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A novel learning framework of nonparallel hyperplanes support vector machines (NPSVMs) is proposed for binary classification
and multiclass classification. This framework not only includes twin SVM (TWSVM) and its many deformation versions but also
extends them into multiclass classification problem when different parameters or loss functions are chosen. Concretely, we discuss
the linear and nonlinear cases of the framework, in which we select the hinge loss function as example. Moreover, we also give
the primal problems of several extension versions of TWSVM’s deformation versions. It is worth mentioning that, in the decision
function, the Euclidean distance is replaced by the absolute value |𝑤

T
𝑥 + 𝑏|, which keeps the consistency between the decision

function and the optimization problem and reduces the computational cost particularly when the kernel function is introduced.
The numerical experiments on several artificial and benchmark datasets indicate that our framework is not only fast but also shows
good generalization.

1. Introduction

Classification problem is an important issue in machine
learning and data mining, which is mainly comprised of
binary and multiclass classification. Support vector machine
(SVM), proposed by Burges [1] and Cortes and Vapnik [2],
is an excellent tool for classification. In contrast with conven-
tional artificial neural networks (ANNS) which aim at reduc-
ing empirical risk, SVM is principled and implements the
structural riskminimization (SRM) thatminimizes the upper
bound of the generalization error [3–5]. Within a few years
after its introduction, SVM has been successfully applied
to pattern classification and regression estimation like face
detection [6, 7], text categorization [8], time series prediction
[9], bioinformatics [10], and so forth.

Recently, for binary classification, Mangasarian andWild
[11] proposed the generalized eigenvalue proximal support
vector machine (GEPSVM) via two nonparallel hyperplanes.
In their approach, the data points of each class are proximal to
one of two nonparallel hyperplanes. The nonparallel hyper-
planes are determined by eigenvectors corresponding to the
smallest eigenvalues of two related generalized eigenvalue

problems. Inspired by GEPSVM [11], Jayadeva et al. [12]
developed twin SVM (TWSVM) with two nonparallel hyper-
planes. However, the two hyperplanes are got by solving two
quadratic programming (QP) problems, similar to the stan-
dard SVM. Furthermore, TWSVM differs from the standard
SVM in fundamental way. In TWSVM, one solves a pair of
smaller size QP problems rather than a single QP problem in
the standard SVM.Therefore, TWSVMworks faster than the
standard SVM. Subsequently, there are many extensions for
TWSVM including the improvements onTWSVM(TBSVM)
[13], the least square TWSVM(LS-TWSVM) [14–17], nonpar-
allel plane proximal classifier (NPPC) [18], smooth TWSVM
[19], geometric algorithm [20], and twin support vector
regression (TWSVR) [21]. TWSVMwas also extended to deal
with multiclassification TWSVM [22–24]. More precisely, in
[22], TWSVM was extended straight from binary classifica-
tion tomulticlass classification, inwhich each primal problem
covers all patterns except the patterns of the 𝑘th class in the
constraints for the 𝑘th (𝑘 = 1, 2, . . . , 𝐾) hyperplane. In [23],
the authors extended TWSVM based on the idea of “one-
versus-rest” (1-v-r) from binary classification to multiclass
classification, in which there are two quadratic programming
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(QP) problems for each reconstructing binary classification.
However, they both have not kept the advantage of TWSVM
which has lower computational complexity than that of the
standard SVM. In [24], Yang et al. proposed multiple birth
SVM (MBSVM) with much lower computational complexity
than that of both [22, 23] by solving 𝐾 smaller size of QP
problems for 𝐾-class classification; only the empirical risk
is considered like TWSVM. However, in TBSVM [13], the
structural risk minimization principle is implemented by
introducing the regularization term.

In this paper, we propose a novel learning framework of
nonparallel hyperplanes support vector machines based on
TWSVM and its extension versions, called NPSVMs, which
not only provide a unified view for TWSVM and its many
extension versions but also can deal with binary and multi-
class classification problems. For binary classification, if the
loss function is the hinge loss function, then the framework
can become TWSVM [12] or TBSVM [13] with different
parameters; if the loss function is the square loss function,
then the framework is LS-TWSVM [14]; if the loss function
is the convex combination of the linear and square loss func-
tions, then the framework is NPPC [18]. Actually, we can also
get smooth TWSVM [19] by replacing 2-norm with 1-norm
in the framework. However, for multiclass classification, the
framework does not directly extend, in which we switch the
roles of the patterns of the 𝑘-th class and the rest class and
replace “min” with “max” in the decision function. Moreover,
we only use the absolute value |𝑤

T
𝑥 + 𝑏| rather than the

Euclidean distance in the decision function due to the twofold
reasons: reducing the computational cost particularly when
the kernel function is introduced andmaking the consistency
since it is the corresponding absolute value that appears
in the primal problems. Concretely, we discuss the linear
and nonlinear cases of the framework, in which we select
the hinge loss function as example. Moreover, we also give
the primal problems of extensions of LS-TWSVM, 1-norm
LS-TWSVM, NPPC, and smooth TWSVM. Finally, the
numerical experiments on several artificial and benchmark
datasets indicate that our frameworks are not only fast but
also show good generalization.

The paper is organized as follows. Section 2 introduces
the brief reviews of SVMs. Section 3 proposes our frame-
works, in which Section 3.1 discusses the linear frame-
work, Section 3.2 extend into the nonlinear framework,
Section 3.3 gives SOR algorithm for solving the hinge
NPSVMs, and Section 3.4 discusses several other extension
approaches. Finally, Section 4 deals with experimental results
and Section 5 contains concluding remarks.

2. Brief Reviews of SVMs

2.1. Twin Support Vector Machine. Given the following train-
ing set for the binary classification:

T = {(𝑥
1
, 𝑦
1
) , . . . , (𝑥

𝑙
, 𝑦
𝑙
)} , (1)

where (𝑥
𝑖
, 𝑦
𝑖
) is the 𝑖th data point, the input 𝑥

𝑖
∈ 𝑅
𝑛 is a

pattern, the output 𝑦
𝑖
∈ {1, 2} is a class label, 𝑖 = 1, . . . , 𝑙, and

𝑙 is the number of data points. In addition, let 𝑙
1
and 𝑙
2
be

the number of data points in positive class and negative class,
respectively, and 𝑙 = 𝑙

1
+ 𝑙
2
. Furthermore, the matrices 𝐴

1
∈

𝑅
𝑙
1
×𝑛 and𝐴

2
∈ 𝑅
𝑙
2
×𝑛 consist of the 𝑙

1
inputs of Class 1 and the

𝑙
2
inputs of Class 2, respectively.
The gaol of TWSVM [12] is to find two nonparallel

hyperplanes in 𝑛-dimensional input space:

𝑥
T
𝑤
1
+ 𝑏
1
= 0, (2)

𝑥
T
𝑤
2
+ 𝑏
2
= 0, (3)

such that one hyperplane is close to the patterns of one class
and far away from the patterns of the other class to some
extent. TWSVM is in spirit of GEPSVM [11]. But both of
GEPSVMandTWSVMare different from the standard SVM.
For TWSVM, each hyperplane is generated by solving a QP
problem looking like the primal problem of the standard
SVM. The primal problems of TWSVM can be presented as
follows:
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(5)

where 𝐶
1
and 𝐶

2
are nonnegative parameters and 𝑒

1
and

𝑒
2
are vectors of ones of appropriate dimensions. In the QP

problem (4), the objective function tends to keep hyperplane
(2) close to the patterns of Class 1 and the constraints require
the hyperplane (2) to be at a distance of at least 1 from the
patterns of Class 2. The QP problem (5) has similar property.
Moreover, we note that the constraints do not contain all
patterns in the training set (1) but are determined by only the
patterns of one class in both classes. Therefore, in [12], the
authors claimed that TWSVM is approximately four times
faster than the standard SVM.

Define 𝐺 = [𝐴2 𝑒
2] and 𝐻 = [𝐴1 𝑒

1]. It has been
shown that when both 𝐺

T
𝐺 and 𝐻

T
𝐻 are positive definites,

the Wolfe duals of (4) and (5) are written as follows:

max
𝛼
2

𝑒
T
2
𝛼
2
−

1

2
𝛼
T
2
𝐺(𝐻

T
𝐻)
−1

𝐺
T
𝛼
2
,

s.t. 0 ≤ 𝛼
2
≤ 𝐶
1
,

(6)
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1
≤ 𝐶
2
,

(7)

respectively, where 𝛼
2
and 𝛼

1
are Lagrangian multipliers.

In order to avoid the possible ill-conditioning of 𝐻T
𝐻

and 𝐺
T
𝐺, TWSVM introduces a term 𝜖𝐼 (𝜖 > 0), where 𝐼
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is an identity matrix of appropriate dimensions. Thus, the
nonparallel hyperplanes (2) and (3) can be obtained from the
solutions 𝛼

1
and 𝛼

2
of the QP problems (6) and (7). Consider

𝑧
1
= − (𝐻

T
𝐻 + 𝜖𝐼)

−1

𝐺
T
𝛼
2
, 𝑧

2
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T
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−1

𝐻
T
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1
,

(8)

where 𝑧
𝑘
= [𝑤

T
𝑘

𝑏
𝑘
]
T
, 𝑘 = 1, 2. Moreover, a new pattern 𝑥 ∈

𝑅
𝑛 is assigned to Class 𝑘 (𝑘 = 1, 2), depending onwhich of the

two nonparallel hyperplanes given by (2) and (3) lies closer to;
that is,

𝑓 (𝑥) = argmin
𝑘=1,2

󵄨󵄨󵄨󵄨󵄨
𝑤

T
𝑘
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. (9)

2.2. Multiple Birth Support Vector Machine. Given the train-
ing set

T = {(𝑥
1
, 𝑦
1
) , . . . , (𝑥

𝑙
, 𝑦
𝑙
)} , (10)

where the input 𝑥
𝑖
∈ 𝑅
𝑛, 𝑖 = 1, . . . , 𝑙, is the pattern and the

output 𝑦
𝑖
∈ {1, . . . , 𝐾} is the class label. The task is to seek 𝐾

hyperplanes,

𝑤
T
𝑘
𝑥 + 𝑏
𝑘
= 0, 𝑘 = 1, . . . , 𝐾, (11)

and assign the class label according to which hyperplane a
new pattern is farthest from.

For convenience, denote the number of data points of the
𝑘th class in the training set (10) as 𝑙

𝑘
and define the

followingmatrixes: the patterns belonging to the 𝑘th class are
represented by the matrix 𝐴

𝑘
∈ 𝑅
𝑙
𝑘
×𝑛, 𝑘 = 1, . . . , 𝐾. In

addition, define the matrix
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T
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, 𝐴
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𝑘+1
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]
T
; (12)

that is, 𝐵
𝑘

∈ 𝑅
(𝑙−𝑙
𝑘
)×𝑛 consists of the patterns belonging to

all classes except the 𝑘th class, 𝑘 = 1, . . . , 𝐾. The primal
problems of MPSVM [24] are comprised of the following 𝐾

QP problem:
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where 𝑒
𝑘1

∈ 𝑅
(𝑙−𝑙
𝑘
) and 𝑒

𝑘2
∈ 𝑅
𝑙
𝑘 are the vectors of ones, 𝜉

𝑘
is

the slack variable, and 𝐶
𝑘
> 0 is the penalty parameter, 𝑘 =

1, . . . , 𝐾. The dual problem of QP problem (13) is formulated
as follows:
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𝑘
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(14)

where the penalty parameter 𝐶
𝑘

> 0, 𝐻
𝑘

= [𝐵𝑘 𝑒
𝑘1], and

𝐺
𝑘
= [𝐴𝑘 𝑒

𝑘2], 𝑘 = 1, 2, . . . , 𝐾. Similarly, in order to avoid
the possibility of the ill-conditioning of the matrix 𝐻

T
𝑘
𝐻
𝑘

in some situations, one introduces a regularization term 𝜖𝐼,
where 𝜖 > 0 is a fixed small scalar and 𝐼 is the identity matrix
with appropriate size.

After getting the solution [𝑤
T
𝑘

𝑏
𝑘
]
T

= −(𝐻
T
𝑘
𝐻
𝑘

+

𝜖𝐼)
−1
𝐺
T
𝑘
𝛼
𝑘
to the above QP problem (13) with 𝑘 = 1, . . . , 𝐾,

a new pattern 𝑥 ∈ 𝑅
𝑛 is assigned to class 𝑘 (𝑘 ∈ {1, . . . , 𝐾}),

depending on which of the 𝐾 hyperplanes given by (11) lies
farthest from; that is, the decision function is represented as

𝑓 (𝑥) = arg max
𝑘=1,...,𝐾

󵄨󵄨󵄨󵄨󵄨
𝑤

T
𝑘
𝑥 + 𝑏
𝑘
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󵄩󵄩󵄩󵄩2
, (15)

where |⋅| is the absolute value.

3. The Framework of Nonparallel
Hyperplanes Classifiers

In this section, we propose a learning framework of non-
parallel hyperplanes classifier, which gives a unified form for
TWSVM and its many extension versions and extend them
into multiclass classification problem. We first develop the
linear framework and then extend it to nonlinear framework.

3.1. Linear Framework. Given the training set (10), the task is
to find𝐾 nonparallel hyperplanes:

𝑤
T
𝑘
𝑥 + 𝑏
𝑘
= 0, 𝑘 = 1, 2, . . . , 𝐾, (16)

one for each class. For obtaining the𝐾unknownhyperplanes,
we construct the following standard framework for each
unknown hyperplane:

min
𝑤
𝑘
,𝑏
𝑘

1
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󵄩󵄩󵄩󵄩𝐵𝑘𝑤𝑘 + 𝑒
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𝐶
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󵄩󵄩󵄩󵄩
2
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+ 𝑏
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𝑘
)

+ 𝐶
𝑘
𝑒
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𝑘1
𝐿 (𝑒
𝑘1
, 𝐴
𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
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) ,

(17)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined (12), 𝐶∗

𝑘
≥ 0 and 𝐶

𝑘
> 0

are the parameters, 𝑒
𝑘1

and 𝑒
𝑘2

are vectors of ones of
appropriate dimensions, 𝑘 = 1, 2, . . . , 𝐾, and 𝐿(⋅, ⋅) is the loss
function (e.g., square loss, hinge loss, etc.). In the optimiza-
tion problem (17), the first term approximatively minimizes
the sum of the squared Euclidean distances from the patterns
except for the 𝑘th class to hyperplanes; the second term is
the Tikhonov regularization term [25] and can implement
the structural risk minimization principle like TBSVM [13];
the third term constitutes the loss function which is defined
different loss functions corresponding to different models.

For a new pattern 𝑥 ∈ 𝑅
𝑛, we assign to class 𝑘 (𝑘 =

1, 2, . . . , 𝐾) according to the following decision function:

𝑓 (𝑥) = arg max
𝑘=1,2,...,𝐾

󵄨󵄨󵄨󵄨󵄨
𝑤

T
𝑘
𝑥 + 𝑏
𝑘

󵄨󵄨󵄨󵄨󵄨
, (18)

where |⋅| is the absolute value. Note that we only use the
absolute value |𝑤

T
𝑥 + 𝑏| in the decision function. There are

twomain reasons: one is that the first termof the optimization
problem (17) just minimizes the sum of the square rather
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than the sum of square Euclidean distance from the patterns
to hyperplanes, so it should keep consistency between the
optimization problem and the decision function; another is
that it reduces the computational cost particularly when the
kernel function is introduced afterwards.

In fact, if 𝐾 = 2, the parameter 𝐶
∗

𝑘
is equal to 0, and

the loss function is hinge loss function, that is, 𝐿(1, 𝑔(𝑥)) =

max(0, 1−𝑔(𝑥)), then the optimization problem (17) becomes
TWSVM [12]. Moreover, if the parameter 𝐶∗

𝑘
> 0 is alterable,

then it is TBSVM [13]. And if the loss function is the
square loss function, that is, 𝐿(1, 𝑔(𝑥)) = (1 − 𝑔 (𝑥))

2, it
is LS-TWSVM [14]. And if the loss function is a convex
combination of linear and square loss, that is, 𝐿(1, 𝑔(𝑥)) =

𝛿(1 − 𝑔(𝑥)) + (1 − 𝛿) (1 − 𝑔 (𝑥))
2, where 𝛿 ∈ (0, 1), then it is

NPPC [18]. Other extension versions of TWSVM also can
be contained in the optimization problem (17), for instance,
smooth TWSVM, 1-norm LS-TWSVM [17], and so forth, in
which we just need to select proper norm or loss function.

More importantly, our framework can solve multiclass
classification problem, which is extension of TWSVM,
TBSVM, LS-TWSVM, NPPC, and so forth. It should be
pointed out that our framework is not straight extension of
TWSVM and its deformation versions. Concretely, from the
optimization problem (17), we can see that the first term
contains the patterns except for those of the 𝑘th class and
the third term just involves the patterns of the 𝑘th class. This
strategy cannot lead to significant increase of the complexity
of the optimization when the number 𝐾 of classes increases.
We will dwell on in specific algorithm afterwards.

Now, we give the detailed algorithm to the hinge loss
function as an example, called hinge NPSVM (HNPSVM).
And then the optimization problem (17) is the following
formulation with the hinge loss function:

min
𝑤
𝑘
,𝑏
𝑘

1
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𝑘
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max (0, 𝑒
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𝑘
𝑤
𝑘
+ 𝑒
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𝑏
𝑘
)) ,

(19)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined (12), 𝐶∗

𝑘
≥ 0 and 𝐶

𝑘
> 0 are

the parameters, 𝑒
𝑘1
and 𝑒
𝑘2
are vectors of ones of appropriate

dimensions, and 𝑘 = 1, 2, . . . , 𝐾. Actually, the problem is
equivalent to the following quadratic programming:

min
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𝑘
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(20)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined (12), 𝐶∗

𝑘
≥ 0 and 𝐶

𝑘
> 0 are

the parameters, 𝑒
𝑘1
and 𝑒
𝑘2
are vectors of ones of appropriate

dimensions, and 𝑘 = 1, 2, . . . , 𝐾.
In fact, for 𝑘 = 1, 2, . . . , 𝐾, we have 𝐾 QP problems like

(20). In particular, when 𝐾 is equal to 2, that is, 𝑘 = 1, 2, the
QP problems (4) and (5) can be obtained as a special case of
(20) with 𝐶

∗

𝑘
= 0. For simplicity, assume that the number of

each class points is almost balanced; namely, the number of

the 𝑘th class is 𝑙
𝑘
= 𝑙/𝐾. Then, note that the constraints just

involve the patterns of the 𝑘th class, so the complexity of the
the problem (20) is no more than (𝑙

𝑘
)
3

= (𝑙/𝐾)
3. However,

if TWSVM is directly extended to multiclass classification
case like [22], we will get a different optimization problem,
in which the roles of patterns of the 𝑘th class and the rest
class are switched. Thus, the complexity of the optimization
problem will increase significantly and is determined by the
patterns except for the patterns of the 𝑘th class in the training
set (10), which is no more than ((𝐾 − 1) (𝑙/𝐾))

3. Obviously,
our approach is approximately (𝐾 − 1)

3 times faster than the
model in [22]. On the other hand, when the number of each
class points is unbalanced, our apprach still is faster than the
model in [22] because the complexity of our optimization
problem just is decided by the number of the patterns of the
𝑘th class rather than the patterns of the rest classes.Therefore,
our HNPSVM keeps the computation complexity low.

It is well known that the solution of primal problem (20)
is obtained from the solutions of their dual problems. So we
now derive their dual problems. The Lagrangian function of
the problem (20) is given by

𝐿 (𝑤
𝑘
, 𝑏
𝑘
, 𝜉
𝑘
, 𝛼
𝑘
, 𝜂
𝑘
)

=
1

2

󵄩󵄩󵄩󵄩𝐵𝑘𝑤𝑘 + 𝑒
𝑘2
𝑏
𝑘

󵄩󵄩󵄩󵄩
2

2
+

1

2
𝐶
∗

𝑘
(
󵄩󵄩󵄩󵄩𝑤𝑘

󵄩󵄩󵄩󵄩
2

2
+ 𝑏
2

𝑘
) + 𝐶
𝑘
𝑒
𝑘1
𝜉
𝑘

− 𝛼
T
𝑘
((𝐴
𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
− 𝑒
𝑘1
) − 𝜂

T
𝑘
𝜉
𝑘
,

(21)

where 𝛼
𝑘
, 𝜂
𝑘
are nonnegative Lagrange multiplier vectors.

The Karush-Kuhn-Tucker (KKT) necessary and sufficient
optimality conditions [26] for the QP problem (20) are given
by

∇
𝑤
𝑘

𝐿 = 𝐵
T
𝑘
(𝐵
𝑘
𝑤
𝑘
+ 𝑒
𝑘2
𝑏
𝑘
) + 𝐶
∗

𝑘
𝑤
𝑘
− 𝐴

T
𝑘
𝛼
𝑘
= 0, (22)

∇
𝑏
𝑘

𝐿 = 𝑒
T
𝑘2

(𝐵
𝑘
𝑤
𝑘
+ 𝑒
𝑘2
𝑏
𝑘
) + 𝐶
∗

𝑘
𝑏
𝑘
− 𝑒

T
𝑘1
𝛼
𝑘
= 0, (23)

∇
𝜉
𝑘

𝐿 = 𝐶
𝑘
𝑒
𝑘1

− 𝛼
𝑘
− 𝜂
𝑘
= 0, (24)

(𝐴
𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
≥ 𝑒
𝑘1
, 𝜉
𝑘
≥ 0, (25)

−𝛼
T
𝑘
((𝐴
𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
− 𝑒
𝑘1
) = 0, 𝜂

T
𝑘
𝜉
𝑘
= 0, (26)

𝛼
𝑘
≥ 0, 𝜂

𝑘
≥ 0. (27)

Since 𝜂
𝑘
≥ 0, according to (24), we have

0 ≤ 𝛼
𝑘
≤ 𝐶
𝑘
. (28)

Next, from (22) and (23), we can obtain

([𝐵
T
𝑘

𝑒
T
𝑘
] [𝐵𝐾 𝑒

𝑘] + 𝐶
∗

𝑘
𝐼) [𝑤

T
𝑘

𝑏
𝑘
]
T
− [𝐴

T
𝑘

𝑒
T
𝑘
] 𝛼
𝑘
= 0,

(29)

where 𝐼 is an identity matrix of appropriate dimensions. Let
V
𝑘
= [𝑤

T
𝑘

𝑏
𝑘
]
T
; (29) can be written as

(𝐻
T
𝑘
𝐻
𝑘
+ 𝐶
𝑘
𝐼) V
𝑘
− 𝐺

T
𝑘
𝛼
𝑘
= 0,

or V
𝑘
= (𝐻

T
𝑘
𝐻
𝑘
+ 𝐶
𝑘
𝐼)
−1

𝐺
T
𝑘
𝛼
𝑘
,

(30)
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where 𝐻
𝑘
= [𝐵𝑘 𝑒

𝑘2] and 𝐺
𝑘
= [𝐴𝑘 𝑒

𝑘1]. And then putting
(30) into the Lagrangian function (21) and using (22)–(28),
we can get the dual problem of the primal problem (20):

max
𝛼
𝑘

𝑒
T
𝑘1
𝛼
𝑘
−

1

2
𝛼
T
𝑘
𝐻
𝑘
(𝐺

T
𝑘
𝐺
𝑘
+ 𝐶
∗

𝑘
𝐼)
−1

𝐻
T
𝑘
𝛼
𝑘
,

s.t. 0 ≤ 𝛼
𝑘
≤ 𝐶
𝑘
,

(31)

where 𝐶∗
𝑘
> 0 and 𝐶

𝑘
> 0 are parameters and 𝑘 = 1, 2, . . . , 𝐾.

Obviously, if we have the solution of the QP problem (31),
then we obtain the𝐾 nonparallel hyperplanes (16) by (30).

It is worth mentioning that the parameter 𝐶
∗

𝑘
replaces

𝜖 as in (8), so 𝐶
∗

𝑘
is no longer a fixed small scalar but a

weighting factor which determines the trade-off between the
regularization term and the empirical risk in the problem
(20). Therefore, the high and low of the value of 𝐶∗

𝑘
reflects

the structure of minimization principle and our HNPSVM
includes MBSVM.

3.2. Nonlinear Framework. Similarly, we also extend the
linear framework of NPSVMs to nonlinear case. For a 𝐾-
class classification (10), our goal is to find𝐾 kernel-generated
hyperplanes:

𝐾(𝑥, 𝐴
T
) 𝑢
𝑘
+ 𝑏
𝑘
= 0, 𝑘 = 1, . . . , 𝐾, (32)

where 𝐴 = [𝐴
1
, . . . , 𝐴

𝑘
] and 𝐾(𝑥, 𝐴

T
) is an appropriately

chosen kernel function.
In order to obtain the𝐾 hyperlanes (32), we construct the

following framework formulation:

min
𝑢
𝑘
,𝑏
𝑘

1

2

󵄩󵄩󵄩󵄩󵄩
𝐾(𝐵

T
𝑘
, 𝐴

T
)𝑢
𝑘
+ 𝑒
𝑘2
𝑏
𝑘

󵄩󵄩󵄩󵄩󵄩

2

2
+

1

2
𝐶
∗

𝑘
(
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩
2

2
+ 𝑏
2

𝑘
)

+ 𝐶
𝑘
𝑒
T
𝑘1
𝐿 (𝑒
𝑘1
, 𝐾 (𝐴

T
𝑘
, 𝐴

T
) 𝑢
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) ,

(33)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined (12), 𝐶∗

𝑘
≥ 0 and 𝐶

𝑘
> 0 are

the parameters, 𝑒
𝑘1
and 𝑒
𝑘2
are vectors of ones of appropriate

dimensions, 𝑘 = 1, 2, . . . , 𝐾, and 𝐿(⋅, ⋅) is the loss function
(e.g., square loss or hinge loss, etc.). Similarly, as discussed
in the last subsection, the problem (33) can be reduced
to the nonlinear formulations of the difference approaches
(e.g., TWSVM, TBSVM, LS-TWSVM, NPPC, etc.) when the
difference loss functions or parameters are selected for𝐾 = 2.

A new pattern 𝑥 ∈ 𝑅
𝑛 is assigned to the 𝑘th class by the

following decision functions:

𝑓 (𝑥) = arg max
𝑘=1,...,𝐾

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝐴

T
) 𝑢
𝑘
+ 𝑏
𝑘

󵄨󵄨󵄨󵄨󵄨
, (34)

where |⋅| is the absolute value. Note that, in this decision
function (34), we just compute the absolute value rather
than Euclidean distance from the pattern 𝑥 to the hyper-
planes. This strategy reduces the complexity of computa-
tion because Euclidean distance should be |𝐾(𝑥, 𝐴

T
)𝑢
𝑘
+

𝑏
𝑘
|/√𝑢T
𝑘
𝐾(𝐴T, 𝐴T)𝑢

𝑘
from the pattern 𝑥 to the 𝑘th hyper-

planes. Thus, the decision function (34) not only saves the

computation quantity but also keeps the consistency with the
first term of the problem (33).

Now, we still select the hinge loss function as example.
Then, the problem (33) can be formulated as follows:

min
𝑢
𝑘
,𝑏
𝑘
,𝜉
𝑘

1

2

󵄩󵄩󵄩󵄩󵄩
𝐾 (𝐵

T
𝑘
, 𝐴

T
) 𝑢
𝑘
+ 𝑒
𝑘2
𝑏
𝑘

󵄩󵄩󵄩󵄩󵄩

2

2

+
1

2
𝐶
∗

𝑘
(
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩
2

2
+ 𝑏
2

𝑘
) + 𝐶
𝑘
𝑒
T
𝑘1
𝜉
𝑘
,

s.t. (𝐾 (𝐴
T
𝑘
, 𝐴

T
) 𝑢
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
≥ 𝑒
𝑘1
, 𝜉
𝑘
≥ 0,

(35)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined by (12), 𝐶∗

𝑘
> 0 and 𝐶

𝑘
> 0 are

parameters, 𝑒
𝑘1

and 𝑒
𝑘2

are vectors of ones of appropriate
dimensions, and 𝑘 = 1, 2, . . . , 𝐾. Similarly, derived process
with the linear case, its dual problem is formulated as:

max
𝛼
𝑘

𝑒
T
𝑘1
𝛼
𝑘
−

1

2
𝛼
T
𝑘
𝑅
𝑘
(𝑆

T
𝑘
𝑆
𝑘
+ 𝐶
∗

𝑘
𝐼) 𝑅

T
𝑘
𝛼
𝑘
,

s.t. 0 ≤ 𝛼
𝑘
≤ 𝐶
𝑘
,

(36)

where 𝐶
∗

𝑘
> 0 and 𝐶

𝑘
> 0 are parameters, 𝑅

𝑘
=

[𝐾(𝐴
T
𝑘
, 𝐴

T
) 𝑒
𝑘1
], 𝑆
𝑘
= [𝐾(𝐵

T
𝑘
, 𝐴

T
) 𝑒
𝑘2
], and 𝑘 = 1, 2, . . . , 𝐾.

And the augmented vector 𝑧
𝑘

= [𝑢𝑘 𝑏
𝑘]

T is given by 𝑧
𝑘

=

(𝑆
T
𝑘
𝑆
𝑘
+ 𝐶
∗

𝑘
𝐼)
−1

𝑅
T
𝑘
𝛼
𝑘
.

3.3. SORAlgorithm. In our HNPSVMs, the QP problems (31)
and (36) can be rewritten as the following unified forms:

min
𝛼

1

2
𝛼
T
𝑄𝛼 − 𝑒

T
𝛼,

s.t. 0 ≤ 𝛼 ≤ 𝐶,

(37)

where 𝑄 ∈ 𝑅
𝑚×𝑚 is positive definite. For example, the above

problem becomes the problem (36), when 𝑄 = 𝑅
𝑘
(𝑆

T
𝑘
𝑆
𝑘
+

𝐶
∗

𝑘
𝐼)
−1
𝑅
T
𝑘
, 𝐶 = 𝐶

𝑘
.

The above problem (37) can be solved efficiently by
the following successive overrelaxation (SOR) algorithm; see
[27].

Algorithm 1. SOR for the QP problem (36) is as follows.

(1) Select the parameter 𝑡
𝑘
∈ (0, 2) and the initial value

𝛼
0

𝑘
∈ 𝑅
𝑚
𝑘 .

(2) Suppose that 𝛼
𝑟

𝑘
is obtained by the 𝑟 times iterate;

compute 𝛼
𝑟+1

𝑘
according to the following iterate for-

mula:

𝛼
𝑟+1

𝑘
= (𝛼
𝑟

𝑘
− 𝑡
𝑘
𝐷
−1

𝑘
(𝑄
𝑘
𝛼
𝑟

𝑘
− 𝑒
𝑘2

+ 𝐿
𝑘
(𝛼
𝑟+1

𝑘
− 𝛼
𝑟

𝑘
)))
♯
, (38)

where 𝑄 = 𝑅
𝑘
(𝑆

T
𝑘
𝑆
𝑘
+ 𝐶
∗

𝑘
𝐼)
−1

𝑅
T
𝑘
. And define 𝐿

𝑘
+

𝐷
𝑘
+ 𝐿

T
𝑘
= 𝑄
𝑘
, where 𝐿

𝑘
∈ 𝑅
𝑚
𝑘
×𝑚
𝑘 and 𝐷

𝑘
∈ 𝑅
𝑚
𝑘
×𝑚
𝑘

are the strictly lower triangular matrix and the diago-
nal matrix, respectively.
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(3) Stop if ‖𝛼𝑟+1
𝑘

−𝛼
𝑟

𝑘
‖ is less than some desired tolerance.

Else, replace 𝛼𝑟
𝑘
by 𝛼
𝑟+1

𝑘
and 𝑟 by 𝑟 + 1 and go to 2.

SOR is an excellent TWSVMsolver, because it can process
efficiently very large datasets that need not reside in memory.
Furthermore, it has been proved that this algorithm con-
verges linearly to a solution in [27, 28]. It should be pointed
out that we employ the Sherman-Morrison-Woodbury for-
mula [29] for the inversion of matrix (𝑆T

𝑘
𝑆
𝑘
+𝐶
∗

𝑘
𝐼) and, hence,

need only to invert matrix with a lower order 𝑙
𝑘
, instead of

the order 𝑙. Further, in practise, if the number of patterns in
the 𝑘th classe is large, then the rectangular kernel technique
[30, 31] can be applied to reduce the dimensionality of our
nonlinear classifiers.

3.4. Several Others Approaches. In this section, we briefly
give several extension versions based on our framework by
selecting different loss function or replacing 2-norm.

First, if the square loss function is chosen, that is,
𝐿(1, 𝑔(𝑥)) = (1 − 𝑔(𝑥))

2, then we can get the following
formulation from the framework (17):

min
𝑤
𝑘
,𝑏
𝑘

1

2

󵄩󵄩󵄩󵄩𝐵𝑘𝑤𝑘 + 𝑒
𝑘2
𝑏
𝑘

󵄩󵄩󵄩󵄩
2

2
+

1

2
𝐶
∗

𝑘
(
󵄩󵄩󵄩󵄩𝑤𝑘

󵄩󵄩󵄩󵄩
2

2
+ 𝑏
2

𝑘
) + 𝐶
𝑘
𝜉
T
𝑘
𝜉
𝑘
,

s.t. (𝐴
𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
= 𝑒
𝑘1
,

(39)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class and the matrix 𝐵
𝑘
is defined by (12), 𝐶∗

𝑘
> 0 and 𝐶

𝑘
> 0

are parameters, 𝑒
𝑘1
and 𝑒
𝑘2
are vectors of ones of appropriate

dimensions, and 𝑘 = 1, 2, . . . , 𝐾. This is extension version of
LS-TWSVM [14].

Second, if we replace 2-normwith 1-norm in the problem
(39), then we can get the extension of 1-norm LS-TWSVM
[17] as follows:

min
𝑤
𝑘
,𝑏
𝑘

󵄩󵄩󵄩󵄩𝐵𝑘𝑤𝑘 + 𝑒
𝑘2
𝑏
𝑘

󵄩󵄩󵄩󵄩1 + 𝐶
∗

𝑘
(
󵄩󵄩󵄩󵄩𝑤𝑘

󵄩󵄩󵄩󵄩1 +
󵄨󵄨󵄨󵄨𝑏𝑘

󵄨󵄨󵄨󵄨) + 𝐶
𝑘

󵄩󵄩󵄩󵄩𝜉𝑘
󵄩󵄩󵄩󵄩1 ,

s.t. (𝐴
𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
= 𝑒
𝑘1
,

(40)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined by (12), 𝐶∗

𝑘
> 0 and 𝐶

𝑘
> 0

are parameters, 𝑒
𝑘1
and 𝑒
𝑘2
are vectors of ones of appropriate

dimensions, and 𝑘 = 1, 2, . . . , 𝐾.
Third, if the loss function is a convex combination of

linear and square loss, that is, 𝐿(1, 𝑔(𝑥)) = 𝛿(1 − 𝑔(𝑥)) + (1 −

𝛿) (1 − 𝑔 (𝑥))
2, where 𝛿 ∈ (0, 1), thenwe can obtain extension

version of NPPC [18] as follows:

min
𝑤
𝑘
,𝑏
𝑘

1

2

󵄩󵄩󵄩󵄩𝐵𝑘𝑤𝑘 + 𝑒
𝑘2
𝑏
𝑘

󵄩󵄩󵄩󵄩
2

2
+

1

2
𝐶
∗

𝑘
(
󵄩󵄩󵄩󵄩𝑤𝑘

󵄩󵄩󵄩󵄩
2

2
+ 𝑏
2

𝑘
)

+ 𝐶
𝑘
(𝛿𝑒

T
𝑘1
𝜉
𝑘
+ (1 − 𝛿) 𝜉

T
𝑘
𝜉
𝑘
) ,

s.t. (𝐴
𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
= 𝑒
𝑘1
,

(41)

where the matrix 𝐴
𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined by (12), 𝐶∗

𝑘
> 0 and 𝐶

𝑘
> 0

are parameters, 𝑒
𝑘1
and 𝑒
𝑘2
are vectors of ones of appropriate

dimensions, and 𝑘 = 1, 2, . . . , 𝐾.
Forth, if the square hinge loss function is selected, that

is, 𝐿(1, 𝑔(𝑥)) = (max (0, 1 − 𝑔 (𝑥)))
2, then we can get the

extension version of smooth TWSVM as follows:

min
𝑤
𝑘
,𝑏
𝑘
,𝜉
𝑘

󵄩󵄩󵄩󵄩𝐵𝑘𝑤𝑘 + 𝑒
𝑘2
𝑏
𝑘

󵄩󵄩󵄩󵄩
2

2
+

1
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𝑘
𝑤
𝑘
+ 𝑒
𝑘1
𝑏
𝑘
) + 𝜉
𝑘
≥ 𝑒
𝑘1
, 𝜉
𝑘
≥ 0,

(42)
where the matrix 𝐴

𝑘
is comprised of the patterns in the 𝑘th

class, the matrix 𝐵
𝑘
is defined by (12), 𝐶∗

𝑘
> 0 and 𝐶

𝑘
> 0

are parameters, 𝑒
𝑘1
and 𝑒
𝑘2
are vectors of ones of appropriate

dimensions, and 𝑘 = 1, 2, . . . , 𝐾.
These approaches have the same decision function (18)

and can be extended into nonlinear case. And their solving
methods can construct based on their binary algorithms.

4. Numerical Experiments

In this section, we present experimental results of our
binary HNPSVM (BHNPSVM) and multiclass HNPSVM
(MHNPSVM) on both artificial and benchmark datasets.
In experiments, we focus on the comparison between our
methods and some state-of-the-art classification methods,
including SVM, GEPSVM, TWSVM, “1-v-1,” “1-v-r,” and
MBSVM. All the classification methods are implemented in
MATLAB 7.0 [32] environment on a PC with Intel P4 pro-
cessor (2.9GHz) with 1 GB RAM. In order to give the fastest
training speed, we employ Libsvm [33] to implement the
SVM, “1-v-1,” and “1-v-r”. Our BHNPSVM and MHNPSVM
and TWSVM and MBSVM are implemented using SOR
technique; GEPSVM is implemented by simple MATLAB
functions like “eig,” respectively. As for the problem of select-
ing parameters, we employ standard 10-fold cross-validation
technique [34]. Furthermore, the parameters for all methods
are selected from the set {2−8, . . . , 28}.

4.1. Toy Examples. Firstly, we consider a simple two-dimen-
sional “Cross Planes” dataset as Example 1, which was tested
in [11, 13] to indicate that nonparallel hyperplanes classifiers
can handle the cross planes dataset much better compared
with parallel ones. Now, we show that our BHNPSVM also
can handle cross-planes type data well due to use of our
decision function. The “Cross Planes” dataset is generated
by perturbing points lying on two intersecting lines. Figures
1(a)–1(d) show the dataset and the linear classifiers obtained
by SVM, GEPSVM, TWSVM, and our BNPSVM. It is easy to
see that the result of our BNPSVM is more reasonable than
that of SVM, and better than that of GEPSVM and TWSVM.
In addition, we list the accuracy and CPU time for these
four classifiers in Table 1. From Table 1, we can see that our
BNPSVM obtains the best accuracy while not the slowest
computing time.

Secondly, we consider a two-dimensional three-class
dataset as Example 2 to show the operating mechanism of
ourMNPSVM and other multiple-class classifiers.The three-
class dataset is generated by perturbing points lying on three



The Scientific World Journal 7

−1.1 −0.6 −0.1 0.4 0.9 1.4 1.9 2.1
−2.1

−1.6

−1.1

−0.6

−0.1

0.4

0.9

1.4
Accuracy = 0.7090

(a) SVM

−1.1 −0.6 −0.1 0.4 0.9 1.4 1.9 2.1
−2.1

−1.6

−1.1

−0.6

−0.1

0.4

0.9

1.4
Accuracy = 0.9818

(b) GEPSVM

−1.1 −0.5 0 0.5 1 1.5 2.1
−2.1

−1.6

−1.1

−0.6

−0.1

0.4

0.9

1.4
Accuracy = 0.9545

(c) TWSVM

−1.1 −0.6 −0.1 0.4 0.9 1.4 1.9 2.1
−2.1

−1.6

−1.1

−0.6

−0.1

0.4

0.9

1.4
Accuracy = 0.9864

(d) BNPSVM

Figure 1: Results of linear SVM, GEPSVM, TWSVM, and BNPSVM on Example 1 dataset.

Table 1: Tenfold testing percentage test set accuracy (%) on example data sets.

Data set
SVM GEPSVM TWSVM BHNPSVM

Accuracy % Accuracy % Accuracy % Accuracy %
Time (s) Time (s) Time (s) Time (s)

Example 1 70.90 95.45 98.18 98.64
(202 × 2) 0.122 0.0005 0.0064 0.0052

Data set
“1-v-1” “1-v-r” MBSVM MHNPSVM

Accuracy % Accuracy % Accuracy % Accuracy %
Time (s) Time (s) Time (s) Time (s)

Example 2 87.33 86.67 89.33 90.67
(330 × 2) 0.098 0.0006 0.0079 0.0095

intersecting lines. Figures 2(a)–2(d) show the dataset and the
linear classifiers obtained by “1-v-1,” “1-v-r,” MBSVM, and
MHNPSVM. It is easy to see that the result of MBSVM and
MHNPSVM is more reasonable than that of “1-v-1” and “1-v-
r.” We also list the accuracy and CPU time of Example 2 for
these four classifiers in Table 1. From Table 1, we can see that

our MHNPSVM obtains the best accuracy in all these two
examples, indicating that ourMHNPSVM is suitable for both
“Cross Planes” and multiclass problems.

4.2. Benchmark Datasets. In order to further compare our
methods with others, we examine nine binary-class datasets
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Figure 2: Results of linear “1-v-1,” “1-v-r,” MBSVM, and MHNPSVM on Example 2 dataset.

and nine multiclass datasets used by [12, 35], from the UCI
Repository of machine learning database [36]. Table 2 gives
the details of these eighteen datasets.

In order to compare the behavior of our linear
BHNPSVM with SVM, GEPSVM, and TWSVM, the num-
erical experimental results for binary-class UCI datasets are
summarized in Table 3. In Table 3, the classification accuracy
and computation time are listed. In Table 3, the best accuracy
is shown by bold figures. It is easy to see that most of the
accuracies of our linear BHNPSVM are better than linear
SVM, GEPSVM, and TWSVM on these datasets. It can also
be seen that our BHNPSVM is a little faster than TWSVM
and is competitive with SVM (implements by Libsvm).
We also list the mean accuracy and mean time for these
four classifiers. Our BHNPSVM gains the the highest mean
accuracy while faster training speed than TWSVM.

Table 4 is concerned with our kernel BHNPSVM, SVM,
GEPSVM, and TWSVM on binary-class UCI datasets. The
Gaussian kernel 𝐾(𝑥, 𝑥

󸀠
) = 𝑒

−𝜇‖𝑥−𝑥
󸀠
‖
2

is used. The kernel

parameter 𝜇 is also obtained through searching from the
range from 2

−8 to 2
8. The training CPU times for these four

classifiers are also listed. The results in Table 4 are similar to
those appearing in Table 3 and therefore confirm the above
conclusion further.

In order to compare the behavior of ourMHNPSVMwith
other multiple-class classifiers, we compare our MHNPSVM
with “1-v-1,” “1-v-r,” andMBSVM, the linear results of numer-
ical experiments on multiclass UCI datasets are summarized
in Table 5. In Table 5, the classification accuracy and compu-
tation time are listed.

From Table 5, we can see that the accuracy of linear
MHNPSVM is significantly better than linear MBSVM on all
9UCI datasets.We also obtain thatMHNPSVMandMBSVM
are almost same fast because they both solve two SOR
algorithms instead of two QP problems with the same size.
In contrast, classification accuracy of “1-v-1” and “1-v-r” is no
statistical difference with MHNPSVM for all cases except for
vowel dataset, and “1-v-1” and “1-v-r” are a bit lower than
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Table 2: The detailed characteristics of the datasets.

Data #Ins #Fea #class Data #Ins #Fea #class
Hepatitis 155 19 2 Votes 435 16 2
WBPC 198 34 2 Sonar 208 60 2
Heart-statlog 270 13 2 BUPA 345 6 2
Pima-Indian 768 8 2 CMC 1473 9 2
Australian 690 14 2 Iris 150 3 4
Wine 178 3 13 Ecoli 336 8 8
Vowel 528 11 10 Glass 214 6 13
Vehicle 846 4 18 Car 1728 6 4
Segment 2310 7 19 Satimage 4435 6 36
#Ins is the number of the training points; #attributes is the number of attributes; #class is the number of class.

Table 3: Tenfold testing percentage test set accuracy (%) on binary-class UCI data sets for linear classifiers.

Data sets
TWSVM SVM GEPSVM BHNPSVM

Accuracy % Accuracy % Accuracy % Accuracy %
Time (s) Time (s) Time (s) Time (s)

Hepatitis 82.89 ± 6.30∗ 84.13 ± 5.58 80.07 ± 5.43 85.47 ± 1.36∗

0.012 0.012 0.0006 0.0304

BUPA liver 66.40 ± 7.74∗ 67.78 ± 5.51 61.33 ± 6.26 69.97 ± 0.56∗

0.840 0.0549 0.0012 0.2143

Heart-statlog 84.44 ± 6.80 83.12 ± 5.41 75.37 ± 7.02 84.44 ± 0.56
0.023 0.0281 0.0022 0.1092

Votes 95.85 ± 2.75 95.80 ± 2.65 91.93 ± 3.18 95.58 ± 2.75
0.797 1.1446 0.0039 0.1027

WPBC 83.68 ± 5.73∗ 83.30 ± 4.53 76.76 ± 6.67 81.32 ± 1.36∗

0.012 0.0432 0.0002 0.0465

Sonar 77.00 ± 6.10 80.13 ± 5.43 73.16 ± 8.33 74.15 ± 1.73
0.007 0.0946 0.0225 0.007

Australian 85.94 ± 5.84 88.51 ± 4.85 80.00 ± 3.99 85.27 ± 3.26
0.3460 0.2350 0.0029 0.4250

Pima-Indian 73.80 ± 4.97∗ 77.34 ± 4.37 75.47 ± 4.64 77.05 ± 0.48∗

0.121 0.261 0.0016 0.4793

CMC 68.28 ± 2.21∗ 67.82 ± 2.63 66.76 ± 2.98 77.86 ± 0.22∗

1.247 0.597 0.0050 1.197
Mean accuracy 79.81 80.88 75.65 81.23
Mean time 0.38 0.27 0.004 0.29
∗A greater difference between BHNPSVM and TWSVM.

MHNPSVM and MBSVM in average training time. Thus,
with the proposed formulation of MHNPSVM allows the
classifier to learn better by reducing the generalization errors.
However, this improved performance is obtained at the cost
of more tuning effort involved. This is because MHNPSVM
requires tuning of more parameters than MBSVM.

Table 6 shows the nonlinear MHNPSVM with “1-v-1,” “1-
v-r,” and MBSVM, the results of numerical experiments. In
Table 6, the classification accuracy and computation time are
listed. The results in Table 6 are similar to those appearing in
Table 5; MHNPSVM has better classification accuracy than
MBSVM in eight datasets, while MBSVM is better than
MHNPSVM in one dataset, and MHNPSVM and MBSVM
are much faster than “1-v-1” and “1-v-r”, especially when the
amount of data increases.

5. Conclusions

In this paper, a general framework of nonparallel hyperplanes
support vector machines, termed NPSVMs, are proposed for
binary classification and multiclass classification. For binary
classification, this framework includes TWSVMand its many
deformation versions, for instance, TWSVM, TBSVM, LS-
TWSVM, NPPC, and so forth, when different loss functions
and parameters are selected. For multiclass classification, we
do not directly extend TWSVM and its deformation versions
to get the framework, in which we switch the roles of the
patterns of the 𝑘th class and the rest classes.This strategy does
not lead to significant increase of the computation complexity
when the number of classes is increasing. Moreover, in the
decision function, “min” and Euclidean distance in TWSVM



10 The Scientific World Journal

Table 4: Tenfold testing percentage test set accuracy (%) on binary-class UCI datasets for nonlinear classifiers.

Datasets
TWSVM SVM GEPSVM BHNPSVM

Accuracy % Accuracy % Accuracy % Accuracy %
Time (s) Time (s) Time (s) Time (s)

Hepatitis 83.39 ± 7.31 84.13 ± 6.25 80.00 ± 5.2 83.40 ± 3.58
0.016 0.0142 0.0035 0.0697

BUPA liver 67.83 ± 6.49∗ 68.32 ± 7.20 63.01 ± 7.46 74.24 ± 0.64∗

0.033 0.0129 1.305 0.1522

Heart-statlog 82.96 ± 4.67∗ 83.33 ± 9.11 86.52 ± 7.36 84.04 ± 4.56∗

0.029 0.0250 0.438 0.1120

Votes 94.91 ± 4.37 95.64 ± 7.23 94.5 ± 3.37 95.21 ± 5.18
0.072 0.0495 0.087 0.0152

WPBC 81.28 ± 5.92 80.18 ± 6.90 80.07 ± 5.97 80.89 ± 1.17
0.029 0.0148 0.0043 0.0468

Sonar 89.64 ± 6.11 88.93 ± 10.43 81.93 ± 4.41 88.05 ± 1.79
0.014 0.0781 0.020 0.2896

Australian 75.8 ± 4.91∗ 85.51 ± 4.85 69.55 ± 5.37 77.58 ± 2.53∗

0.420 0.0425 0.334 0.497

Pima-Indian 73.74 ± 5.2∗ 76.09 ± 3.58 74.66 ± 5.00 77.70 ± 0.39∗

0.427 0.442 15.892 0.381

CMC 73.95 ± 3.48∗ 68.98 ± 3.44 68.67 ± 3.84 78.43 ± 0.13∗

1.708 1.755 1.042 1.920
Mean accuracy 80.39 81.23 77.66 82.17
Mean time 0.3053 0.27 2.1251 0.3871
∗A greater difference between BHNPSVM and TWSVM.

Table 5: Tenfold testing percentage test set accuracy (%) on multiclass UCI datasets for linear classifiers.

Dataset
1-v-1 1-v-r MBSVM MHNPSVM

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)
Time (s) Time (s) Time (s) Time (s)

Iris 96.83 ± 1.75 95.73 ± 3.78 95.00 ± 4.95 96.96 ± 1.12
0.025 0.014 0.009 0.010

Wine 96.59 ± 1.48 97.72 ± 0.74 94.77 ± 4.07 95.88 ± 2.21
0.058 0.021 0.028 0.023

Ecoli 87.63 ± 0.81 86.77 ± 0.87 85.72 ± 1.02 86.78 ± 0.75
0.863 0.522 0.097 0.089

Vowel 54.21 ± 2.24 57.44 ± 3.26 59.42 ± 4.96∗ 64.60 ± 3.06∗

1.459 0.580 0.160 0.172

Glass 94.16 ± 1.84 94.42 ± 4.06 92.80 ± 9.80∗ 95.83 ± 1.04∗

1.037 0.405 0.183 0.105

Vehicle 77.79 ± 2.21 78.22 ± 2.10 77.59 ± 2.16 77.13 ± 1.87
28.11 10.05 2.96 2.58

Car 86.78 ± 0.50 86.72 ± 0.31 84.09 ± 0.33∗ 87.79 ± 0.91∗

16.042 13.79 5.92 6.05

Segment 91.60 ± 2.428 92.54 ± 2.03 92.68 ± 1.87 93.04 ± 2.01
28.078 15.26 17.04 17.55

Satimage 91.80 ± 0.81 90.20 ± 1.13 92.40 ± 2.08 91.40 ± 1.49
60.50 32.29 47.45 45.27

Mean accuracy 86.38 86.64 86.05 87.71
Mean time 15.13 8.10 8.21 7.98
∗A greater difference between MHNPSVM and MBSVM.



The Scientific World Journal 11

Table 6: Tenfold testing percentage test set accuracy (%) on multiclass UCI datasets for nonlinear classifiers.

Dataset
1-v-1 1-v-r MBSVM MHNPSVM

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)
Time (s) Time (s) Time (s) Time (s)

Iris 98.93 ± 1.11 97.63 ± 5.46 98.12 ± 2.08 98.74 ± 1.92
0.0054 0.0264 0.037 0.030

Wine 97.08 ± 3.32 97.72 ± 0.86 96.45 ± 1.29 97.28 ± 0.96
7.294 4.6504 0.592 0.523

Ecoli 92.27 ± 1.03 90.35 ± 0.47 91.06 ± 1.45∗ 92.95 ± 0.89∗

0.382 0.0843 0.154 0.182

Glass 98.09 ± 1.04 99.14 ± 0.97 98.76 ± 1.22 99.24 ± 0.93
0.692 0.1085 0.089 0.092

Vowel 91.37 ± 0.86 94.32 ± 0.18 80.42 ± 4.37∗ 85.86 ± 4.72∗

1.482 0.3844 0.623 0.593

Vehicle 81.03 ± 5.73 82.49 ± 4.26 82.01 ± 1.33 83.57 ± 1.79
19.562 11.456 2.81 2.50

Car 88.37 ± 0.55 87.36 ± 0.68 85.74 ± 0.33 86.57 ± 0.46
3.6571 0.9405 1.832 1.944

Segment 95.15 ± 6.02 94.65 ± 4.38 95.96 ± 4.08 95.90 ± 3.29
128.42 91.69 53.27 49.58

Satimage 93.80 ± 1.46 93.05 ± 1.46 94.03 ± 1.93 94.47 ± 1.58
190.27 132.47 89.05 88.36

Mean accuracy 92.90 92.97 91.39 92.73
Mean time 39.08 26.87 16.50 15.98
∗A greater difference between MHNPSVM and MBSVM.

are replaced by “max” and the absolute value |𝑤T
𝑥+𝑏|, respec-

tively. The absolute value |𝑤
T
𝑥 + 𝑏| is not only simpler but

also more consistent with the primal problems. In particular,
we discuss the linear and nonlinear case of the framework
with the hinge loss function as example. Moreover, we also
give the primal problems of several extensions of TWSVM’s
deformation versions. The numerical experiments on several
artificial and benchmark datasets indicate that our NPSVMs
yield comparable generalization performance compared with
SVM, GEPSVM, TWSVM, MBSVM, “1-v-1,” and “1-v-r”. In
short, the proposed framework not only includes TWSVM
and itsmany deformation versions but also extends them into
multiclass classification under keeping the merit of TWSVM
(learning speed).

In the future, we will develop the idea of nonparallel
hyperplanes classifiers to other problems such as ordinal
regression, multi-instance, and multilabel classification.
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