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Toll-like receptors (TLRs) play an important role in regulating immune responses during pathogen infection. However, roles of
TLRs on T cells reside in the mesenteric lymph node (MLN) were not be fully elucidated in the course of S. japonicum infection.
In this study, T lymphocytes from the mesenteric lymph node (MLN) of S. japonicum-infected mice were isolated and the
expression and roles of TLR2, TLR3, TLR4, and TLR7 on both CD4+ and CD8+ T cells were compared. We found that the
expression of TLR7 was increased in the MLN cells of S. japonicum-infected mice, particularly in CD4+ and CD8+ T cells
(P < 0:05). R848, a TLR7 agonist, could enhance the production of IFN-γ from MLN T cells of infected mice (P < 0:05),
especially in CD8+ T cells (P < 0:01). In TLR7 gene knockedout (KO) mice, the S. japonicum infection caused a significant
decrease (P < 0:05) of the expression of CD25 and CD69, as well as the production of IFN-γ and IL-4 inducted by PMA plus
ionomycin on both CD4+ and CD8+ T cells. Furthermore, the decreased level of IFN-γ and IL-4 in the supernatants of SEA- or
SWA-stimulated mesenteric lymphocytes was detected (P < 0:05). Our results indicated that S. japonicum infection could induce
the TLR7 expression on T cells in the MLN of C57BL/6 mice, and TLR7 mediates T cell response in the early phase of infection.

1. Introduction

Schistosomiasis is a chronic, parasitic disease caused by
blood flukes with significant morbidity and mortality, espe-
cially in vertebrates, including humans [1]. Immunopatho-
logical studies have shown that schistosomiasis results
predominantly from the evoked host immune response to
schistosome eggs and the granulomatous reaction [2]. After
infection, schistosomula and its eggs migrate through a
variety of tissues, such as the skin, lung [3], liver [4, 5], and

intestinal and vesical mucosa [6]. Schistosoma eggs must
migrate from the mesenteric vessels, across the intestinal wall
and into the feces. A vast proportion of eggs fail to leave their
definite host, instead becoming lodged within intestinal or
hepatic tissue, where they could evoke potentially life-
threatening pathology [7].

The mesenteric lymph node (MLN) is the main draining
lymph node in mouse enterocoelia which contains many
types of immune cells [8]. MLN has been associated with ini-
tiation of immunological responses to bacterial translocation
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and inflammatory bowel diseases (IBDs) [9]. Moreover, it
was reported that MLN CD4+ T lymphocytes could migrate
to liver and contribute to nonalcoholic fatty liver disease
[10]. Our previous study have found that S. japonicum infec-
tion could stimulate the responses of multiple immune cells,
including Th cells, NK cells, NKT cells, and γδT cells in the
B6 mouse MLN [11, 12].

CD4+ Th cells could modulate the immune response by
secreting many kinds of cytokines. According to the different
cytokine production profiles, divide into different subtypes,
such as Th1, Th2, Th9, and Th17 [13]. It was reported
that CD4+ Th2 cell is the main effector T cell response
to S. japonicum infection by producing produce IL-4,
IL-5, and IL-13 [14]. IL-17-secreting Th17 cell was reported
playing an important roles in S. japonicum infection induc-
ing liver granuloma damage [4, 5]. Th9 cells could influence
the progress of S. japonicum infection-induced liver damage,
too [15]. IFN-γ and IL-4 were classic Th1 and Th2 cytokines,
respectively. IFN-γ could mediate cellular immune response,
including the activity of CD8+ cytotoxin T cell and macro-
phages. On the contrary, IL-4 is the most important cytokine
in induced B cell activation and antibody production. IFN-γ
and IL-4 were the most important cytokines secreting by Th
cell which influence the progress S. japonicum infection-
induced disease [16].

TLRs are the best characterized class of pattern recogni-
tion receptors (PRRs) that prevent pathogen invasion by rec-
ognizing pathogen-associated molecular patterns (PAMPs),
which are highly conserved components derived from bacte-
ria, viruses, fungi, and parasites [17]. Studies show that TLRs
are the most important sensors to parasite components dur-
ing Schistosoma mansoni infection [18, 19]. Although TLRs
are predominantly expressed in innate immune cells, such
as dendritic cells, macrophages, and natural killer (NK) cells
[20]. TLRs have also been detected in T cells [21] and were
found to be able to modulate the function of T lymphocytes
[22]. For example, the report by Lee et al. indicated that
TLR2 was constitutively expressed on Listeria-specific mem-
ory CD8+ T cells [23]. In addition, Caron et al. reported that
effector memory T cells exhibit an enhanced response to TLR
activation and are more sensitive to TLR-mediated activation
than naive CD4+ T cells [24].

Among all the TLRs identified, TLR7 is an intracellular
member of the innate immune receptor that recognizes
intracellular single-stranded and double-stranded RNA
[25]. It was reported that TLR7 was involved in the prog-
ress of autoimmune disease [26], graft-versus-host disease
[27], and infectious diseases [28]. For example, TLR7 could
be detected on different CD4+ and CD8+ T cell subpopula-
tions from blood of hepatitis C virus infected patients by
flow cytometry [29]. Resiquimod (R848), a TLR7 and
TLR8 agonist, could not only induce immune response as
an adjuvant [30], but also blocks virus replication by
inducing the antiviral protein viperin [31]. To date, how-
ever, the exact role of the TLR7 in S. japonicum infection
remains elusive. In this study, we utilized both in vivo
TLR7 gene knockedout (KO) mice and in vitro schisto-
some worm (SWA)- and egg (SEA)-stimulated mesenteric
lymphocytes to investigate the roles of TLR7 on T cells

residue in the mesenteric lymph node (MLN) in the course
of S. japonicum infection.

2. Materials and Methods

2.1. Ethics Statement.Animal experiments were performed in
strict accordance with the Regulations for the Administration
of Affairs Concerning Experimental Animals (1988.11.1). All
protocols for animal use were approved to be appropriate
and humane by the Institutional Animal Care and Use
Committee of Guangzhou Medical University (2012-11).

2.2. Mice, Parasites, and Infection. Sixty female C57BL/6
mice, 6 to 8 weeks old, weighted 20-25 g, were purchased
from Guangdong Medical Laboratory Animal Center
(Guangzhou, China), and TLR7 KO mice were purchased
from the Jackson Laboratory (B6.129S1-Tlr7tm1Flv/J, strains:
008380). All mice were maintained in a specific pathogen-
free microenvironment (SPF) at the Laboratory Animal
Centre, Guangzhou Medical University. Mice were fed with
standard diet, allowed ad libitum access to food and water
and taken care of on a 12 h light-dark cycle. S. japonicum cer-
cariae were shed from naturally infected Oncomelania
hupensis snails, which were purchased from Jiangsu Institute
of Parasitic Disease (Wuxi, China). There are 3 groups of
mice in this study. 40 C57BL/6mice were divided into normal
and infected group randomly, twenty mice per group. 20
C57BL/6 mice in the infected group and 10 TLR7 KO mice
(TLR7 KO group) were infected percutaneously with 40 ± 5
cercariae and sacrificed at 6 weeks after infection; 10 uninfec-
tedTLR7 KO mice were served as control, too. The animal
experimentswere performed in strict accordancewith the reg-
ulations for the Administration of Affairs Concerning Exper-
imental Animals, and all efforts were made to minimize
suffering. The bodies of themicewere frozen in -20°Cand sent
to the Laboratory Animal Centre of Guangzhou Medical
University after the experiment.

2.3. Antibodies. FITC-conjugated anti-mouse CD8 (53-6.7),
PerCP-cy5.5-conjugated anti-mouse CD4 (RM4-5), PE-
conjugated anti-mouse CD25 (3C7), APC-conjugated anti-
mouse CD69 (H1.2F3), APC-conjugated anti-mouse CD3
(145-2C11), APC-cy7-conjugated anti-mouse CD3 (145-
2C11), PE-conjugated anti-mouse TLR4 (MTS510), APC-
conjugated anti-mouse IFN-γ (XMG1.2), PE-conjugated
anti-mouse IL-4 (11B11), and APC-conjugated anti-mouse
TLR3 (11F8) were purchased from BD Pharmingen (San
Diego, CA, USA). FITC-conjugated anti-mouse TLR2 (T2.5)
and FITC-conjugated anti-mouse CD127 (ATR34) were pur-
chased from Bio-Legend (San Diego, CA, USA). Purified
anti-mouse CD3 (145-2C11) and anti-mouse CD28 (37.51)
were purchased from BD Pharmingen (San Diego, CA, USA).

2.4. SEA and SWA Preparation. SEA and SWAwere obtained
from the Jiangsu Institute of Parasitic Diseases as previously
described [32]. In brief, SEA and SWA were sterile filtered
and the endotoxin was removed with polymyxin B agarose
beads (Sigma-Aldrich). A Limulus amebocyte lysate assay
kit (Lonza, Basel, Switzerland) was used to confirm the
removal of the endotoxin from SEA and SWA.
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2.5. Isolation of Lymphocytes. At 6 weeks after infection, the
mice were sacrificed by cervical dislocation in laboratory,
and the mesenteric lymph nodes (MLN) were harvested
[11, 12]. A 100μm cell strainer (BD, CA, USA) was used
for preparing the single cell suspensions. The isolated cells
were washed twice in Hanks’ balanced salt solution, stained
by 0.4% trypan blue (Guangzhou chemical reagent factory),
and counted under a microscope (the rate of ling cell >98%).
The cells were resuspended and adjusted to 2 × 106 cells/ml in
complete RPMI-1640 medium supplemented with 10% heat-
inactivated fetal calf serum, 100U/ml penicillin, 100μg/ml
streptomycin, 2mm glutamine, and 50μm 2-mercaptoethanol.

2.6. Total RNA Isolation and Quantitative Real-Time PCR
(qRT-PCR). 2 × 106 cells from LN of both infected and nor-
mal groups were collected. Total RNA was isolated from
the MLN cells of infected and normal mice using the TRIzol
Reagent (Invitrogen Life Technologies, Carlsbad, CA, USA),
following the manufacturer’s instructions. The relative
expression of each TLR mRNA was determined by real-
time PCR using the ABI Prism 7500 Real-Time PCR
System (Life Technologies) with SYBR ® Premix Ex Taq II
(Tli RNaseH Plus) (Takara), according to the manufacturer’s
instructions. The cycle threshold (Ct) numbers were derived
from the exponential phase of PCR amplification. The
cDNAs were amplified under conditions of initial denatur-
ation at 95°C for 10 minutes, followed by 40 cycles with
denaturation at 95°C for 15 seconds, annealing at 60°C
for 30 seconds, and extension at 72°C for 30 seconds.
The levels of TLR2, TLR3, TLR4, and TLR7 transcripts
were normalized to β-actin transcripts, using the relative
quantity ðRQÞ = 2−△Ct method:

The primers were synthesized from Invitrogen
(Shanghai, China) as follows: for β-actin, 5-CCGTAAAGA
CCTCTATGCCAAC-3 (forward) and 5-GGGTGTAAAAC
GCAGCTCAGTA-3 (reverse); for TLR2, 5-AAGATGTCG
TTCAAGGAGGTGCG-3 (forward) and 5-ATCCTCTGA
GATTTGACGCTTTG-3 (reverse); for TLR3, 5-CCTCTT
CATAATCAGCACCAG-3 (forward) and 5-CCAAGAATC
CGATGCACTGA-3 (reverse); for TLR4, 5-ACCTGGAAT
GGGAGGACAATC-3 (forward) and 5-AGGTCCAAGTT
GCCGTTTCT-3 (reverse); and for TLR7, 5-CCACATTCA
CTCTCTTCATTGG-3 (forward) and 5-GGTCAAGAACT
TCCAGCCTG-3 (reverse).

2.7. ELISA Detection of Cytokines. Single cell suspensions
from the normal, infected, and TLR7 KO group were
prepared, respectively. Cells were plated in 96-well plates at
4 × 105 cells/200μl medium per well and cultured for 72 h
at 37°C with 5% CO2 in the presence or absence of anti-
CD3 mAb (1μg/ml) plus PAMPs (PGN, 10μg/ml, Poly I:C
25μg/ml, LPS 1μg/ml, or R848 2μg/ml) or not. The superna-
tants were collected 72 h later and the released cytokines were
measured using mouse ELISA kits for IFN-γ (R&D Systems
Inc., Minneapolis, MN, USA) and IL-4 (BD Pharmingen,
Franklin Lakes, NJ, USA). ELISAs were performed in
accordance with the manufacturer’s instructions. The optical
density of each well was read at 450nm using a microplate

reader (Model ELX-800; BioTek Instruments Inc., Winooski,
VT, USA).

2.8. Cell Surface and Intracellular Cytokine Staining (ICS).
For cell surface staining, single cell suspensions from the
MLN of the normal group, infected group, and TLR KO
group were washed twice in PBS contained 0.5% BSA and
then stained for 30min at 4°C in the dark with conjugated
antibodies specific for the cell surface antigens CD3, CD4,
CD8 CD25, CD69, TLR2, and TLR4. Cells were washed twice
in PBS, fixed with 4% paraformaldehyde, and permeabilized
overnight at 4°C in PBS buffer containing 0.1% saponin
(Sigma), 0.1% BSA, and 0.05% NaN3. The cells were then
stained for 30min at 4°C in the dark with conjugated anti-
bodies specific for TLR3 and TLR7. Stained cells were washed
twice and detected by using flow cytometry (Cytoflex,
Beckman Coulter, USA) and data were analyzed by the pro-
gram CytExpert 1.1 (Beckman Coulter, USA).

For intracellular cytokine staining, single cell suspensions
from the MLN of control mice and mice infected with
S. japonicum were stimulated with TLR ligands (PGN
10μg/ml, Poly I:C 25μg/ml, LPS 1μg/ml, or R848 2μg/ml)
plus 1μg/ml anti-CD3 for 5 h at 37°C under a 5% CO2 atmo-
sphere. Brefeldin A (1μg/ml, Sigma) was added during the
last 4 h of incubation. The cells were washed twice in PBS
and stained for 30min at 4°C in the dark with conjugated
antibodies specific for the cell surface antigens CD3, CD4,
and CD8. The cells were washed twice in PBS, fixed with
4% paraformaldehyde, and permeabilized overnight at 4°C
in PBS buffer containing 0.1% saponin (Sigma), 0.1% BSA,
and 0.05% NaN3. The cells were then stained for 30min at
4°C in the dark with conjugated antibodies specific for the
intracellular IFN-γ and IL-4. Stained cells were washed twice
and detected by using flow cytometry (Cytoflex, Beckman
Coulter, USA), and data were analyzed by the program
CytExpert 1.1 (Beckman Coulter, USA).

2.9. Statistics. Data from each group were analysed using
SPSS (v11.0). Statistical evaluation of the difference between
means was performed by unpaired, two-tailed Student’s
t-tests; P < 0:05 was considered to be significant.

3. Results

3.1. Accumulation of CD3+ T Cells in Infected Mesenteric
Lymph Nodes. Six weeks after infection, the mice were sacri-
ficed, and MLNs were harvested. Compared to the normal
group, the infected MLN had significantly increased in size
(Figure 1(a)). Single mononuclear cell solutions were pre-
pared and stained by trypan blue; the living cells were
counted. The average number of cells in nontreated MLN
was ð12:88 ± 3:26Þ × 106. This number significantly increased
to ð22:54 ± 5:90Þ × 106 after 6 weeks of infection (Figure 1(b),
P < 0:01).

To investigate whether MLN T cells were involved in the
host response to S. japonicum infection, mononuclear cells
from normal or infected mouse MLN were stained by
fluorescence-labeled anti-CD3 antibody and were detected
by FACS (Figure 1(c)). As shown in Figure 1(d), the
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percentage of CD3+ T cells in infected mouse MLN was
46:76 ± 8:43%, which was lower compared to normal mice
(70:9 ± 6:31%, P < 0:01). However, because of the number
of MLN mononuclear cells in response to infection dra-
matically increased, the absolute number of MLN CD3+

T cells was obviously increased after infection (P < 0:05,
Figure 1(e)).

CD25 and CD69 were classic markers for T cell activation
[33]. To detect the degree of activation, the expression of
CD25 and CD69 on CD3+ T cells was detected by the cell sur-
face staining. As shown in Figure 1(f), the expression of CD69
on the CD3+ cells after infection (31:87 ± 9:58%) was signifi-
cantly higher than normal mice (12:26 ± 2:54%, P < 0:05,
Figure 1(g)). However, no significant change was found in
the population of CD3+CD25+ T cells (P > 0:05, Figure 1(g)).

3.2. Expression of TLRs in S. Japonicum-Infected Mouse
MLN. To explore the expression changes of TLRs in the
S. japonicum-infected mouse MLN, we isolated MLN from
both normal and infected mice and performed the qRT-
PCR. The expression of TLR2, TLR3, TLR4, TLR7, and
β-actin genes was detected as described in Materials and
Methods. As shown in Figures 2(a) and 2(b), the amount of
TLR7 mRNA in infected mice (2:040 ± 0:2062) was higher
than that in nontreated mice (1:327 ± 0:1436, P < 0:05).
Although there were also changes in the expression of TLR2,
TLR3, and TLR4, the difference was not statistically signifi-
cant (P > 0:05).

Moreover, the frequency of TLR2, TLR3, TLR4, and
TLR7 on CD3+, CD4+, and CD8+ T cells was detected by flow
cytometry after staining with specific antibodies as described
in Materials and Methods. Results (Figures 2(c) and 2(d))
showed that the percentages of TLR7+ cells in the infected
mice were higher than normal on CD3+, CD4+, and CD8+

T lymphocytes (CD3: 9:9 ± 0:86% vs. 5:25 ± 0:91%; CD4:
6:62 ± 0:96% vs. 3:21 ± 0:43; CD8: 3:12 ± 0:25% vs. 1:65 ±
0:7%, P < 0:05). There was no significant difference on

frequency of the rest of TLRs between the two groups,
except TLR2 on CD8+ T lymphocytes (1:51 ± 0:26% vs.
0:63 ± 0:18%, P < 0:05).

3.3. IFN-γ and IL-4 Induced by TLR Agonists. To explore the
roles of TLRs in the function of T cells, the suspensions of sin-
gle mononuclear cells from the MLN of normal and infected
mice were cultured with PGN, Poly I:C, LPS, or R848, respec-
tively, with or without anti-CD3 Ab, and the expression of
cytokines was detected by ELISA. As shown in Figure 3(a),
R848 showed a strong effect in promoting the production of
IFN-γ and IL-4 from infected mouse MLN cells (IFN-γ:
19:59 ± 1:00 pg/ml vs. 5:54 ± 0:21 pg/ml, IL-4: 70:39 ± 6:82
pg/ml vs. 33:37 ± 5:52 pg/ml, P < 0:05). This effect was obvi-
ous in the presence of anti-CD3 Ab (IFN-γ: 826:31 ± 54:07
pg/ml vs. 365:36 ± 52:31 pg/ml, IL-4: 132:02 ± 32:40 pg/ml
vs. 65:37 ± 11:71 pg/ml, P < 0:05, Figure 3(b). When the cells
were stimulated by LPS, PGN, or Poly I:C alone, little IFN-γ
and IL-4 were induced (Figure 3(a)). With the stimula-
tion by the CD3 antibody, LPS could induce a higher
level of both IFN-γ (167:55 ± 40:94 pg/ml) and IL-4
(165:34 ± 22:23 pg/ml) in infected mouse cells than in
the normal control (76:50 ± 16:26 pg/ml; 34:73 ± 6:69 pg/ml,
P < 0:05, Figure 3(b)). PGN or Poly I:C-stimulated T cells
could induce IFN-γ in infected mouse MLN cells, com-
pared to normal control (PGN: 37:38 ± 6:14 pg/ml vs.
9:43 ± 0:06 pg/ml; Poly I:C: 32:98 ± 2:12 pg/ml vs. 21:30 ±
3:09 pg/ml, P < 0:05, Figure 3(a)). The same trend was
observed in IL-4 production (PGN: 68:43 ± 5:44 pg/ml
vs. 33:00 ± 9:90 pg/ml; Poly I:C: 57:72 ± 6:02 pg/ml vs.
33:03 ± 0:73 pg/ml, P < 0:05, Figure 3(b)).

Furthermore, MLN lymphocytes isolated from normal
and infected C57BL/6 mice were stimulated by anti-CD3
Ab plus TLR agonists for 5 hours, and the IFN-γ and IL-4
expression on CD4+ T cells or CD8+ T cells was detected by
FACS (Figure 3(c)). As shown in Figure 3(d), the percentage
of IL-4+CD4+ T cells and IFN-γ+CD8+ T cells in infected
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Figure 1: Schistosoma japonicum infection promotes CD3+ T cell accumulation in mesenteric lymph nodes. Female C57BL/6 mice were
infected with 40 ± 5 S. japonicum cercariae per mouse. The mice were sacrificed 6 weeks after infection. The tissues and single cell
suspensions were harvested. (a) Representative images of mesenteric lymph nodes. (b) Single mononuclear cell solutions were stained by
trypan blue, and the absolute numbers were counted under a microscope (15/20). (c) Flow cytometric analysis of CD3 expression in MLN
cells of normal and infected mice is shown. (d) Average percentages of CD3+ T cells were calculated from the FACS analysis
(15/20). (e) The absolute number of CD3+ T cells evaluated by flow cytometry after staining with specific antibodies (15/20). (f) Flow
cytometric analysis of CD25 and CD69 expression in MLN cells is shown. The numbers represent the expression of cells in each subset.
(g) Average percentages of CD25 and CD69 expressions in the CD3+ T cells were calculated from FACS data. Data was from three
independent experiments with 5 mice per group and shown as the mean ± SEM. ∗P < 0:05, ∗∗P < 0:01.
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mice was higher than that in normal mice, significantly
(P < 0:05). After infection, CD4+ T cells displayed an
increased capacity in producing IFN-γ also. The expression

of IL-4 in CD8+ T cells from the infected MLNs was slightly
increased compared with the normal MLNs. However,
the difference was not significant (P > 0:05, Figure 3(e)).
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Figure 2: Expression of TLRs in the MLN of S. japonicum-infected mouse. Six weeks after S. japonicum infection, the mice were sacrificed.
Single mononuclear cell suspensions from normal and infected mice were prepared as described in Materials and Methods. Total RNA was
collected and purified, and cDNA was synthesized. (a, b) The relative mRNA expression of TLRs and β-actin genes was detected. Data was
from three independent experiments with 5 mice per group and shown as themean ± SEM. ∗P < 0:05, nsP > 0:05. (c, d) Single cell suspensions
of MLN cells were prepared, and the expression of TLR2, TLR3, TLR4, and TLR7 on CD4+ or CD8+ T cells was detected by flow cytometry
after staining with specific antibodies. (c) The numbers represent the expression of cells in each subset. (d) Average percentages of TLR2,
TLR3, TLR4, and TLR7 on CD4+ or CD8+ T cells were calculated from FACS data. Three independent experiments (5–6 mice per group)
were performed, and one representative result is shown. ∗P < 0:05, nsP > 0:05.
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Figure 3: Continued.
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When compared to cells stimulated by anti-CD3 Ab alone,
R848 induced a significant increase in the percentage of
IFN-γ+CD8+ T cells (Figure 3(e), P < 0:05).

3.4. Phenotypic and Functional Changes of CD4+ and
CD8+ T Cells from MLN of S. Japonicum-Infected TLR7
KO Mice. T lymphocytes were isolated from wild-type nor-
mal (WT-N), TLR7 knockout normal (TLR7-N), wild-type
infected (WT-INF), and TLR7 knockout infected (TLR7-
Inf) mice separately. The single cell solutions were prepared.
The expression of CD25 and CD69 on both CD4+ and CD8+

T cells was detected by the means of cell surface staining as
shown in Figure 4(a). The expressions of CD25 (CD4:
WT-INF: 28:53 ± 4:08%, TLR7-INF: 15:85 ± 1:97%, P < 0:05;
CD8: WT-INF: 16:07 ± 1:57%, TLR7-INF: 6:72 ± 1:17%,
P < 0:01) and CD69 (CD4: WT-INF: 39:61 ± 4:33%,
TLR7-INF: 21:94 ± 2:6%, P < 0:05; CD8: WT-INF: 28:2 ±
1:562%, TLR7-INF: 13:12 ± 1:74%, P < 0:01) from infected
TLR7 KO mice were much lower than the WT-INF group
on both CD4+ and CD8+ T lymphocytes (Figure 4(b)). It
is suggesting the knockout of TLR7 influenced activation
of T lymphocytes.

In the same time, cells were stimulated by PMA plus
ionomycin; the expression of IFN-γ and IL-4 on both CD4+

and CD8+ T cells was detected by the means of intracellu-
lar cytokine staining as showed in Figure 4(c). Production
of IFN-γ secreted by CD4 and CD8 T lymphocytes from
wild-type infected mice were 3:4 ± 0:6% and 18:57 ± 1:45%,
which were much higher than TLR7-INF (CD4: 1:27 ±
0:15%; CD8: 8:38 ± 1:72%, P < 0:05). Secretion of IL-4 of
T lymphocytes from the WT-INF group (CD4: 8:01 ±
1:23%; CD8: 2:1 ± 0:23%) was also higher than TLR7-
INF (CD4: 1:43 ± 0:48%; CD8: 0:94 ± 0:14%, P < 0:05)
after infection (Figure 4(d)).

Moreover, lymphocytes from MLN were cultured with
stimulation of SEA, SWA, or CD3, respectively, with CD28
for 72 hours. The concentration of IFN-γ (Figure 4(e)) and
IL-4 (Figure 4(f)) in the supernatant of cultured cells was
detected by ELISA. Results are shown in Figure 4(c); the pro-
duction of IFN-γ (SEA: WT-INF: 61:78 ± 15:86 pg/ml,
TLR7-INF: 21:8 ± 3:42 pg/ml, P < 0:05; SWA: WT-INF:
44:42 ± 3:33 pg/ml, TLR7-INF: 32:02 ± 2:35 pg/ml, P < 0:05)
and IL-4 (SEA: WT-INF: 148:8 ± 19:41 pg/ml, TLR7-INF:
73:49 ± 14:27 pg/ml, P < 0:05; SWA: WT-INF: 98:92 ±
19:17 pg/ml, TLR7-INF: 42:09 ± 9:35 pg/ml, P < 0:05) from
T lymphocytes of infected TLR7 knockout mice stimu-
lated with SEA and SWA was less than the infected
wild-type mice.
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Figure 3: Role of TLR agonists in inducing IFN-γ and IL-4. Single mononuclear MLN cell suspensions of normal and infected mouse were
prepared and cultured in vitro with PGN, PolyI:C, LPS, and R848, with or without anti-CD3 Ab. 72 h later, the concentration of IFN-γ (a) and
IL-4 (b) in the supernatants of cultured cells was detected by ELISA. The MLN lymphocytes isolated from normal and infected mice were
stimulated by PGN, Poly I:C, LPS, and R848, with anti-CD3 Ab. The expression of INF-γ and IL-4 on CD4+ or CD8+ T cells in normal
and infected mouse was detected by flow cytometry. (c) The numbers represent the expression of cells in each subset. The average
percentages of INF-γ and IL-4 in CD4+ (d) or CD8+ (e) T cells were calculated from the FACS analysis. Three independent experiments
(5–6 mice per group) were performed, and one representative result is shown. ∗P < 0:05, ∗∗P < 0:01, nsP > 0:05.
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4. Discussion

In S. japonicum infection, T cells, stimulated mainly by the
soluble adult worm antigens and soluble egg antigens of
S. japonicum, were believed to play an important role in
the infection-induced pathogenic immune response [11, 34].
In this study, the bigger size of MLN, which con-
tained a greater number of CD3+ T cells, was found in the
S. japonicum-infected B6 mouse. These results suggested that
S. japonicum infection could induce strong immune response
in intestinal tract. CD25 and CD69 were classic markers for
T cell activation [33], though CD4+CD25+foxp3+ T cells
were served as nature regulatory T cells (Treg) [35], and
CD69 was seem to be a marker for tissue resident memory
T cells (TRM) [36]. Higher percentages of CD25 and
CD69-expressing CD3+ T were found in the infected mouse
MLN. It further indicated that CD3+ T lymphocytes might be

a component of the immune response during S. japonicum
infection, as our previous study reported [12].

TLRs are the most well-described PRRs, which promote
both innate defense mechanisms and adaptive immune
responses to invasive pathogen infection [37]. Previous stud-
ies showed that TLR4 might be involved in the protection
against S. japonicum infection [19], and the absence of
TLR7 could influence the immune response against S. japoni-
cum infection [19]. In this study, higher expression levels of
TLR7 mRNA were found in infected MLN lymphocytes
(P < 0:05), which suggested that TLR7 might involved in
the infected-induced immune response in the lymph nodes.
Recently, Applequist and Mac Leod et al. reported the detec-
tion of TLRs expression on T cells [21] and the functional
roles of TLRs on the modulation of both CD4+ and CD8+

T lymphocytes [22]. Our FACS results showed that the
expressions of TLR2 in CD4+ T cells and TLR7 in CD4+
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Figure 4: Change in activation and function of T lymphocytes of MLN after TLR7 knockout. T lymphocytes were isolated from wild-type
normal (WT-N), TLR7 knockout normal (KO-N), wild-type infected (WT-infected), and TLR7 knockout infected (KO-infected) mice
separately. The single cell solutions were prepared. (a, b) The expression of CD25 and CD69 on both CD4+ and CD8+ T cells was detected
by the means of cell surface staining. (c, d) Cells were stimulated by PMA plus ionomycin; the expression of IFN-γ and IL-4 was detected
by the means of intracellular cytokines staining as described in Materials and Methods. (e, f) Cells were cultured with plus SEA,
SWA, and CD3, respectively, with CD28 for 72 hours. The concentration of IFN-γ and IL-4 was detected by the means of ELISA.
Three independent experiments (5–6 mice per group) were performed, and one representative result is shown. ∗P < 0:05, ∗∗P < 0:01,
nsP > 0:05.
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and CD8+ T cells from infected mouse were higher than that
in normal T cells (P < 0:05), especially the expression of
TLR7 (P < 0:05). This finding suggested that TLR7 might
have important effects directly on T cells in response to
S. japonicum infection.

The binding of TLRs with their specific ligands could ini-
tiate a signaling cascade that results in the secretion of cyto-
kines, which subsequently drives an inflammatory response
and activates the adaptive immune system [38]. As shown
in Figure 3, significant higher levels of IFN-γ and IL-4 could
be induced by R848-stimulated lymphocytes from infected
mice. It further confirmed that TLR7 played an important
role in S. japonicum infection-induced immune response.
It implied that many kinds of TLR7-expressing innate
immune cells played an important role in this progress.
Moreover, the ELISA and FACS results showed that TLR7
could help anti-CD3 antibody inducing IFN-γ releasing
and promoting the percentage of IFN-γ+CD8+ T cells dur-
ing S. japonicum infection. It implied that S. japonicum
infection could induce a Th1 immune response and CTL
activity through TLR7. Consistent with our results, the
levels of Th1 cytokines, TNF-α, and INF-γ in the superna-
tant of cultured spleen cells from TLR7-/- infected mice
were found lower than those of WT mice [19]. Similarly,
TLR7 was confirmed to promote Th1 polarization and
may thus contribute to the pathogenesis of immune throm-
bocytopenia [39].

In the same time, we found that in the infected mice, the
percentage of IFN-γ and IL-4 producing both CD4+ and
CD8+ T cells induced by CD3 plus R848 was similar to that
induced by CD3 plus CD28. However, significantly higher
level of IFN-γ and lower level of IL-4 were induced by CD3
plus R848 in the supernatant of cultured cells from infected
mice (P < 0:05). It meant that S. japonicum infection induce
TLR7-expressing innate cells in the mesenteric lymph nodes
apt to induce Th1 response.

Previous study, however, showed S. japonicum infection
could induce a Th2-dominant immune response in the body
[40]. To further evaluate the role of TLR7 in S. japonicum
infection in the induction of T cell response in MLN, we per-
formed further phenotypic and functional characterization of
CD4+ and CD8+ T cells from both TLR7 KO mice and cul-
tured lymphocytes. As showed in Figure 4, results indicated
that decreased CD25, CD69, IFN-γ, and IL-4 expressed on
CD4+ and CD8+ T cells from MLN of S. japonicum-infected
TLR7 KO mice (P < 0:05). In the same time, ELISA results
showed that both SEA- and SWA-specific IFN-γ and IL-4
decreased significantly in culture lymphocytes from MLN
of S. japonicum-infected TLR7 KOmice (P < 0:05). Together,
these findings imply that the effect of TLR7 might only play
an early or limited effect on T cell responses in the course
of S. japonicum infection.

In conclusion, this study indicated that S. japonicum
infection could induce TLR7 expression in both CD4+ and
CD8+ T cells of the MLN in C57BL/6 mice, and importantly,
the alteration of TLR7 mediates T cell response in the early
phase of infection. Further clinic investigations are warranted
to define the roles of TLR7 in human host infection of
S. japonicum.
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