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Organic acids continue to receive considerable attention as feed additives for animal

production. Most of the emphasis to date has focused on food safety aspects, particularly

on lowering the incidence of foodborne pathogens in poultry and other livestock. Several

organic acids are currently either being examined or are already being implemented in

commercial settings. Among the several organic acids that have been studied extensively,

is formic acid. Formic acid has been added to poultry diets as a means to limit

Salmonella spp. and other foodborne pathogens both in the feed and potentially in

the gastrointestinal tract once consumed. As more becomes known about the efficacy

and impact formic acid has on both the host and foodborne pathogens, it is clear

that the presence of formic acid can trigger certain pathways in Salmonella spp. This

response may become more complex when formic acid enters the gastrointestinal tract

and interacts not only with Salmonella spp. that has colonized the gastrointestinal tract

but the indigenous microbial community as well. This review will cover current findings

and prospects for further research on the poultry microbiome and feeds treated with

formic acid.

Keywords: formic acid, antimicrobial, food animals, foodborne pathogen, feed, gastrointestinal tract

INTRODUCTION

Both food animal and poultry production industries are challenged to develop management
strategies that achieve a balance between optimizing growth and performance while limiting
food safety concerns. Historically, antibiotics fed at subtherapeutic levels were associated with
improvements in animal health, welfare, and productivity of animals (1–3). Mechanistically, it
has been suggested that antibiotics fed at subinhibitory concentrations mediated their animal
host responses via modulation of the gastrointestinal tract (GIT) microbiota and, in turn,
their interaction with the host (3). However, continuing concerns over the potential for
proliferation of antibiotic-resistant food-associated pathogens and potential association with
antibiotic-resistant infections in humans have resulted in the gradual removal of antibiotics
for therapeutic use in food animals (4–8). Consequently, the development of feed additives
and amendments that meet at least some of these requirements (improvements in animal
health, welfare, and productivity of animals) has been an ongoing interest both from an
academic research standpoint as well as a commercial development effort (5, 9). Numerous
commercial feed additive products have entered into the food animal production market ranging
from probiotics and prebiotics to a broad spectrum of essential oils and related compounds
from botanical sources as well as chemicals such as aldehydes (10–14). Other commercial
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feed additives common to the poultry industry are
bacteriophages, zinc oxide, exogenous enzymes, competitive
exclusion products, and acidic compounds (15, 16).

Among the available choices of chemical feed additives,
aldehydes and organic acids have historically been the more
extensively studied and utilized group of compounds (12, 17–
21). Organic acids, particularly short-chain fatty acids (SCFA),
are well-known antagonists to pathogenic bacteria. These organic
acids have been employed as feed additives not only to limit the
presence of pathogens in feed matrices but also potentially to
be active toward general GIT function (17, 20–24). In addition,
SCFA result from the fermentation of GIT microbiota harbored
in the digestive tract and are believed to play a mechanistic role in
the ability of certain probiotics and prebiotics to be antagonistic
to pathogens entering the GIT (21, 23, 25).

Several SCFA have received interest over the years as feed
additives. Specifically, propionate, butyrate, and formate have
been the subject of numerous research studies and commercial
applications (17, 20, 21, 23, 24, 26). While most early interest
centered around controlling the occurrence of foodborne
pathogens in animal and poultry feeds, the more recent focus
has been directed toward animal performance and general
promotion of GIT health (20, 21, 24). Acetate, propionate, and
butyrate have received considerable attention as organic acid
feed additives, with formic acid also being a viable candidate
(21, 23). Most of the emphasis to date has focused on food safety
aspects of formic acid, particularly on lowering the incidence of
foodborne pathogens in livestock feed. However, other aspects
of its potential utility are now being considered as well. The
overall goal of this review is to discuss the historical and current
applications of formic acid as a feed amendment for livestock
use (Figure 1). As a part of this, the antimicrobial mechanism(s)
attributable to formic acid will be examined. Further elaboration
on how this impacts administration in animal and poultry
agriculture, and potential approaches for improving efficacy will
also be discussed.

BIOLOGICAL CONTAMINATION OF FEEDS

Food animal and poultry feed production is a complex operation
with multiple steps, including physical processing of cereal grains
such as grinding to reduce particle size, thermal treatment for
pelleting, as well as supplementing the diet with numerous
nutritional ingredients depending upon the specific nutrient
requirement of the animal (27). Given this complexity, it is not
surprising that during feed processing the opportunity to come in
contact with numerous environments before the grains reach the
feed mill, during feed milling, followed by delivery and feeding of
the mixed feed ration occurs (9, 21, 28). Consequently, a highly
variable set of microorganisms, including not just bacteria but
bacteriophage, fungi, and yeast, have all been identified from
feeds over the years (9, 21, 28–31). Some of these contaminants,
such as certain fungi, can be problematic for animal health due to
their production of mycotoxins (32–35).

Bacterial populations can be relatively diverse and are
somewhat dependent on the corresponding methods used

for isolation and identification of the microorganisms as
well as the source of the samples. For example, microbial
compositional profiles might be expected to be somewhat
different before thermal processing associated with pelleting
(36). While classical culture and plating methodologies have
been somewhat informative, more recent applications of next-
generation sequencing (NGS) of the microbiome based on the
16S rRNA gene offer a much more comprehensive evaluation
of feed microbial communities (9). When Solanki et al. (37)
examined the bacterial microbiomes of wheat grains stored over
time in the presence of an insect fumigant phosphine, they
concluded that the microbiomes were more diverse immediately
after harvest and after 3 months of storage. In addition,
Solanki et al. (37) demonstrated that Proteobacteria, Firmicutes,
Actinobacteria, Bacteroidetes, and Planctomycetes were the
dominant phyla among the wheat grains and Bacillus, Erwinia,
and Pseudomonas as being the more predominant genera
along with a lesser proportion of Enterobacteriaceae. Based
on taxonomic comparisons, they concluded that phosphine
fumigation altered the bacterial populations considerably but did
not influence fungal diversity.

The microbiome-based detection of the genus
Enterobacteriaceae by Solanki et al. (37) would suggest that
feed sources can also harbor foodborne pathogens that
could be of public health concern. Foodborne pathogens
such as Clostridium perfringens, Clostridium botulinum,
Salmonella spp., Campylobacter, Escherichia coli O157:H7,
and Listeria have all been associated with animal feeds
and silage (9, 31, 38). It is not clear how persistent other
foodborne pathogens are in animal and poultry feeds. When
Ge et al. (39) sampled over 200 animal feed ingredients,
they were able to isolate Salmonella spp., generic Escherichia
coli, and Enterococcus but did not detect E. coli O157:H7
or Campylobacter. However, matrices similar to dry feeds
can serve as sources of pathogenic E. coli. In tracking the
outbreak source of Shiga toxin-producing E. coli (STEC)
serogroup O121 and O26 associated with human illness
occurring in 2016, Crowe et al. (40) used whole-genome
sequencing to compare clinical vs. food source isolates. Based
on this comparison, they concluded that low moisture raw
wheat flour from a flour processing facility was the likely
source. The low moisture properties of the wheat flour
would suggest that STEC could survive in low moisture
animal feeds as well. However, as Crowe et al. (40) pointed
out, there were difficulties with isolating STEC from flour
samples, and an immunomagnetic-separation approach was
required to retrieve sufficient bacterial cells. Similar diagnostic
logistics could preclude the detection and isolation of rarely
occurring foodborne pathogens in animal feeds as well.
Detection difficulties could also be a challenge due to the
long term persistence in these types of low moisture matrices.
Forghani et al. (41) demonstrated that inoculated mixtures
of enterohemorrhagic E. coli (EHEC) serogroups O45, O121,
and O145 and Salmonella (Typhimurium, Agona, Enteritidis,
and Anatum) in wheat flour held at room temperature were
quantifiable at 84 and 112 days and remained detectable at 24
and 52 weeks, respectively.
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FIGURE 1 | Mind map of the topics covered in the current review. Specifically, focusing on the overall goal of describing the historical and current applications of

formic acid as a feed amendment for livestock use, the antimicrobial mechanism(s) attributable to formic acid and how its administration impacts animal and poultry

health, and potential approaches for improving efficacy.

Historically, Campylobacter species have not been isolated
from animal and poultry feeds using conventional culture-based
methods (38, 39) even though Campylobacter can be readily
isolated from the poultry GIT and on poultry meat products
(42, 43). However, feed as a potential source may still have
some merit. For example, Alves et al. (44) demonstrated that
the inoculation of starter and finisher poultry feed with C. jejuni
followed by storage of the feed at two different temperatures for
either 3 or 5 days resulted in the recovery of viable C. jejuni and
in some cases multiplication. They concluded that C. jejuni could
undoubtedly survive in poultry feeds and therefore could be a
potential source for chickens.

Previously, Salmonella spp. contamination of animal and
poultry feed has received most of the attention and remains a
current focus for the development of detection methods suited
explicitly for feeds as well as the pursuit of more effective control
measures (12, 26, 30, 45–53). Numerous Salmonella spp. isolation
and characterization survey studies have been conducted over
the years on a wide range of feeds and feed mills (38, 39, 54–
61). Collectively, these surveys have revealed that Salmonella
spp. can be isolated from a diverse set of feed ingredients,
feed sources, and types of feeds as well as feed mill operations.
Level of prevalence and the predominant Salmonella serovar
isolates also vary to some extent. For example, Li et al. (57)
confirmed the presence of Salmonella spp. in 12.5% of the
2,058 total samples collected from complete animal feeds, feed
ingredients, pet foods, pet treats, and pet supplements during a

collection period from 2002 to 2009. In addition, of the 12.5%
confirmed positive Salmonella samples, S. Senftenberg and S.
Montevideo were the most prevalent serovars identified (57). In a
survey of Texas ready-to-eat and animal feed byproducts, Hsieh
et al. (58) reported that fish meal had the highest prevalence
of Salmonella spp. followed by animal proteins with S. Mbanka
and S. Montevideo being the most frequent serovars identified.
Feed mills also represent several potential contamination sites
for feeds during mixing and addition of ingredients (9, 56,
61). Magossi et al. (61) were able to demonstrate the potential
for multiple contamination sites that occur throughout U.S.
feed manufacturing. As a matter of fact, Magossi et al. (61)
were able to identify at least one location (of the 12 tested
sampling locations) at each of the 11U.S. feed mills tested
across eight states that were culture positive for Salmonella spp.
Given the potential for Salmonella contamination during feed
processing, transportation, and daily feeding, it is not surprising
that numerous attempts have beenmade to develop feed additives
that decrease microbial contamination and retain these reduced
levels throughout the animal production cycle.

ANTIMICROBIAL MECHANISMS OF
FORMIC ACID

Less is known mechanistically about Salmonella’s specific
response to formate. Still, Huang et al. (62) noted that formate
is present in the mammalian small intestine and that Salmonella
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spp. are capable of producing formate. When Huang et al. (62)
examined Salmonella virulence gene expression using a series of
deletion mutants in critical pathways, they observed that formate
could serve as a diffusible signal to induce Salmonella invasion
of Hep-2 epithelial cells. More recently, Lü et al. (63) isolated
a formate transporter, FocA in Salmonella Typhimurium, that
acts as a specific formate channel at pH 7.0 but also serves
as either a passive export channel at high external pH or a
secondary active formate/hydrogen ion importer at low pH.
However, this work was conducted exclusively on one serovar S.
Typhimurium. The question remains as to whether all serovars
mechanistically respond similarly to formic acid. This question
remains a key research question that will need to be addressed
in future studies. Regardless of the outcome, it is still prudent
to employ multiple Salmonella serovars and perhaps even more
than one strain for each serovar in screening experiments when
general recommendations need to be made for the use of an acid
additive to reduce Salmonella spp. in feed. Newer approaches
such as the ability to genetically barcode strains to distinguish
subpopulations of the same serovar (9, 64) offer opportunities
to differentiate more subtle differences that could influence
variances in conclusions and interpretation.

The chemical and dissociation form of formate may be
important as well. In a series of studies, Beier et al. (65–
67) demonstrated that inhibition of Enterococcus faecium,
Campylobacter jejuni, and Campylobacter coli correlated with the
amount of dissociated formic acid and not pH or undissociated
formic acid. The chemical form of formate the bacteria are
exposed to appears to matter as well. Kovanda et al. (68) screened
several Gram-negative and Gram-positive microorganisms and
compared Minimum Inhibitory Concentration (MIC) responses
on sodium formate (500–25, 000 mg/L) and a blend of sodium
formate and free formate (40/60 w/v; 10–10,000 mg/L). Based
on the MIC estimates, they found that sodium formate was
only inhibitory to strains of Campylobacter jejuni, Clostridium
perfringens, Streptococcus suis, and Streptococcus pneumoniae,
but not E. coli, Salmonella Typhimurium, or Enterococcus
faecalis. Conversely, the blend of sodium formate and free
formate was inhibitory to all the microorganisms leading the
authors to suggest that free formic acid possesses most of
the antimicrobial properties. It would have been interesting to
examine different ratios of the two chemical forms to determine
whether the range of MIC values correlated with the level of
formic acid present in the blended formula vs. responses to 100%
formic acid.

Gómez-García et al. (69), have screened essential oils in
combination with organic acids such as formic acid against
multiple isolates originating from swine, Escherichia coli,
Salmonella spp. and Clostridium perfringens. They tested the
efficacy of six organic acids, including formic acid and six
essential oils, with formaldehyde as a positive control against the
swine isolates. Gómez-García et al. (69) determined the MIC50,
MBC50, and MIC50/MBC50 of formic acid to E. coli (600 and
2,400 ppm, 4), Salmonella spp. (600 and 2,400 ppm, 4) and
Clostridium perfringens (1,200 and 2,400 ppm, 2), with formic
acid performing better out of all the organic acids against E.
coli and Salmonella spp. (69). The explanation for the efficacy

of formic acid against E. coli and Salmonella spp. is its small
molecular size and chain length (70).

When Beier and coworkers screened Campylobacter coli
strains isolated from swine (66) and Campylobacter jejuni
strains originating from poultry (67), they concluded that the
dissociated concentration for formate matched the determined
MIC responses as seen with the other organic acids. However,
caution was raised as to the relative effectiveness of these acids,
including formic acid, since Campylobacter is capable of utilizing
them as a substrate (66, 67). Campylobacter jejuni’s utilization
of acids is not surprising as it has been characterized as having
a non-glycolytic metabolism. As such, Campylobacter jejuni has
a limited carbohydrate catabolic capacity and instead relies on
gluconeogenesis from amino acids and organic acids for much
of its energy metabolism and biosynthesis activities (71, 72).
Early work by Line et al. (73) using a phenotype array with
190 carbon sources, noted that a Campylobacter jejuni 11168
(GS) could use organic acids as carbon sources, with most being
intermediates of the TCA cycle. Further research by Wagley
et al. (74) using a carbon utilization phenotype array approach
noted that strains of both Campylobacter jejuni and C. coli
examined in their study were able to grow with organic acids
as carbon sources. Formic acid specifically serves as a primary
energy source of Campylobacter jejuni by being a major electron
donor for respiratory energy metabolism in Campylobacter (71,
75). C. jejuni is able to use formic acid as a hydrogen donor
via a formate dehydrogenase membrane complex that oxidizes
formate to carbon dioxide, protons, and electrons and serves as
an electron donor for respiration (72).

FORMIC ACID AND ITS ORIGIN IN THE
INSECT CLASS

Formic acid has a long history of being utilized as an
antimicrobial feed amendment but also is generated by some
insects for use as an antimicrobial defense chemical. Rossini et al.
(76) suggested that formic acid was probably the constituent
acid in the ant-generated acid juice described nearly 350 years
ago by Wray (77). Since then, the understanding of formic acid
production by formicine ants and other insects has evolved
considerably, and this process is now known to be part of a
well-orchestrated toxin defense system for insects (78). Several
insect taxa including stingless bees, Oxytrigona (Hymenoptera:
Apidae), carabid beetles (Galerita lecontei and G. janus), stingless
formicine ants (subfamily Formicinae), and some moth larvae
(Notodontidae, Lepidoptera) are known to produce formic acid
as a defense chemical (76, 78–82).

Formicine ants are probably the best characterized and possess
an acidophore, a specialized opening that allows them to spray
their venom containing formic acid as the primary compound
(82). The ant uses serine as a precursor and accumulates large
quantities of formic acid in a poison gland that is sufficiently
compartmentalized to protect the host ant from the cytotoxic
levels of formate until it is dispersed as a spray (78, 83). The
emitted formic acid spray can (1) be an alarm pheromone to
recruit additional ants, (2) become a defense chemical against
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competitors and predators, and (3) when combined with tree
resin as part of their nest materials, serve as an antifungal
and antimicrobial agent (78, 82, 84–88). The antimicrobial
properties associated with formic acid production in ants
suggests that it could also be applied externally as an additive
compound. Brütsch et al. (88) demonstrated this when they
added synthetic formic acid to resin resulting in a significantly
increased antifungal activity. As further evidence of the potency
of formic acid and its biological utility, giant anteaters that lack
the ability to produce gastric hydrochloric acid consume ants
containing formic acid to provide the concentrated formic acid
as a substitute digestive acid (89).

FORMIC ACID AS A CHEMICAL ADDITIVE
FOR SILAGE

The practical agricultural application of formic acid has been
considered and examined for several years. Specifically, formic
acid has utility as an additive for animal feed and silage. Both solid
and liquid forms of sodium formic acid have been considered safe
for all animal species as well as consumers and the environment
(90). Based on their assessment (90), a maximum concentration
of 10,000mg formic acid equivalents/kg of feed was deemed safe
for all animal species, while 12,000mg formic acid equivalents/kg
of feed were considered safe for swine. Application of formic acid
as a feed amendment for animal nutrition has been examined for
a number of years. It has been viewed as having commercial value
as a preservative in silage and as an antimicrobial for animal and
poultry feeds.

Chemical additives such as acids have been an essential
element in the management of production and feeding of
forage-based silages (91, 92). Borreani et al. (91) noted that
achieving optimized, high-quality forage silage production
requires stabilizing the forage quality while retaining the
maximum amount of dry matter possible. The outcome of this
optimization would be minimized losses during all stages of
silage from initial aerobic conditions in the silo, followed by
fermentation, storage, and reopening the silo for feeding. Specific
methods for optimizing silage production in the field and the
subsequent silo fermentation have been extensively reviewed
elsewhere (91, 93–95) and will not be covered in detail in
the current review. A primary concern is yeast- and mold-
mediated oxidative deterioration while oxygen remains in the
ensiled forage (91, 92). Consequently, biological inoculants, and
chemical additives were introduced to counter the detrimental
impact of deterioration (91, 92). Additional concerns for silage
additives include limiting the proliferation of pathogens such
as pathogenic E. coli, Listeria, and Salmonella spp. that may be
present in the silage as well as mycotoxin producing fungi (96–
98).

Muck et al. (92) have categorized acid additives in two distinct
groups. Acids such as propionic, acetic, sorbic, and benzoic acids
retain aerobic stability of silage while being fed to ruminants by
limiting yeasts and molds (92). Muck et al. (92) delineated formic
acid from the other acids as a direct acidifier that can suppress
clostridia and spoilage microorganisms while preserving silage

protein integrity. For the practical application of the acids, their
corresponding salt form represents the more common chemical
version employed to avoid corrosiveness of the non-salt versions
of these acids (91). Formic acid has also been investigated as
an acid additive for silage by numerous research groups. It
is known for its rapid acidification potential and inhibitory
action on the growth of undesirable silage microorganisms
that reduce levels of silage forage protein and water-soluble
carbohydrates (99). As such, He et al. (100) demonstrated the
ability of formic acid to suppress coliforms and decrease the pH
of the silage. Formic acid and cultures of lactic acid-producing
bacteria have also been added to silage to promote acidification
and organic acid production (101). In fact, Kuley et al. (101)
determined that lactic and formic acid were produced in amounts
exceeding 800 and 1,000mg organic acid/100 g sample when
silage was acidified with 3% (w/v) of formic acid. Muck et al. (92)
have extensively reviewed the silage additive research literature,
including studies focused on and/or including formic and other
acids that were published since the year 2000. Therefore, these
individual research studies will not be discussed in detail in the
current review except to summarize a few key points regarding
formic acid efficacy as a silage chemical additive. Both non-
buffered and buffered formic acid have been examined, and
in most cases clostridial spp. and their associated activities
(consumption of carbohydrates, proteins and lactic acid, and the
excretion of butyric acid) tended to decline along with decreases
in ammonia and butyrate production and improved retention of
dry matter (92). There were some limits to the impact of formic
acid, but combinations with other acids as silage additive blends
appeared to overcome some of these issues (92).

Formic acid may limit pathogenic organisms linked to human
public health concerns. For example, Pauly and Tham (102)
inoculated Listeria monocytogenes into small laboratory silos
containing ryegrass at three different dry matter levels (200,
430 and 540 g/kg), followed by incorporating either formic
acid (3 mL/kg) or lactic acid bacteria (8 × 105/g) with
cellulolytic enzymes. They reported that either treatment reduced
L. monocytogenes to non-detectable levels in the low dry matter
silage (200 g/kg). However, in the medium-dry matter silage (430
g/kg), L. monocytogenes could still be quantified at 30 days in
formic acid treated silage. The reduction in L. monocytogenes
appeared to correspond to a lower pH, levels of lactic acid,
and pooled undissociated acids. Therefore, Pauly and Tham
(102) alluded to the fact that levels of lactic acid and pooled
undissociated acids were especially important and were probably
the reason why the reduction in L. monocytogenes was not
observed in the formic acid treated medium in the higher
dry matter silage. In the future, similar studies will need to
be conducted with other common silage pathogens such as
Salmonella spp. and pathogenic E. coli. A more comprehensive
16S rDNA sequence profiling of the entire silage microbial
community could also help identify overall silage microbial
population shifts occurring during the various stages of silage
fermentation in the presence of formic acid (103). Generating
microbiome data may provide analytical support to better predict
the progress of silage fermentation as well as design optimal
additive combinations to maintain high-quality forage silage.
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FORMIC ACID AND ANTIMICROBIAL
ACTIVITIES IN ANIMAL FEEDS

For cereal grain-based animal diets, formic acid has been
employed as a feed antimicrobial to limit pathogen levels in
a wide range of feed matrices originating from cereal grains
as well as specific feed ingredients such as animal byproducts.
Impact on pathogen populations in poultry and other animals
can be broadly categorized as either direct effects on pathogen
populations in the feed itself or the more indirect effect on
pathogens colonizing the animal’s GIT after the treated feed has
been consumed (20, 21, 104). Obviously, these two categories are
interconnected as a reduction of pathogens in the feed should
lead to less colonization when the feed is consumed by the
animal. However, several factors can potentially influence the
antimicrobial properties of the particular acid introduced to a
feed matrix such as feed composition, and form of the acid
administered (21, 105).

Historically, much of the focus for the application of formic
acid and other related acids has been on the direct control of
Salmonella spp. in animal and poultry feeds (21). The results of
these studies have been summarized in details in several reviews
that have been published at different times (18, 21, 26, 47, 104–
106) and therefore, only some of the key conclusions from
these studies will be discussed in the current review. Several
studies have indicated that the antimicrobial activity of formic
acid in the feed matrix is dependent on the dose and exposure
time of formic acid, the moisture content of the feed matrix,
and the bacterial concentration of the feed and animal GIT
(19, 21, 107–109). The type of feed matrix and the origin of
animal feed ingredients are also factors. Consequently, several
studies have indicated that level of Salmonella spp. recovered
from animal byproducts may differ compared to their plant-
based counterparts (39, 45, 58, 59, 110–112). However, some
of these differences in response to acids, such as formate,
may be related to serovar survival differences in feed and
temperature of feed treatment (19, 113, 114). Serovar differences
in response to acid treatment may also be a factor in poultry
infection by contaminated feed (113, 115) and differences in
virulence gene expression (116) could play a role. Differences in
acid tolerance could in turn influence detection of Salmonella
spp. on culture media if the acid that carries over from
the feed is not adequately buffered (21, 105, 117–122). The
physical form of the diet in terms of particle size may also
contribute to the relative effectiveness of formic acid in the
GIT (123).

Strategies to optimize the antimicrobial activity of formic acid
addition to feed also appears to be critical. Application of acids
at higher concentrations in feed ingredients that are at a high-
risk of contamination prior to feed mixing has been suggested
to minimize potential feed mill equipment damage and animal
palatability issues (105). Jones (51) concluded that Salmonella
spp. present in the feed before chemical decontamination
might be more challenging to limit than those that come
in contact with the feed after chemical treatment. Thermal
treatment of feeds during feed mill processing is considered

an intervention for limiting Salmonella spp. contamination in
feeds but depends on feed composition, particle size, among
other factors associated with the milling process (51). The
antimicrobial activity of acids is also impacted by temperature,
and increased temperature in the presence of organic acids can
elicit a synergistic inhibition of Salmonella spp. as observed
in liquid cultures of Salmonella (124, 125). Several studies on
Salmonella spp. contaminated feed have supported the idea
that increased temperature improved the efficacy of the acids
incorporated in the feed matrix (106, 113, 126). Using a central
composite design, Amado et al. (127) examined the interaction
between temperature and acids (formic or lactic acid) on 10
Salmonella enterica, and E. coli isolates from various cattle
feeds and inoculated into acidified pelleted cattle feed. They
concluded that heat was the more dominant influential factor on
microbial reduction with the type of acid and bacterial isolate
also being a factor. Synergism with the acids still generally
occurred, allowing for the potential to use lower temperatures
and lower acid concentrations. However, they also noted that
synergy did not always occur with formic acid, leading them
to suspect that either volatilization of formic acid occurred at
higher temperatures or buffering by feed matrix components was
a factor.

IMPACT ON FOODBORNE PATHOGENS IN
THE GASTROINTESTINAL TRACT

Limiting foodborne pathogens in the feed during storage prior
to feeding animals is undoubtedly a means to control their
introduction to the animal during consumption of the feed.
However, acids in the feed have the opportunity as they enter
into the GIT to continue to exhibit antimicrobial activities.
Externally introduced acid antimicrobial activity in the GIT
is potentially dependent on numerous factors including GIT
acid concentration, GIT site of activity, level of GIT pH and
oxygen, age of the animal, and the corresponding composition
of microbial populations inhabiting the GIT as a function of
GIT location and animal maturity (21, 24, 128–132). In addition,
the resident GIT anaerobic microbial population, which becomes
more dominant in the lower GIT sections of the monogastric
animal as it matures, is actively producing organic acids via
fermentation, which, in turn, are also potentially antagonistic to
transient pathogens entering the GIT (17, 19–21).

Most of the early work focused on using organic acids,
including formate, to limit Salmonella spp. in the poultry GIT,
which has been discussed in detail in several reviews (12, 20, 21).
From an overview of these studies, a few key observations have
prevailed. McHan and Shotts (133) reported that feeding formic
and propionic acid reduced cecal levels of S. Typhimurium
inoculated in young chicks and quantified at 7, 14, and 21 days
of age. However, when Hume et al. (128) tracked C−14 labeled
propionate, they concluded that very little propionate in the
feed likely reached the ceca. Whether this is true of formic acid
remains to be determined. However, more recently, Bourassa
et al. (132) did note that feeding formic acid at 4 g per ton
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for a 6 week grow-out period in broiler chicks reduced cecal S.
Typhimurium concentrations below detection levels.

The presence of formic acid in the diet likely influences
other poultry GIT compartments. Al-Tarazi and Alshawabkeh
(134) demonstrated that a formic and propionic acid mixture
decreased the frequency of S. Pullorum in both the crop and the
ceca. Thompson and Hinton (129) observed that a commercial
blend of formic and propionic acid resulted in an increased
concentration of these two acids in the crop and gizzard and,
when representative crop conditions were simulated in vitro,
were bactericidal to S. Enteritidis PT4. This is supported by
in vivo data when Byrd et al. (135) added formic acid to the
drinking water of broilers undergoing a simulated pre-transport
feed withdrawal similar to that experienced by broilers prior to
transit to the poultry processing plant. The presence of formic
acid in the drinking water resulted in reduced S. Typhimurium
crop and cecal populations along with a decrease in the frequency
of S. Typhimurium positive crops, but not the number of positive
ceca (135). Developing delivery systems that serve to protect
organic acids as they enter the GIT to remain active in the
lower compartments may help to increase efficacy. For example,
protecting formic acid by microencapsulation for administration
in feed has been shown to decrease S. Enteritidis in cecal contents
(136). However, this may differ among animal species. For
example, Walia et al. (137) did not see Salmonella spp. reduction
in 28-day old pigs fed an encapsulated blend of formic acid, citric
acid, and essential oils in either the cecal digesta or lymph nodes
although Salmonella spp. shedding in the feces was reduced on
day 14 but not on day 28. They did suggest that the horizontal
transfer of Salmonella spp. among pigs was prevented.

While the majority of the research on formic acid as
an antimicrobial in food animal production has focused on
foodborne Salmonella spp., there have been some studies with
other pathogens inhabiting the GIT. As indicated by the in
vitro work of Kovanda et al. (68), formic acid may be effective
against other GIT foodborne pathogens as well, including E.
coli and Campylobacter jejuni. Early research indicated that
organic acids, such as lactic acid and commercial blends that
contained formic acids as one of several components, could lower
Campylobacter levels in poultry (135, 138). However, employing
formic as an antimicrobial agent against Campylobacter may
need some caution exercised, as noted earlier by Beier et al.
(67). This fact may be particularly problematic for poultry diet
supplementation since formic acid serves as a major energy
donor for Campylobacter jejuni respiration. In addition, it
is believed that part of its ecological niche in the GIT is
to metabolically cross-feed on the mixed acid fermentation
products such as formic acid produced by GIT bacteria
(139). There is some support for this. Because formic acid
is a chemoattractant to Campylobacter jejuni, double mutants
impaired in both formate dehydrogenase and hydrogenase
display decreased cecal colonization in broilers compared to
the wild-type Campylobacter jejuni strain (140, 141). It is not
known how much external formic acid supplementation could
influenceCampylobacter jejuni establishment in the chicken GIT.
Several variables could impact this as the actual GIT formic acid
concentration could be lower due to catabolism of formic acid by

other GIT bacteria or absorption of formic acid in the upper part
of the GIT. Also, formic acid is a potential fermentation product
generated by some GIT bacteria, and this could contribute to
overall formic acid GIT levels. Quantitation of formic acid in GIT
contents and metagenomics to identify formate dehydrogenase
genes would potentially provide some clarity of formic acid
microbial ecology.

Roth et al. (142) compared broilers fed either the antibiotic
enrofloxacin or an acid blend of formic acid, acetic acid,
and propionic acid on the prevalence of antibiotic-resistant E.
coli. Total E. coli and antibiotic-resistant E. coli isolates were
enumerated from pooled fecal samples of 1-day-old broiler
chicks and cecal contents of 14- and 38-day-old broilers. E. coli
isolates were screened for resistance to ampicillin, cefotaxime,
ciprofloxacin, streptomycin, sulfamethoxazole, and tetracycline
based on the breakpoint concentration for each respective
antibiotic as previously defined. When the respective E. coli
populations were quantified and characterized, neither the
enrofloxacin nor the acid blend supplementation altered the total
E. coli recovered from 17 and 28-day old broiler ceca. Birds
receiving diets supplemented with enrofloxacin yielded increased
levels of ciprofloxacin, streptomycin, sulfamethoxazole, and
tetracycline-resistant E. coli in the ceca, but a decrease in
cefotaxime resistant E. coli. The blended acids resulted in
decreased numbers of ampicillin- and tetracycline-resistant
cecal E. coli compared with both control and enrofloxacin-
supplemented birds. The blended acids also resulted in fewer
ciprofloxacin- and sulfamethoxazole-resistant E. coli in the
ceca vs. the enrofloxacin supplemented birds. It is not clear
mechanistically how acids could reduce antibiotic-resistant E.
coli without reducing the total numbers of E. coli. However,
the outcome of the study performed by Roth et al. (142) may
be evidence for the reduction of dissemination of antibiotic-
resistant genes among E. coli, such as the plasmid conjugation
inhibitors described by Cabezón et al. (143). It would be
interesting to conduct a more in-depth profile of plasmid-
mediated antibiotic resistance in poultry GIT populations in the
presence of feed additives such as formic acid and further develop
this profile with an assessment of the GIT resistome.

INTERACTION OF THE NON-PATHOGEN
GASTROINTESTINAL MICROBIOTA WITH
FORMIC ACID

Developing optimal antimicrobial feed additives while targeting
pathogens ideally should have minimal impact on the overall
GIT microbiota, particularly microbial members that would
be considered beneficial to the host. However, a deleterious
impact on the resident GIT microbial population can occur in
the presence of externally introduced organic acids and could,
to some extent, offset their pathogen prevention benefits. For
example, Thompson and Hinton (129) observed decreases in
layer hen crop lactic acid in birds fed a formic acid-propionic
acid blend suggesting that the presence of these external organic
acids in the crop caused a decrease in the crop lactic acid bacterial
population. The presence of lactic acid bacteria in the crop
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is considered a barrier to Salmonella spp., so disrupting this
resident crop microbiota could be problematic for achieving a
successful reduction in Salmonella GIT colonization (144). Less
impact may occur in the lower part of the avian GIT as Açikgöz
et al. (145) did not detect differences in total intestinal bacteria
or E. coli in 42-day-old broilers receiving formic acid acidified
water. As the authors speculated, this might be due to the formic
acid being metabolized in the upper part of the GIT as noted by
others for externally introduced SCFA (128, 129).

The Case for Microencapsulation
Protection of formic acid via some form of encapsulation might
offer a means to reach lower sections of the GIT. Willamil et al.
(146) observed that microencapsulating formic acid significantly
increased total SCFA in the ceca of pigs compared to those
fed non-protected formic acid. This outcome led the authors to
suggest that formic acid, if sufficiently protected, can effectively
reach the lower GIT compartments. However, several other
measurements, such as formic acid and lactate concentration,
although higher than control diet-fed pigs, were not statistically
different from non-protected formic acid-fed pigs. Lactobacilli
populations were not changed by any of the treatments even
though lactic acid was increased nearly three-fold in pigs fed
either both unprotected or protected formic acid. It may be
possible that differences would be more distinct with other lactic
acid-producing cecal microorganisms (1) that were not detected
with these methods and/or (2) whose metabolic activities were
impacted to change fermentation patterns such that more
lactic acid was being produced by the resident lactic acid
bacterial population.

Enhanced Resolution—The Impact of
Formic Acid on Poultry GIT Microbiota
To better delineate feed additive impact on the food animal
GIT, microbiological identificationmethodologies with increased
resolution are required. In the past few years, NGS of the
16S RNA gene for microbiome taxonomic identification and
microbial community diversity comparisons (147) have made it
possible to develop a better understanding of the interactions
between dietary feed additives and the GIT microbiota of food
animals such as poultry.

A few studies have incorporated microbiome sequencing
assessment of the chicken GIT microbial consortia response to
formic acid supplementation. Oakley et al. (148) conducted a
study with 42-day-old broilers fed different combinations of
formic, propionic, and medium-chain fatty acids administered
either in the drinking water or feed. Seeder birds were inoculated
with nalidixic acid-resistant Salmonella Typhimurium, and ceca
were removed at 0, 7, 21, and 42 days of age. Cecal samples
were prepared for 454 pyrosequencing and the sequence results
assessed for taxonomic classification and similarity comparisons.
In general, treatments had little impact on the cecal microbiome
or levels of S. Typhimurium. However, in general, levels of
recovered Salmonella spp. decline as the birds become older, and
this was supported by the taxonomic microbiome analyses where
the relative abundance of Salmonella sequences also declined
over time. The authors noted that the most significant shifts

in GIT microbiota occurred over time across all treatments
as cecal microbial populations became more diverse over time
as the broilers matured. In a more recent study, Hu et al.
(149) compared drinking water and feed delivery of an organic
acid blend (formic, acetic, and propionic acids and ammonium
formate) with a Virginiamycin supplemented diet on broiler cecal
microbiomes from samples collected during two phases (1–21
days and 22–42 days). While some cecal microbiome diversity
differences among treatment were detectable in birds at 21 days,
by the time birds reached 42 days of age, no differences in alpha
or beta diversity were detected. The lack of differences at 42
days of age led the authors to suggest that growth performance
benefits may be linked to the earlier establishment of an optimally
diversified microbiota.

Microbiome analyses exclusively focused on the cecal
microbial populations may not be reflective of where most of the
dietary organic acid influence is occurring in the GIT. The upper
GIT microbiome populations of broilers may be more likely
impacted by dietary organic acids, as indicated by the results
from Hume et al. (128). Hume et al. (128) demonstrated that
most of the externally supplemented propionate is absorbed in
the avian upper GIT. There are also more recent GIT microbial
characterization studies that support this. Nava et al. (150)
demonstrated that the combination of an organic acid blend [DL-
2-hydroxy-4(methylthio) butanoic acid], formic, and propionic
acid (HFP) impacted the intestinal microbial populations and
increased the Lactobacillus spp. colonization of the chick ileum.
More recently, Goodarzi Boroojeni et al. (151) examined two
levels (0.75 and 1.50%) of a formic and propionic acid blend
fed to broiler chicks for 35 days. At the termination of the
experiment, the crop, gizzard, distal two-thirds of the ileum, and
ceca were removed and sampled for RT-PCR quantitation of
specific GIT bacterial groups and GIT metabolites. In the crop,
neither concentration of organic acids altered the Lactobacillus
spp. or Bifidobacterium spp. populations, but did increase the
Clostridial clusters. In the ileum, the only changes that occurred
were decreases in Lactobacillus spp. and Enterobacteria vs. no
changes in any of these bacterial groups in the cecum (151).
Total lactate (D and L) concentrations were reduced for the
highest level of organic acid additive in the crop, and both organic
acid levels in the gizzard, the lower organic acid concentration
in the cecum. No shifts occurred in the ileum. As for SCFA,
only propionate was altered in the crops and gizzards of birds
receiving organic acids. There was nearly a ten-fold increase
of propionate in the crops of birds receiving the lower organic
acid concentration and an eight- and fifteen-fold increase in
the gizzard for the two levels of organic acids. There was less
than a two-fold increase in acetic acid in the ileum. Collectively
these data support the idea that most of the external organic
acid additive influence occurs in the crop with minimal impact
of organic acids on the lower GIT microbial populations and
suggests that fermentation patterns may be altered in the resident
populations of the upper GIT.

Clearly, more microbiome characterization is warranted to
achieve sufficient elucidation of microbial responses to formic
acid throughout the GIT. More emphasis on in-depth analyses
of specific GIT compartmental microbial taxonomy, particularly
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in the upper GIT sections such as the crop, could offer more
explanations for understanding the selection of particular groups
of microorganisms. Their metabolic and fermentation activities
could also establish whether their relationship to pathogens
entering the GIT would be antagonistic. It would also be of
interest to conduct metagenomic analyses to see if more “acid-
tolerant” resident bacteria are selected with exposure to acidic
chemical additives that are fed to the birds over their lifetime and
if either the presence and/or metabolic activity of these bacteria
create additional barriers to pathogen colonization.

CONCLUSIONS

Formic acid has been used as a chemical animal feed additive and
silage acidifier for several years. One of its main applications has
been as an antimicrobial to limit pathogens in the feed and their
subsequent establishment in the avian GIT. Formic acid has been
shown to be a relatively effective antimicrobial against Salmonella
spp. and other pathogens based on in vitro model studies. Still,
it may be more limited in feed matrices due to the high organic
matter and potential buffering capacity of the feed components.
Once consumed with feed or through the drinking water, formic
acid appears to be antagonistic to Salmonella spp. and other
pathogens. Still, most of this occurs in the upper compartments of
the GIT as the formic acid concentration probably diminishes in
the lower GIT, as is known to occur for propionate. The concept
of protection of formic acid via encapsulation offers a potential
means for the delivery of more acid to the lower GIT. In addition,
blends of multiple organic acids have been suggested as being
more efficacious at enhancing bird performance rather than the
administration of single acids (152). Campylobacter in the GIT
may differ in its response to formic acid since it can use it as
an electron donor, and thus the acid serves as a primary energy
source. It has not been established whether increasing GIT formic
acid concentration would favor Campylobacter, and this still may
not occur depending on other GIT organisms thatmay be capable
of using formic acid as a substrate.

More research needs to be conducted on the impact of GIT
formic acid on non-pathogenic indigenous GITmicroorganisms.
Selective antagonism of pathogens without disruption of
the members of the GIT microbial community considered

beneficial to the host would be preferred. However, this
requires more in-depth microbiome sequence analyses of these
resident GIT microbial consortia. While some research has
been reported on the cecal microbiome in birds fed formic
acid, more emphasis needs to be placed on the upper GIT
microbial communities. Identification of microorganisms and
comparison of similarities among GIT microbial groups in
the presence or absence of formic acid may not be the
complete narrative. Other analyses, including metabolomics and
metagenomics, are also needed to characterize the functional
differences among compositionally similar populations. This
characterization will be necessary for establishing linkages
between the GIT microbial population and bird performance
responses to the formic acid amendment. Combining methods
to better define GIT function should lead to more effective
organic acid supplementation strategies and, ultimately, better
predictability for optimal bird health and performance while
limiting food safety risks.
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