

oxLDL, but not nLDL.

We previously showed that Cx36 expression is controlled by the

cAMP/PKA pathway [4,8]. INS-1E cells were exposed to nLDL

or oxLDL for 48 h, in presence of the cAMP dependent protein

kinase A (PKA) inhibitor H89 (10 mM). As shown in Figure 2A,

H89 prevented the Cx36 decrease elicited by oxLDL, suggesting

that the cAMP/PKA pathway mediates the oxLDL effect on Cx36

expression. We recently established that ICER-1 is overexpressed

after prolonged exposure to oxidized, but not native, LDL

particles [19]. Here, we confirmed that oxLDL, but not nLDL

particles, induced a two to three fold increase in ICER-1 mRNA

levels in INS-1E cells, MIN-6 cells and isolated rat islets

(Figure 2B). Time course analysis further revealed that ICER-1

mRNA expression is already significantly upregulated after 24 h of

culture in presence of oxLDL (Figure 2C). Using an antibody

directed against CREM-1 (cAMP response element modulator)

that detected ICER-1 and ICER-1c, the two major repressive

isoforms of CREM expressed in b-cells, we further confirmed that

a 48 h exposure to oxLDL particle, but not nLDL particles,

increased ICER-1 and ICER-1c protein levels in nuclear extracts

from INS-1E cells (Figure 2D). In addition, the oxLDL-driven

ICER-1 overexpression was PKA-dependent as H89 inhibited

ICER-1 overexpression in nuclear extracts from INS-1E cells

(Figure 2D).

We have previously demonstrated that ICER-1 binds to a highly

conserved CRE (cAMP response element) located between bases

2566 and 2556 upstream of the transcription start site of the

Cx36 gene [4,8]. To assess the involvement of this CRE in the

oxLDL-induced Cx36 downregulation, a plasmid expressing the

reporter gene luciferase under the control of a fragment of the

human CX36 promoter containing the CRE (pGL3-1079) was

transiently transfected in INS-1E cells incubated in presence of

2 mM LDL, native or oxidized, for 24 hours. oxLDL induced

a 40% decrease in the luciferase activity driven by the CX36

promoter fragment (Figure 3A). In contrast, oxLDL did not reduce

the activity of a similar plasmid containing a mutated CX36 CRE

(pGL3-1079m). To investigate the involvement of ICER-1 in the

control of the CX36 gene expression, INS-1E cells were

cotransfected with either an empty vector (pCDNA3) or an

oxLDL Down-Regulate Cx36 Expression
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antisense ICER construct (ICER AS) reducing the endogenous

ICER-1 and ICER-1c content [4,32]. ICER AS fully blocked the

effect of oxLDL on the CX36 promoter activity, indicating that

ICER-1 drove the oxLDL effect on Cx36 expression. Further-

more, blocking ICER-1 overexpression using ICER AS prevented

oxLDL-induced down-regulation of endogenous Cx36 protein

(Figure 3B).

We recently demonstrated that Cx36 plays a protective role in

cytokine-induced b-cell apoptosis [7] and prolonged exposure to

oxLDL induces b-cell apoptosis [17,19]. Here, we observed that

a 48 h exposure to 2 mM oxLDL induced 15 to 20% apoptosis in

INS-1E cells and we confirmed that 1 mM (40 mg/dl) HDL

particles protected b-cells from oxLDL-mediated apoptosis [17,18]

(Figure 4A). HDL particles also prevented the oxLDL-induced

Cx36 protein downregulation (Figure 4B), indicating that there is

a correlation between the decreased levels of Cx36 and oxLDL-

induced apoptosis.

Lipid toxicity in b-cells is thought to be mostly due to

accumulation of free fatty acyl CoA levels entering non-oxidative

toxic pathways of fatty acids metabolism, such as de novo

ceramide formation which trigger reactive oxygen species (ROS)

production [38]. This may be caused both by a defect in lipid

storage in the form of neutral lipid droplets, or through a defect in

lipid b-oxidation in the mitochondria. We monitored the

formation of lipid droplets after a 24 h exposure to 2 mM nLDL

or oxLDL particles in INS-1E cells. In control condition, rare

Figure 1. Prolonged exposure to oxidized LDL particles decreases Cx36 levels in b-cells. A) Langerhans islets were isolated from adult
male WT or ApoE2/2 C57Bl6 mice and immediatly sampled for mRNA extractions. Cx36 and ICER-1c mRNA levels were analyzed by quantitative RT-
PCR, and normalized to the expression of the housekeeping gene L27. Results are means6 SEM of six animals in each group. B) INS-1E cells, MIN6-B1
cells, or primary rat islets were cultured for 72 h in presence or absence (Vh for Vehicule) of 2 mM native (nLDL) or oxidized LDL (oxLDL). Quantitative
RT-PCR of Cx36 mRNA levels normalized to the levels of the housekeeping gene L27. Data represent mean 6 SEM of four to six independent
experiments. *P,0.05; **P,0.01 vs. control. C) Time course analysis of Cx36 mRNA levels in INS-1E cells cultured in absence (Vh for Vehicule) or
presence of 2 mM native (nLDL) or oxidized LDL (oxLDL). Data are mean 6 SEM of four independent experiments. *P,0.05; **P,0.01 vs control
condition (vehicle treated). D–E)Western blot analyses of Cx36 levels in INS-1E cells (D) or primary isolated rat islets (E) cultured for 48 h in presence or
absence (Vh for Vehicule) of 2 mM native (nLDL) or oxidized LDL (oxLDL). (D) Data are mean 6 SEM of five independent experiments. (E) Blot shows
three independent experiments.
doi:10.1371/journal.pone.0055198.g001

oxLDL Down-Regulate Cx36 Expression
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small regular lipid droplets were detected whereas abundant big

regular lipid droplets were observed in presence of nLDL. In

contrast, in presence of oxLDL, the lipid droplets were smaller and

less abundant, suggesting that oxLDL were not stored in lipid

droplets to the same extend as nLDL (Figure 5A). Exposure to

nLDL also stimulated the expression of the perilipin 1 (Plin1)

transcripts, a marker of lipid droplets, whereas oxLDL treatment

did not significantly increase Plin1 mRNA expression as compared

to vehicle-treated INS-1E cells (Figure 5B). We also evaluated the

b-oxidation axis of the LDL particles through the expression of the

Acetyl CoA carboxylase (ACC1) in INS-1E cells exposed to 2 mM

nLDL or oxLDL for 48 h. As compared to control, nLDL induced

a two fold increase in ACC1 mRNA expression, and oxLDL

induced a 1.5 fold increase, suggesting that oxLDL are less

metabolized than nLDL particles (Figure 5B). Inhibition of the

carnitine palmitoyl transferase (CPT1) using etomoxir inhibits the

lipid b-oxidation. In control conditions, a 48 h treatment with

Table 1. Characteristic of WT and ApoE2/2 mice.

WT ApoE2/2

Weight (gr) 25.8260.53 28.960.52*

Glucose (mg/dl) 182.83614.97 206.23616.34

TG (mg/dl) 90.6468.96 316.53628.68***

FFAs (mg/dl) 13.7962.89 27.1863.77*

Total cholesterol (mg/dl) 75.0263.03 316.53638.83***

VLDL/LDL (mg/dl) 4.9060.62 370.51626.27***

HDL(mg/dl) 58.5262.41 109.063.99***

Weight, plasma glucose, triglycrides (TG), free fatty acids (FFAs), total
cholesterol, low density lipoprotein (LDL) and high density lipoproteins (HDL)
levels of adult male WT or ApoE2/2 C57Bl6 mice. Data are means 6 SEM of 8
animals in each group. *P,0.05; ***P,0.001 vs. WT group.
doi:10.1371/journal.pone.0055198.t001

Figure 2. oxLDL overexpress ICER-1 and downregulate Cx36 in a PKA-dependent manner. A)Western Blot analyses of Cx36 over tubulin
levels in INS-1E cells cultured for 48 h in presence or absence (Vh for Vehicule) of 2 mM native (nLDL) or oxidized LDL (oxLDL), together or not with
the PKA inhibitor H89 (10 mM). Upper panel: representative Western blot; lower panel: means 6 SEM of three independent Western blots. ***P,0.01
vs. INS-1E control. #P,0.05 vs. oxLDL condition in absence of H89. B) Quantitative RT-PCR of ICER-1 over L27 mRNA expression in INS-1E cells, MIN6-
B1 cells, or primary rat islets cultured for 72 h in presence or absence (Vh for Vehicule) of 2 mM native (nLDL) or oxidized LDL (oxLDL). Data represent
mean 6 SEM of four to six independent experiments. C) Time course analysis of ICER-1 mRNA levels in INS-1E cells cultured in presence of oxLDL.
*P,0.05; **P,0.01 vs control condition (vehicle treated). D) Western Blot analyses of ICER-1 and ICER-1c levels in INS-1E cells cultured for 48 h in
presence or absence (Vh for Vehicule) of 2 mM native (nLDL) or oxidized LDL (oxLDL), together or not with the PKA inhibitor H89. Upper panel:
representative Western blot; lower panel: Results are means 6 SEM of three independent Western blots. ***P,0.01 vs. INS-1E control.
doi:10.1371/journal.pone.0055198.g002

oxLDL Down-Regulate Cx36 Expression
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etomoxir (50 mM) had no impact on INS-1E cells viability

(Figure 6A). In contrast, in presence of 2 mM nLDL or oxLDL,

etomoxir significantly increased INS-1E cell apoptosis, suggesting

that lipid metabolism may protect INS-1E cells against LDL

toxicity (Figure 6A). On the contrary, the antioxidant N-acetyl-

cystein (NAC 1 mM) partially prevented oxLDL-induced apopto-

sis (Figure 6A) as previously reported [19]. We tested the effect of

lipoproteins on the production of reactive oxygen and/or nitrogen

species (ROS/RNS), as well as superoxide anions (O2
2) in living

cells (Figure 6B–C). We observed that oxLDL (2 mM for 48 h),

but not nLDL, stimulated the production of ROS/RNS

(Figure 6B) and superoxide (Figure 6C). As a positive control,

INS-1E cells were treated for 30 min with the ROS inducer

Pyocyanin (200 mM). The antioxidant NAC (1 mM) efficiently

prevented oxLDL-induced production of ROS/RNS. HDL,

which has been shown to prevent oxidative stress in a variety of

models, also significantly reduced oxLDL-induced ROS/RNS

production (Figure 6B). Neither NAC nor HDL blocked oxLDL-

induced generation of superoxide anions (Figure 6C). Etomoxir

had no effect on basal or ox-LDL-induced ROS/RNS and

superoxide production (Figure 6B–C). A 48 h treatment with

oxLDL, but not nLDL, also stimulated the expression of the

cytosolic Cu/Zn-superoxide dismutase (SOD1) (Figure 6D), but

not the mitochondrial Mn-superoxide dismutase (SOD2) (data not

shown). Etomoxir alone had no effect on SOD1 expression but

stimulated SOD1 expression in presence of nLDL. However it did

not exacerbate oxLDL-induced SOD1 overexpression (Figure 6D).

In parallel, etomoxir treatment led to a significant increase in

ICER-1 mRNA levels and enhanced the oxLDL-induced ICER-1

overexpression (Figure 6E). The effect of etomoxir on ICER-1

expression was associated with a decrease in Cx36 mRNA levels

(Figure 6F). Since ceramide pathway has been proposed to play an

important role in lipid toxicity, we tested the effect of the serine

palmitoyltransferase inhibitor myriocin, which blocks ceramide

synthesis, on cell viability and ICER-1 and Cx36 mRNA levels in

INS-1E cells exposed to nLDL or oxLDL particles. Myriocin

treatment (100 nM) had no effect on basal or nLDL-treated cell

apoptosis (Figure 6G). However it significantly reduced oxLDL-

induced apoptosis (Figure 6G). There was also a tendency to

reduce oxLDL-induced ICER-1 overexpression (Figure 6H),

which correlated with partly restored levels of Cx36 mRNA upon

myriocin addition (Figure 6I).

To elucidate the importance of Cx36 down-regulation in

oxLDL-induced apoptosis, INS-1E cells were transiently trans-

fected with two siRNAs directed against rat Cx36 (siCx36 #1 and

#2). Both siRNAs decreased by about 60% Cx36 mRNA (data

not shown) and protein levels (Figure 7A). We next evaluated the

effect of the Cx36 knockdown on b-cell survival. As compared to

cells transfected with a control siRNA (siCtrl), transfection with

Cx36 siRNA#1 or #2 had no effect on basal apoptosis but

rendered nLDL slightly toxic and aggravated apoptosis induced by

a 48 h treatment with oxLDL (Figure 7B). Cx36 knock-down also

aggravated oxLDL-induced ROS/RNS production (Figure 7C)

but had no impact on basal or ox-LDL-induced superoxide

production. To assess the relevance of theses observation in

primary cells, pancreatic islets were extracted from WT (+/+) or
Cx36 knock out (2/2) mice and treated for 72 h with 2 mM

nLDL or oxLDL. Staining of islets with Hoechst-propidium iodine

Figure 3. ICER-1 overexpression mediates the effect of oxLDL on Cx36 expression. A) INS-1E cells were cotransfected with a plasmid
expressing the reporter gene luciferase under the control of a 1 kb fragment of the CX36 promoter, or a fragment containing a mutated CRE,
together with an empty vector (pCDNA3; black bars) or an antisense ICER plasmid (ICER AS; white bars). 24 h post transfection, cells were cultured for
48 h in presence or absence (Vh for Vehicule) of 2 mM nLDL or oxidized LDL oxLDL. Cx36 promoter activity was evaluated by luciferase assay. Data
are mean 6 SEM of five to six experiments. **P,0.01 vs. vehicle-treated cells. B) Western Blot analyses of Cx36 over tubulin levels in INS-1E cells non
transfected (NT), transfected with an empty vector (pCDNA3) or the antisense ICER plasmid (ICER AS) and treated with native LDL (nLDL) or two
different preparations of oxidized LDL (oxLDL1 or 2). Data are representative of three independent experiments.
doi:10.1371/journal.pone.0055198.g003
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revealed that nLDL and, to a greater extend oxLDL particles,

significantly reduced islets viability in WT and Cx362/2 islets

(Figure 7D). As compared to WT(+/+) islets, Cx362/2 islets were

sensitized to nLDL or oxLDL toxicity (see Table S1 for individual

values and statistical analyses). To test whether Cx36 protects b-
cell against oxLDL, INS-1E cells were infected with an adenovirus

overexpressing rat Cx36 (Ad-Cx36) [5]. As compared to non-

infected (NI) cells or cells infected with the control virus encoding

GFP (Ad-GFP), Ad-Cx36-infected INS-1E cells displayed dose-

dependently increased levels of Cx36 (Figure 7E upper panel). We

next evaluated the effect of Cx36 overexpression on b-cell survival.
As compared to non-infected (NI) or Ad-GFP-infected cells, Ad-

Cx36-infected INS-1E cells displayed a 30% reduction in

apoptosis following exposure to oxLDL particles (Figure 7E lower

panel).

Discussion

Obesity and more particularly, high levels of low density

lipoprotein (LDL) particles, together with low levels of HDL

particles, are important risk factors leading to the development of

Figure 4. HDL prevent the deleterious effect of oxLDL particles
on INS-1E cells survival and Cx36 expression. INS-1E cells were
cultured for 48 h in presence or absence (Vh for Vehicule) of 2 mM
nLDL or (oxLDL, in presence or not of 0.5 mM HDL. (A) Apoptosis levels
were evaluated by HO-PI staining. (B) upper panel. Representative
Western Blot anti-Cx36 and tubulin. Lower panel: quantitative assess-
ment of four independent WB. A–B) Data are means 6 SEM of four
independent experiments. ***P,0.001 vs. control. #P,0.05; ##P,0.01
HDL-treated cells vs. oxLDL-treated cells.
doi:10.1371/journal.pone.0055198.g004

Figure 5. nLDL but not oxLDL particles are converted in lipid
droplets in INS-1E cells. (A) Oil Red O staining of INS-1E cells cultured
for 24 h in presence or absence (Vh for Vehicule) of 2 mM nLDL or
oxLDL particles (black bar = 10 mm). Arrows point to lipid droplets. (B)
Quantitative assessment of Plin1 (black bars) and ACC1 (white bars)
over L27 mRNA expression in INS-1E cells cultured for 48 h in presence
of 2 mM nLDL or oxLDL particles. *P,0.05, **P,0.01 vs. Vh condition.
$P,0.05, vs. nLDL condition.
doi:10.1371/journal.pone.0055198.g005
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T2D and the metabolic syndrome [9,10,11,12,13]. The purpose of

this study was to evaluate the impact of prolonged exposure to

high levels of LDL-cholesterol on Cx36 expression since low Cx36

levels have been associated with reduced b-cell function and

survival [3,7]. The characterization of the ApoE2/2 mice, which

display drastically increased levels of circulating cholesterol

[22,23,29,39], revealed that high plasma LDL concentrations

are associated with increased levels of ICER-1, and concomitant

decreased levels of Cx36 in pancreatic islets. Using purified human

LDL particles, we found that oxidized LDL (oxLDL) particles

specifically drive the overexpression of the repressor ICER-1/

ICER-1c, which in turn binds to the Cx36 promoter, leading to

down-regulation of Cx36 transcripts and protein expression levels.

We also show that oxLDL particles are more toxic than native

LDL (nLDL) particles because defective storage and metabolism.

We further demonstrate that Cx36 overexpression partially

protects b-cells against oxLDL-induced apoptosis.

We previously showed that mice fed a high fat diet express

increased levels of ICER-1 and reduced levels of Cx36 [4]. These

mice had elevated levels of circulating FFA, but they were also

slightly hyperglycemic and hypercholesterolemic (total cholesterol)

[4]. Here, we evaluated specifically the effect of cholesterol on

Cx36 expression. The four months-old ApoE2/2 mice used for

this study had typically increased levels of circulating total

cholesterol and no change in glycemia [40]. These mice also

displayed slightly increased circulating levels of FFA (2 fold), and

we cannot exclude that these FFAs contribute to Cx36 down-

regulation in ApoE2/2 mice as previously shown upon

a prolonged high fat diet [4]. Despite the dramatic hypercholes-

terolemia, ICER-1 and Cx36 expression were not considerably

Figure 6. nLDL but not oxLDL particles are b-oxidized in INS-1E cells. (A, G) INS-1E cells were cultured for 48 h in presence of 2 mM nLDL or
oxLDL particles, together or not with etomoxir (50 mM), NAC (1 mM) or myriocin (100 nM). Apoptosis levels were evaluated by HO-PI staining. (B–C)
INS-1E cells were cultured for 48 h in presence of 2 mM nLDL or oxLDL particles, together or not with NAC (1 mM), HDL (1 mM), etomoxir
(Eto:50 mM). As a positive control, cells were treated for 30 min with piocyanin (Pio:200 mM). Data are means6 SEM of five live cells measurements of
ROS/RNS (B) and superoxide O2

2 (C) production. (D–I) INS-1E cells were cultured for 48 h in presence of 2 mM nLDL or oxLDL particles, together or
not with etomoxir (50 mM) or myriocin (100 nM). RT-PCR analysis of SOD1 (D), ICER-1 (E, H) and Cx36 (F, I). *P,0.05, **P,0.01, ***P,0.001 vs. Vh
condition. $P,0.05, $$P,0.01 vs. nLDL condition. #P,0.05; ##P,0.01 vs. respective condition without etomoxir, NAC, HDL or myriocin.
doi:10.1371/journal.pone.0055198.g006
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changed in those mice. This is in accordance with our in vitro data

showing that normal LDL particles are not deleterious to Cx36

expression in b-cells. Of note, Cx36 protein levels as assessed in situ

by immunostaining were far more decreased in ApoE2/2

animals compared to WT than at the mRNA level. This suggests

that either Cx36 protein is further destabilized in ApoE2/2 or

reveals a biased assessment of Cx36 mRNA expression in freshly

isolated islets due to the many artifacts (exposure to RNase,

reducing agents, non linear RNA loss during islet and mRNA

isolation…) and sampling bias (less than 1/3 of the existing islets

Figure 7. Cx36 overexpression protects INS-1E cells against oxLDL-induced apoptosis. (A–C) INS-1E cells were transfected with a control
siRNA (siCtrl) or two different Cx36 siRNA (siCx36#1 and #2). (A) Upper panel: representative Western blot of Cx36 over tubulin expression. Lower
panel: data are means 6 SEM of 4 independent experiments. (B) Prevalence of apoptosis was evaluated by HO-PI staining after 48 h of exposure to
2 mM nLDL or oxLDL particles. (C) ROS/RNS production was evaluated in live cells after 48 h of exposure to 2 mM nLDL or oxLDL particles. (B–C) Data
are means 6 SEM of five experiments. *P,0.05, **P,0.01, ***P,0.001 vs. Vh condition. #P,0.05 ##P,0.01 vs. siCtrl-transfected condition. (D) Islets
from WT (+/+) or Cx36 KO (2/2) mice were exposed for 72 h to 2 mM nLDL or oxLDL particles. Islets viability was evaluated by HO-PI staining. Data
are aligned dot plots of individual islet viability values from five animals per group (+/+ or 2/2) and two separated LDL preparations. Horizontal bars
show mean value 6 SEM. n.s. (non-significant), *P,0.05 vs respective WT values (x2 tests; see table S1). (E) INS-1E cells were infected or not (NI) with
a control adenovirus (Ad-GFP) or a rat Cx36 adenovirus (Ad-Cx36) at various multiplicity of infection (MOI) as indicated. Cells were then exposed or
not (Vh for Vehicule) for 48 h to 2 mM native (nLDL) or oxidized LDL (oxLDL). Upper panel: Representative WB of Cx36 over tubulin expression after
infection. Lower panel: prevalence of apoptosis was evaluated by HO-PI staining. Data are mean 6 SEM of at least 4 independent experiments.
*P,0.05, **P,0.01, ***P,0.001 vs. respective Vh and nLDL conditions. #P,0.05, ##P,0.01 vs. respective non-infected and Ad-GFP-infected
conditions.
doi:10.1371/journal.pone.0055198.g007
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can be isolated in mice as per the most efficient isolation

procedures) which hinder analysis of gene expression from isolated

islets.

The ApoE2/2 mice have raised concerns owning to the very

high ‘‘non-physiological’’ plasma cholesterol levels and the

‘‘quality’’ of lipoproteins [41,42], as cholesterol is carried mostly

in large VLDL and chylomicron remnants [40], whereas pro-

atherogenic particles are thought to be mostly small-dense

oxidized/glycated LDL particles [9,43]. Yet, the ApoE2/2 mice

have been extensively used to study atherosclerotic lesions because

they rapidly develop large plaque throughout the length of the

arterial tree [40,41,42], suggesting that a significant fraction of the

circulating lipoprotein have atherogenic properties. In addition,

and in contrast with the ApoE2/2 mice originally described [44],

our ApoE2/2 mice also had increased circulating levels of HDL

particles, which have been shown to protect against the deleterious

effects of oxLDL particles [18,45,46,47,48]. Altogether those

limitations may account for the seemingly little impact of

hypercholesterolemia on ICER-1 and Cx36 expression in vivo.

This study demonstrates that normal human LDL particles have

no deleterious effects on b-cell survival whereas oxidized LDL

particles have pro-apoptotic effects at fairly physiological concen-

tration (2 mM), supporting the hypothesis that oxLDL particles

greatly contribute to b-cell dysfunction and death in the

pathophysiology of T2D. This is particularly important as small

dense modified LDL particles are early markers of T2D

[11,14,15]. The mechanisms responsible for the detrimental

impact of oxLDL particles on b-cell function and survival are

still poorly understood. The fact that saturated FFA and oxLDL

both induce ICER-1 overexpression [4,19] and Cx36 down-

regulation ([4] and this study) strongly suggest that a similar

mechanism is responsible for the effects of the lipids in both forms.

The deleterious impact of saturated FFAs such as palmitate is due

to accumulation of fatty AcylCoA entering non-oxidative toxic

pathways of fatty acids metabolism, such as de novo ceramide

formation which trigger oxidative stress in the mitochondria [38].

Our data indicate that nLDL particles stimulate lipid b-oxidation
as assessed through Acc1 overexpression. On the other hand,

oxLDL particles had only a marginal impact on ACC1 expression.

Blocking lipid metabolism using the CPT1 inhibitor etomoxir [49]

rendered native LDL particles toxic and aggravated the pro-

apoptotic impact of oxLDL. Conversely, the serine palmitoyl-

transferase inhibitor myriocin, which blocks the synthesis of

ceramide, partially prevented oxLDL-induced apoptosis, ICER-1

overexpression and Cx36 downregulation, suggesting that cer-

amide production is instrumental in oxLDL-induced apoptosis.

Altogether those data suggest that the toxic effect of oxLDL may

partly be due to a defect in metabolism, leading to oxidative stress,

ICER-1 overexpression, Cx36 down-regulation and apoptosis. Oil

red O staining data also revealed that both nLDL and oxLDL

particles lead to the formation of lipid droplets in b-cells. However,

nLDL formed abundant big regular round shaped lipid droplets

whereas oxLDL formed fewer and smaller lipid droplets,

suggesting that oxLDL are not as well stored in the form of lipid

droplets as nLDL in b-cells. These observations are confirmed at

the molecular levels by lower levels of the known marker of lipid

droplets Plin1 [50] in cell exposed to oxLDL as compared to

nLDL particles. Altogether these data suggest that nLDL are not

toxic at this concentration (2 mM) because they are partly b-
oxidized and partly stored in the form of neutral harmless lipid

droplets. On the other hand, oxLDL particles are toxic due to

both defective storage and b-oxidation, which may both result in

accumulation of toxic lipid metabolites such as ceramides

generating oxidative stress both in the form of ROS/RNS and

superoxide anions, similarly to what has been shown with

palmitate [49,51].

Our oxidation protocol leads to the formation of mildly oxidized

LDL [18,19]. Therefore the oxLDL preparation probably still

contains partially oxidized or native nLDL particles. Whether

oxLDL particles themselves or nLDL particles remaining in the

oxLDL preparation are responsible for the intermediate effect of

oxLDL on b-oxidation or lipid droplets formation remains to be

determined.

Our data indicate that oxLDL stimulate the production of

ROS/RNS and superoxide species. ROS/RNS production can be

averted by the antioxidant N-Acetyl cysteine (NAC), whereas

superoxide production is not prevented. NAC partially protected

cells against oxLDL toxicity, indicating that the ROS/RNS

species are involved in oxLDL-induced apoptosis. We previously

demonstrated that oxLDL-induced oxidative stress leads to ICER-

1 overexpression [19]. Furthermore, blocking ICER-1 over-

expression using a siRNA strategy protects b-cell against

oxLDL-induced apoptosis [19]. However the exact mechanisms

underlying the pro-apoptotic impact of ICER-1 is poorly un-

derstood. We recently showed that Cx36 protects mice against b-
cell apoptosis induced by streptozotocin or alloxan, two models of

induced Type1 Diabetes (T1D) [7]. Here, we observed that Cx36

knock-down or knock-out sensitized b-cells to oxLDL particles and

that Cx36 overexpression partially protected b-cells from oxLDL-

induced apoptosis. We further show that Cx36 knock-down

aggravated the production of ROS/RNS, but not superoxide

species, suggesting that Cx36 is able to alleviate (‘‘dilute’’) the

oxidative stress upon oxLDL exposure. Thus intercellular com-

munication may provide protection against pro-apoptotic stresses

involved in the pathophysiology of T2D. Together with our

previous studies showing that prolonged exposure to glucose and/

or saturated FFA lead to ICER-1 overexpression and Cx36 down-

regulation in b-cells [4,8], this study underscores the importance of

this particular mechanism in the pathophysiology of T2D. We

further demonstrated that HDL counteracts the effect of oxLDL

on Cx36 expression. This is in accordance with our previous

finding that HDL particles prevent oxLDL-induced ICER-1

overexpression [19] and other studies showing that HDL particles

are potent antioxidants with strong anti-apoptotic properties in

a variety of models [18,45,46,47,48].

Further studies are required to identify other ICER-1 target

genes with anti-apoptotic properties in b-cells. Given the

prominent role of Cx36 mediated intercellular communication

in b-cell function [6] and survival [7], we suggest that oxLDL-

induced Cx36 down-regulation contributes to oxidative stress

induced upon prolonged exposure to oxLDL, which is involved in

b-cells dysfunction and apoptosis.

Supporting Information

Figure S1 Cx36 immunolabeling is decreased in the
pancreatic islets of APOE2/2 mice. A) Cx36 immunolabel-

ing and DAPI staining of WT and APOE2/2 pancreas sections.

Upper panels: black and white Cx36 signal provided by specific

antibodies is seen as white spots all along the membrane of most

islet cells. Lower panels: merged Cx36 (green) and DAPI (blue)

staining. I: islet; E:exocrine tissue. The islet border is outlined by

a dotted white line. Bars: 40 mm. B) Quantitative assessment of

Cx36 immunostaining in WT and ApoE2/2 mice. Data are

mean 6 SEM of 20 to 30 images from 2 distinct experiments and

three animals in each group. *** p,0.001 in ApoE2/2 vs WT

mice.

(TIF)
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Table S1 Statistic table showing the ranking of the
viability values obtained for the experiments showed in
Figure 7D and used to perform statistical analysis.
(DOCX)

Methods S1 Cx36 immunostaining, image processing
and quantification.
(DOCX)
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