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Abstract

Genome sequencing has identified an extensive repertoire of single nucleotide polymorphisms among clinical isolates of

Mycobacterium tuberculosis, but the extent to which these differences influence phenotypic properties of the bacteria remains to

be elucidated. To determine whether these polymorphisms give rise to phenotypic diversity, we have integrated genome data sets

withRNAsequencingtoassess their impactonthecomparative transcriptomeprofilesof strainsbelongingtoM.tuberculosisLineages

1 and 2. We observed clear correlations between genotype and transcriptional phenotype. These arose by three mechanisms. First,

lineage-specificchanges inaminoacid sequenceof transcriptional regulatorswereassociatedwithalterations in their ability tocontrol

gene expression. Second, changes in nucleotide sequence were associated with alteration of promoter activity and generation of

novel transcriptional start sites in intergenic regions and within coding sequences. We show that in some cases this mechanism is

expected to generate functionally active truncated proteins involved in innate immune recognition. Finally, genes showing lineage-

specificpatternsofdifferential expressionnot linkeddirectly toprimarymutationswerecharacterizedbya strikingoverrepresentation

of toxin–antitoxin pairs. Taken together, these findings advance our understanding of mycobacterial evolution, contribute to a

systems level understanding of this important human pathogen, and more broadly demonstrate the application of state-of-the-art

techniques to provide novel insight into mechanisms by which intergenic and silent mutations contribute to diversity.
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Introduction

Whole-genome sequencing demonstrates that patient isolates

of Mycobacterium tuberculosis complex (MTBC) can be distin-

guished from each other by single nucleotide polymorphisms

(SNPs) (Comas et al. 2010), allowing construction of a robust

phylogeny comprising six genetically distinct lineages primarily

associated with human tuberculosis (TB) (Hershberg et al.

2008; Comas and Gagneux 2009; Comas et al. 2010).

However, the extent to which the genotypic diversity amongst

clinical isolates influences phenotypic properties of the bacte-

ria remains to be determined. The high frequency of nonsy-

nonymous compared with synonymous changes suggests that

SNPs are under relatively little constraint from purifying selec-

tion (Hershberg et al. 2008), raising the possibility that they

may have phenotypic consequences for the bacteria.

Here, we explored this hypothesis by undertaking a com-

bined genome and transcriptome comparison of strains
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belonging to two MTBC lineages, Lineages 1 and 2. Lineage 1

accompanied the early out-of-Africa migration of anatomically

modern humans and has been classed as one of the evolu-

tionarily “ancient” lineages (Hershberg et al. 2008). Lineage 2

is a “modern” lineage. It initially emerged in Asia and includes

the “Beijing family” of strains (Parwati et al. 2010), which is of

interest in the context of its high virulence in animal models

(Coscolla and Gagneux 2010), its recent spread in human

populations (Cowley et al. 2008), and its association with

multidrug resistance (Borrell and Gagneux 2009).

Materials and Methods

Genome Data Set

Previously sequenced strains were accessed from publicly

available databases (EBI ENA) and previously published work

(Comas et al. 2010).

Genome Sequencing

Genomic DNA for N0031 was extracted using the cetyltri-

methylammonium bromide method described previously

(van Soolingen et al. 1991), and 2mg DNA was used for se-

quencing on the Illumina platform. Sequencing libraries were

constructed using the Epicentre Nextera DNA kit according to

manufacturer’s instructions. Paired-end 75 base read se-

quencing was performed on a single lane as part of a multi-

plexed run. In total, 10.6 million reads were generated,

corresponding to an average sequence depth of 180 reads.

Mapping Genome Data and SNP and Indel Calling

MAQ (Li et al. 2008) was used to map reads to the most recent

common ancestor of the MTBC (Comas et al. 2010). This se-

quence is based on the H37Rv genome (AL123456) but

substituting H37Rv alleles by those in the common ancestor

of the lineages. Default MAQ parameters were used, remov-

ing SNPs with a Phred score <30, read depth <5, and non-

unique matches. A nonredundant list of variable positions

called with high confidence in at least one strain was con-

structed and used to recover the base call in all other strains.

SNPs and indels called within repetitive regions (genes anno-

tated as PE/PPE/insertions/phages) were removed.

Phylogenetic Analysis

Phylogenetic analysis was based on the high confidence SNPs,

consisting of 13,086 variable genomic positions. A neighbor-

joining tree based on a concatenate of these positions was

generated with MEGA (Tamura et al. 2011), using 1,000

bootstrap replications and observed number of substitutions

as a measure of genetic distance. In cases where SNP calls

were missing from individual strains, pairwise deletion was

performed and missing data in the comparison ignored.

Predicting the Functional Effect of Mutations

SNPs were categorized as nonsynonymous or synonymous

using snpEff (Cingolani et al. 2012). We used the Sorting

Intolerant From Tolerant (SIFT) algorithm to predict nonsynon-

ymous SNPs likely to affect protein function based on

sequence homology (Ng and Henikoff 2003). Briefly, SIFT

looks for homologs in other bacteria of the gene of interest

and 1) scores the conservation of the positions where muta-

tions are found and 2) weights this score by the nature of the

amino acid change. These measures are incorporated into a

normalized probability score, and a SIFT score�0.05 indicates

predicted functional impact. The recommended >3.5 conser-

vation threshold was used to filter biased predictions. All avail-

able non-MTBC complete mycobacterial genomes were used

for the Blast database (N¼ 13). Prediction of SNPs that cause a

destabilization of the protein structure was made using

CUPSAT (Parthiban et al. 2006). CUPSAT predicts the

change in free energy of protein unfolding between wild-

type and mutant proteins (��G). Protein stability is categor-

ized as destabilizing (���G), neutral (0 ��G), or stabilizing

(+��G); changes in stability of<0.5 ��G are not significant.

Where existing protein structures were not available, homol-

ogy modeling was performed and the highest confidence

model (>99%) with the greatest coverage chosen (Kelley

and Sternberg 2009). Construction of homology models

that covered the SNP position was not possible for four

regulators.

RNA-seq Strains and Culture Conditions

Representative genome sequenced strains from Lineages 1

and 2 were selected based on the greatest within-lineage

SNP distances. Strains were as follows: Lineage 1—N0072,

N0153, N0157; Lineage 2—N0145, N0052, N0031. Single

colony bacterial stocks were grown in Middlebrook 7H9 sup-

plemented with 0.5% glycerol, 10% Middlebrook ADC, and

0.05% Tween-80 in roller bottle culture. Exponential phase

cultures were harvested at an optical density of 0.4–0.8

(OD600); growth curves were performed to ensure calibration

of exponential growth phase of the clinical strains. Stationary

phase cultures were harvested 1 week after the cultures

reached 1.0 OD600 as defined previously (Arnvig et al. 2011).

RNA-seq

Isolation of RNA was performed using the FastRNA Pro blue kit

from QBiogene/MP Bio according to manufacturer’s instruc-

tions. Cultures were first rapidly cooled by addition of ice di-

rectly to the culture prior to centrifugation. All RNA samples

were treated with Turbo DNase free (Ambion) until any DNA

contamination removed. Concentration and quality control of

RNA samples was measured by Nanodrop (ND-1000, Labtech)

and Agilent RNA chip (2100 Bioanalyser). Construction of

strand-specific cDNA libraries was carried out with 2–3mg

total RNA using the Illumina directional mRNA-Seq protocol
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(Part # 15018460 Rev. A), but with exclusion of polyA-tail and

size selection to capture all RNA species. Terminator-50-phos-

phate-dependent exonuclease (Epicentre Biotechnologies)

was used to deplete processed RNAs in cDNA samples used

in transcriptional start site (TSS) mapping analysis (Vertis

Biotechnologie AG). Single-end read sequencing was per-

formed on Illumina Genome Analyser (GA) and HiSeq (HS)

sequencers, using a single flow cell lane per library. Supple-

mentary table S3, Supplementary Material online, details run

metrics.

Raw RNA-seq Read Filtering and Mapping

Raw reads were first filtered to discard low-quality reads and

FastQC (Babraham Bioinformatics) used to inspect read base

qualities. Poor-quality reads were trimmed using the SolexaQA

package (Cox et al. 2010) using default parameters, trimming

bases with confidences P> 0.05, and removing reads <25

bases. A reference-based assembly using the reference

genome H37Rv was performed using the Burrows–Wheeler

Alignment (BWA) tool (Li and Durbin 2009).

TSS Mapping

Custom Perl scripts were written for TSS calling. Briefly, the

increment in reads from one genome position to the next

consecutive base was calculated for all genomic positions,

with an increment significantly above the average background

coverage defined as candidate TSS. TSS peak height was con-

sidered as representative of the level of expression of the TSS.

To build a genome-wide TSS map for M. tuberculosis, auto-

mated annotation of the putative TSS detected according to

genomic distribution was performed similar to Sharma et al.

(2010).

Transcriptome Clustering

Hierarchical cluster analysis of the transcriptomes was per-

formed using the hclust function in R (R Development Core

Team 2008) by the complete linkage method. Spearman dis-

tances were calculated from the dissimilarity matrix of pairwise

correlations of total gene expression (N¼ 4,015 genes), ex-

pressed as Reads Per Kilobase per Million mapped reads

(RPKM). Clade support using 1,000 bootstrap replications

was performed using the R function pvclust.

Lineage Differential Expression

Genome coverage of reads mapping to genes, antisense, and

sRNAs were calculated using BEDtools (Quinlan and Hall

2010). Statistical testing for differential expression was per-

formed using DESeq (Anders and Huber 2010), a method

based on the negative binomial distribution and implemented

in the R statistical environment (R Development Core Team

2008). Raw reads were normalized using DESeq to adjust for

differences in library sizes; figures displaying quantified RNA

expression levels are based on this normalization. Reads from

technical replicates were combined and treated as one

sample. Gene deletions at either strain or lineage level were

removed from the analysis by a Perl script (N¼223 genes);

deletions were identified based on genome coverage using

the respective strains genome, with a threshold of <90%

gene coverage to define a deletion. Read counts were nor-

malized using DESeq. Normalized expression of features (an-

notated genes, antisense, or sRNAs) that overlapped with

strains from different lineages due to strain-specific expression

were filtered and removed, with 1,606 features entered into

the analysis. For the purpose of testing for lineage-specific

differential expression in DESeq, strains from the same lineage

were treated as biological replicates and the mean expression

from the two lineages compared. Significant differential ex-

pression was defined as P<0.05 (P value adjusted for multiple

testing using Benjamini–Hochberg method). All heatmaps

were produced in R, using the fold change of normalized

reads versus mean expression of the six strains.

Quantitative Reverse Transcriptase-Polymerase Chain
Reaction

cDNA for quantitative reverse transcriptase-polymerase chain

reaction (qRT-PCR) was made using random primers and

Superscript III according to manufacturer’s instructions

(Invitrogen). qRT-PCR was carried out on a 7500 Fast Real-

Time PCR System (Applied Biosystems) using Fast SYBR Green

Master Mix (Applied Biosystems). Each 96-well plate consisted

of a closed experimental plate design, consisting of the six

RNA-seq study strains. RNA without RT (RT�) was analyzed

alongside cDNA (RT+). Standard curves were performed for

each gene analyzed and the cycle threshold values used to

quantify cDNA level. Data were averaged, adjusted for chro-

mosomal DNA contamination (RT+ minus RT�), and normal-

ized to corresponding 16S rRNA values. Three biological

replicates were tested in three independent qRT-PCR experi-

ments per gene.

Statistical Analysis

All w2 tests were two-tailed and performed using GraphPad

Prism v5.03c. Where multiple w2 tests were performed, mul-

tiple testing correction was applied using the false discovery

rate (FDR) method and implemented in R. Analysis of qRT-PCR

experiments were performed using two-tailed unpaired t-test.

For the rest of the analyses, only selected categories were

tested and no test for multiple correction was required.

Results

Genome Diversity

SNPs were identified in the genome sequences of 28 repre-

sentative human-associated MTBC isolates belonging to

Lineages 1–6 (fig. 1A). We focused the analysis on SNPs
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conserved among all strains from the same lineage (referred to

as “lineage-specific SNPs”), with inclusion of SNPs in the in-

ternal phylogenetic branch that defines the modern lineages

(Lineages 2, 3, and 4) (Hershberg et al. 2008). In total, there

were 2,772 SNPs (supplementary table S1, Supplementary

Material online), which were evenly distributed genome-

wide (fig. 1B). As previously described at the total genome

level (Fleischmann et al. 2002; Hershberg et al. 2008), more

nonsynonymous than synonymous SNPs were found in all lin-

eages (1.8�0.3 times more nonsynonymous SNPs), corre-

sponding to a mean of 64.2% coding SNPs resulting in

amino acid change. Grouping the genes by function, SNPs

were present across all functional categories, but a significantly

higher ratio of nonsynonymous SNPs (>3-fold) was detected

in the regulatory protein category (w2, P¼ 0.03) (table 1).

High Percentage of Predicted Functional SNPs

As an initial assessment of potential phenotypic consequences

associated with individual SNPs, we used a computational

method—SIFT (Ng and Henikoff 2003). This uses sequence

alignments of homologous proteins to predict amino acid sub-

stitutions likely to be tolerated without loss of function. We

identified 368 lineage-specific SNPs that were predicted to

impact protein function, out of 844 nonsynonymous SNPs

for which predictions could be made (table 1; complete list

DA

B C

FIG. 1.—The influence of genomic diversity at the transcriptomic level. (A) Neighbor-joining phylogeny based on 28 representative MTBC strains, using

13,086 variable positions. The six main lineages are named and branches colored as defined previously (Gagneux et al. 2006; Hershberg et al. 2008). Node

support after 1,000 bootstrap replications is shown on branches and the tree is rooted by the outgroup Mycobacterium canetti. (B) Genome distribution of

2,772 lineage-specific SNPs. Moving from the outer to innermost ring: forward (blue) and reverse (red) genes, lineage-specific SNPs (Lineage 6, 5, 1, 2, 3, 4).

(C) Percentage SIFT predicted functional nonsynonymous SNPs per lineage. (D) Unsupervised hierarchical clustering of total gene expression of all annotated

genes (4,015). Strain replicates are also shown (strain N0153, N0145, and N0031). Node support after 1,000 bootstrap replications is shown for each branch.

Rose et al. GBE

1852 Genome Biol. Evol. 5(10):1849–1862. doi:10.1093/gbe/evt138 Advance Access publication September 16, 2013

st
`
'
`
'
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt138/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt138/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt138/-/DC1
;
Sorting Intolerant From Tolerant (
)


in supplementary table S2, Supplementary Material online).

Functional SNPs were again distributed across all gene func-

tion categories. Broken down by lineage, an average of

44.4% of the nonsynonymous SNPs were predicted functional

(fig. 1C). Although significantly fewer predicted functional

(54, 14.7%) than tolerated (105, 22.7%) SNPs occurred

within genes classed as essential for growth on the basis of

transposon screens (w2, P¼ 0.003) (Sassetti and Rubin 2003;

Sassetti et al. 2003), this percentage (14.7%) may suggest a

false-positive error rate for the predictions. This is close to the

previously described error rate for SIFT (Ng and Henikoff

2003).

Functional Impairment of Transcriptional Regulators

To test for phenotypic consequences of predicted functional

mutations, we focused on nonsynonymous SNPs in genes

encoding transcriptional regulators in Lineages 1 and 2. We

identified 11 genes with lineage-specific SNPs predicted by

SIFT analysis as likely to impair protein function and a further

three genes with nonsense or frameshift insertion/deletion

(indel) mutations (table 2). We refined our prediction of func-

tional impairment by examining the location of each mutation

with respect to functionally important domains in the protein

(Punta et al. 2012) and the predicted effect on protein stability

(��G) using existing protein structures or homology models

(Parthiban et al. 2006; Kelley and Sternberg 2009). Five of the

SNPs were predicted by all three criteria to have a deleterious

impact and we classed these, together with frameshift muta-

tions and a protein truncation, as having a high likelihood of

causing functional impairment. Of the remaining six SNPs

highlighted by SIFT, two (in mprA and zur) occur in the

modern lineage branch, and so are present in M. tuberculosis

H37Rv, a common laboratory strain belonging to Lineage 4

(Hershberg et al. 2008; Comas et al. 2010). The observation

that deletion of the corresponding genes from H37Rv gener-

ates phenotypic changes (Maciag et al. 2007; Pang et al.

2007) suggests that the altered proteins retain biological

function and that these may represent false-positive SIFT

predictions.

To test our predictions, we compared transcriptional pro-

files of Lineage 1 and 2 strains by RNA sequencing (RNA-seq).

We anticipated that impaired protein function would result in

altered expression of genes encoding the transcription factors

themselves (in the case of autoregulated proteins) and/or their

regulated targets.

Transcriptome Diversity

Three strains were selected from different phylogenetic

branches of the lineages and total RNA extracted from expo-

nentially growing cultures was analyzed by RNA-seq (run de-

tails and complete data set of normalized read counts shown

in supplementary tables S3, S4, and S12, Supplementary

Material online). For two of the strains (Lineage 1 N0153

and Lineage 2 N0145), additional RNA-seq was performed

after a 50 phosphate-dependent exonuclease digestion step

to facilitate mapping of TSSs (full list in supplementary

table S5, Supplementary Material online) (Sharma et al.

2010). Transcriptome diversity paralleled genome diversity.

Figure 1D illustrates the relationship inferred by unsupervised

clustering of RNA-seq data, showing a close match to that

established by standard whole-genome-based phylogenetic

analysis (fig. 1A). Interestingly, RNA-seq data for the labora-

tory-adapted reference strain H37Rv grown in the same con-

ditions and growth phase (Arnvig et al. 2011) identified this as

an outlier from the clinical strains with respect to its transcrip-

tional profile (supplementary fig. S1, Supplementary Material

Table 1

Summary of SNP Distribution and SNP Predictions among Functional Categories for the Lineage-Specific SNPs

Lineage SNPs

Functional Categorya Nonsynon Synon Nonsynon/Synon �2 P Value Predicted Functional SNPsb

1,543 840 1.8 368

Information pathways 96 73 1.3 0.11 12

Lipid metabolism 168 99 1.7 0.63 66

Intermediary metabolism and respiration 394 237 1.7 0.40 88

Cell wall and cell processes 377 197 1.9 0.63 91

Conserved hypotheticals 343 174 2.0 0.63 63

Virulence, detoxification, adaptation 63 29 2.2 0.63 17

Regulatory proteins 102 31 3.3 0.03 31

Intergenic 382 N/A N/A N/A

NOTE.—A 3-fold overrepresentation of nonsynonymous (nonsynon) to synonymous (synon) SNPs was found within the category of transcriptional regulators (w2, P¼ 0.03).
aCategories are based on Tuberculist annotations.
bFunctional SNPs predicted using SIFT (SIFT score�0.05).
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online). Three transcriptomes were sequenced on further

technical runs, and expression between the technical repli-

cates was highly correlated (supplementary fig. S2, Supple-

mentary Material online).

A total of 112 genes were identified as having a lineage-

specific pattern of differential expression with fold change

ranging from 1.9 to 39.3 (based on a statistical cut-off of

P<0.05); 88 (78.6%) were higher in Lineage 1, and 24

(21.4%) more highly expressed in Lineage 2 strains (supple-

mentary table S6A; genes of particular interest are summa-

rized in supplementary table S7, Supplementary Material

online). Twenty-six of the genes were identified as differen-

tially expressed in previous microarray comparisons of ancient

versus modern lineages or M. tuberculosis H37Rv versus

Mycobacterium bovis (within Lineage 6) (Golby et al. 2007;

Homolka et al. 2010). A parallel analysis of antisense transcrip-

tion identified similar conservation by lineage (supplementary

fig. S3, Supplementary Material online), with a differential

expression pattern for 56 genes; 23 were higher in Lineage

1 and 33 in Lineage 2 (supplementary table S6B, Supplemen-

tary Material online).

Transcriptional Regulators

Three of the regulatory proteins with predicted functional

SNPs—Rv0275c, Rv3082c (VirS), and Rv3167c—were in-

cluded in the set of lineage-specific differentially expressed

genes (supplementary table S7A, Supplementary Material

online). VirS has previously been shown to act as an inhibitor

of its own transcription and as a positive regulator of the ad-

jacent divergently expressed MymA locus (Rv3083–3089)

(Singh et al. 2003). Consistent with its predicted functional

impairment by mutation of the helix-turn-helix (HTH) DNA-

binding domain, virS expression was 17-fold higher in

Lineage 1, with no effect on expression of MymA. Targets

of transcriptional regulators Rv0275c and Rv3167c are un-

known, but the proximity of TSSs suggests that binding of

the regulators to upstream sequences will repress transcription

of the adjacent divergent genes Rv0276 and Rv3168.

Expression of Rv0276 follows Rv0275c in being 10-fold

higher in Lineage 2, although it falls outside of the statistical

cut-off (P¼0.08), and Rv3178 expression is 5-fold higher in

Lineage 1 (P¼0.12). A frameshift mutation in Lineage 2 was

predicted to inactivate Rv3830c by generating a fusion with

Rv3829c. Although we observed no significant change in

expression of Rv3830c itself, 14-fold and 21-fold increased

expression of flanking genes (Rv3829c, a phytoene dehydro-

genase, and Rv3131, a hypothetical protein) in Lineage 2 sug-

gests that the functional protein may act as a repressor and

that this regulation is lost in the case of mutant allele.

We were unable to identify a lineage-specific transcrip-

tional signature for the remaining four regulators for which

we had predicted functional impairment (narL, blaI, sirR, and

kdpD). This may be due to an incorrect prediction or alterna-

tive culture conditions other than exponential growth, such as

the presence of beta-lactams (blaI) (Sala et al. 2009) or low

potassium (kdpD) (Walderhaug et al. 1992), may be required

to uncover defects in associated regulatory responses.

Table 2

Regulatory Proteins with Predicted Functional SNPs and Indels in Lineages 1 and 2

Gene Regulator Type SNPa Mutation Lineage SIFT Score Domain Protein Stabilityb

High predictive score

Rv0275 TetR T 331588 C L24S Modern 0.00 HTH �3.18

NarL 2-component regulator G 940602 C G169R 2 0.00 HTH �4.66

KdpD 2-component sensor Indel H67 frameshift 1 n/a 2-component sensor n/a

BlaI penicillinase repressor T 2096430 G L57R 1 0.05 HTH �8.72

SirR Fe-dependent repressor C 3097349 Q131X 1 n/a Fe-dependent repressor n/a

VirS AraC T 3447480 G L316R 1 0.01 HTH �2.03

Rv3167c TetR C 3536008 A P17Q 1 0.02 HTH -1.21

Rv3830c TetR Indel S208 frameshift fusion 2 n/a Low complexity n/a

Low predictive score

RamB HTH-XRE A 555945 G Q121R 1 0.02 Low complexity n/a

Rv0377 LysR G 455325 C R302P 2 0.00 Low complexity n/a

MprA 2-component regulator A 1097023 G S70G Modern 0.04 cheY +2.83

TcrS 2-component sensor C 1157771 G S62C 1 0.01 Low complexity n/a

Zur Fur G 2641840 A R64H Modern 0.02 HTH +0.47

Rv3736 AraC G 4187063 A G144R 1 0.01 Arabinose-binding n/a

NOTE.—High predictive score: SNPs map to HTH DNA-binding domains of regulator and predicted to cause a loss of protein stability. Low predictive score: SNPs outside
of HTH domain or in low-complexity regions and no loss of protein stability.

aAlleles are the ancestral and mutant with genomic position based on H37Rv.
bn/a: change in stability not possible due to stop codon or indel mutation or no protein structure over position.
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DosR Regulon

It has previously been reported that genes belonging to the

DosR regulon are overexpressed during exponential growth in

strains belonging to the Beijing family (Reed et al. 2007;

Homolka et al. 2010). Among these genes, only Rv1733c

met statistical criteria for upregulation in Lineage 2 in the lin-

eage comparison (supplementary table S6A, Supplementary

Material online), but an enhanced DosR response was clearly

seen in the individual strains N0145 and N0052 (fig. 2A). The

outlying strain, N0031, belongs to a basal branch of Lineage 2

that diversified prior to expansion of the major Beijing

branches represented by N0145 and N0052 (fig. 1A). A 350

kb genomic duplication that includes the DosR operon has

been suggested to contribute to increased constitutive expres-

sion of the regulon in Beijing strains (Domenech et al. 2010).

This duplication is present in N0145 and N0031, but absent

from N0052, and therefore cannot account for the observed

differential pattern of DosR expression in our study

A B

C

FIG. 2.—DosR regulon and SNP-associated TSS. (A) Heatmap of regulon (comprising of 48 genes and 1 sRNA) in the six strains. Unsupervised hierarchical

clustering of strains by normalized gene expression of the regulon separates Lineage 2 Beijing subgroup strains (N0145 and N0052). Scale bar indicates fold

change, from 10-fold downregulation (blue) to 10-fold upregulation (red). Genes not expressed are colored black. (B) Exponential phase mapped RNA-seq

reads in Lineage 2 strains for dosR. Plot shows reads mapping to the forward (blue) and reverse (red) DNA strand. Plots are shown at an identical scale with

scale bar indicating maximum read depth included in the bottom panel (this convention is kept for all plots). The C to T SNP in Beijing strains is indicated with

an asterisk (*) and the new TSS 7 nucleotides from the created -10 box highlighted. (C) RNA-seq TSS mapping for strain N0145 (Lineage 2) and N0153

(Lineage 1) grown at exponential and stationary phases; TSS shown with arrows. The Beijing-specific TSS within Rv3134c is expressed in both phases.
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(supplementary fig. S4, Supplementary Material online). A

previously identified indel in dosT linked to the Beijing strains

was also not found to be responsible for the observed DosR

regulon phenotype (Fallow et al. 2010).

Excluding indels, we were unable to identify any amino acid

mutations that might alter the function of DosR or related

regulatory components. However, a Beijing-specific synony-

mous SNP (C 3500149 T) was identified within Rv3134c,

the gene immediately upstream of DosR that encodes a pro-

tein that is itself a member of the DosR regulon; this SNP was

documented by Fallow et al. (2010). It was found here that the

SNP generates a TAnnnT -10 consensus motif that is charac-

teristic of actinomycetes and is found in association with

~75% of all TSS mapped in M. tuberculosis (Zheng et al.

2011; Newton-Foot and Gey van Pittius 2012; Cortes et al.

2013) and is located seven nucleotides upstream of a novel

TSS expressed in exponential and stationary phase samples of

Beijing strain N0145 (fig. 2B). The new TSS is distinct from the

standard Rv3134c intergenic TSS associated with growth-

phase induction of the DosR regulon and from secondary pro-

moters identified within the Rv3134c gene of M. tuberculosis

H37Rv (fig. 2C) (Bagchi et al. 2005). The resulting transcript is

clearly seen in the total RNA analysis and runs through dosR in

the two Beijing strains (fig. 2B).

Another Beijing-specific SNP (C 3509626 A) similarly gen-

erates a TAnnnT consensus motif and associated TSS for the

two-component sensor protein encoded by Rv3143. Increased

expression is evident in total transcriptome profiles from the

two Beijing strains, but in this case, the downstream targets of

the regulator are unknown.

SNP-Associated TSS

Alignment of lineage-specific SNPs with a total transcriptome

map of M. tuberculosis H37Rv (Cortes et al. 2013) identified

94 instances (1.2% of 7,601 TSSs) in which a SNP fell within

the 30-nucleotide region upstream of a TSS. This frequency

was markedly higher amongst the 168 genes with differen-

tially expressed sense and antisense transcripts, with 23 of

the respective TSS harboring one or more SNPs in this up-

stream region (w2, P< 0.0001) (supplementary table S7B,

Supplementary Material online). In ten cases, lineage-specific

SNPs created a TAnnnT consensus motif linked to a new TSS.

For three of the differentially expressed genes (malQ,

Rv3680, and PE_PGRS62), the new TSS was located upstream

of the predicted translational start, either within an intergenic

region or the adjacent gene (fig. 3A). The remaining six new

TSSs (umaA, mgtA, Rv0724A, ppm1, Rv2765, and spoU) were

located within the differentially expressed gene itself and, if

translated, would give rise to truncated protein products. In

some cases, truncated proteins may retain biological function.

Ppm1 (Rv2051c) is a bifunctional protein created by fusion of

polyprenyl phosphomannose synthase and apolipoprotein

N-acyltransferase activities (Gurcha et al. 2002). The C

2309356 T SNP in Lineage 1 is associated with a novel internal

transcript that includes the intact C-terminal polyprenyl phos-

phomannose synthase domain and at the same time introdu-

ces a T467I mutation that is predicted by SIFT analysis to

impair the function of the N-terminal N-acyl transferase

domain (fig. 3B). A second internal ppm1 TSS is present in

all strains at position 2309159; the resulting transcript again

provides the option of dissociating the two enzymatic

activities.

SNPs that alter residues outside the -10 motif may also

influence promoter activity. G 4092921 T is associated with

a 100-fold increase in reads mapping to a TSS upstream of

PE_PGRS60, for example. The mutation changes an existing

-10 TAnnnT motif to an “extended -10” TGnTAnnnT consen-

sus (Newton-Foot and Gey van Pittius 2012). This change is

similar to that generated by a SNP that drives increased pro-

moter activity and inhA expression in isoniazid-resistant strains

of M. tuberculosis (Ramaswamy and Musser 1998; Ramas-

wamy et al. 2003).

Differentially Expressed Antisense

Antisense transcriptomes for the two lineages display a

broadly similar level of conservation to the sense transcrip-

tomes, with a total of 56 genes showing lineage-specific dif-

ferential expression (supplementary table S6, Supplementary

Material online). Antisense transcripts arise either from inter-

nal TSS or from overlapping 30-untranslated regions (UTRs) in

convergent gene pairs (Arnvig et al. 2011). Three of the dif-

ferentially expressed 30-UTR antisense transcripts (pcaA,

Rv1898, and ribD) were associated with SNPs that create a

new TAnnnT-linked forward TSS in the adjacent divergent

gene; in the case of pcaA, the transcript was also detected

as a significant increase in umaA sense expression (fig. 3C). For

a further six antisense transcripts (Rv0552, Rv0842, Rv0874c,

deaD, Rv2672, and fadE20), introduction of a TAnnnT motif

on the reverse strand was associated with new TSS arising

within the gene itself (supplementary table S7C, Supplemen-

tary Material online). In the case of deaD, in Lineage 2 (and

other modern lineages), a C to T SNP creates a new -10 motif

and TSS on both forward and reverse strands of DNA (fig. 3D).

A highly expressed antisense transcript that is present within

the ino1 gene (Rv0046c) in one of the Lineage 1 strains

(N0157) is associated with a new TAnnnT motif created by

a C 50557 T SNP. Interestingly, this is a homoplasic SNP, gen-

erally rare in M. tuberculosis (Comas et al. 2009; Schürch et al.

2011), and occurs in a subbranch of Lineage 1 and a sub-

branch of Lineage 4, including strain H37Rv, which also

expresses the antisense transcript (Arnvig and Young 2012).

Toxin–Antitoxin Modules

We were unable to identify direct SNP associations for the

remainder of the genes showing lineage-specific patterns of

differential expression (135 out of 168 differentially expressed
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genes and antisense). We anticipate that their differential

expression reflects downstream consequences of primary mu-

tations. Analysis of the panel of differentially expressed genes

according to functional category identified a 2-fold overrep-

resentation of proteins involved in virulence, detoxification,

and adaptation. This was driven by ten TA genes ( supple-

mentary table S7D, Supplementary Material online), and sep-

arate classification of all TA as an independent category

revealed 2.9-fold overrepresentation in the differentially ex-

pressed set compared with the genome representation (w2,

P¼0.03) (fig. 4A and supplementary table S8, Supplementary

Material online). For selected TA, the pattern of differential

gene expression seen by RNA-seq was confirmed by

quantitative RT-PCR (fig. 4B and supplementary tables S9

and S10, Supplementary Material online).

Transcription of TA modules is generally repressed by bind-

ing of the cognate TA complex to the promoter region and

activated when the antitoxin is degraded in response to signals

associated with environmental stress (Buts et al. 2005).

Differential expression could result from mutations that

affect stability or repressor activity of the TA complex, muta-

tions that alter promoter sequences, or mutations that alter

the proteolytic activity in the cell. Two differentially expressed

toxins have nonsynonymous lineage-specific SNPs, vapC10

(Lineage 2, G103D) and mazF7 (Lineage 1, R101P), but the

SIFT algorithm was unable to predict functional consequences

B

A

FIG. 4.—Overrepresentation of differentially expressed toxin–antitoxins (TAs). (A) Ratio of significant differential gene expression grouped by functional

category, compared with the genome-wide representation of the category. Values on the x axis represents the difference as fold change, positive fold

change indicates overrepresentation of a particular function category and negative values underrepresentation. There were 2.9-fold more toxin–antitoxins

than expected (w2, P¼ 0.03). (B) Validation of selected RNA-seq differentially expressed toxin–antitoxins (solid bars) by qRT-PCR (striped bars). Fold change

relative to Lineage 1 expression on y axis (log10 scale) and bars colored by lineage with higher expression. Error bars for qRT-PCR indicate the standard

deviation of three biological replicates.
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for these mutations. All TA pairs with detectable transcripts

were expressed from a single major TSS. In two cases, the TSS

was located within the annotated coding sequence, and we

have suggested alternative translation start sites for these

(supplementary table S11, Supplementary Material online).

In most cases (31 out of 51 expressed TA pairs; 60.8%), the

TA pairs were encoded by leaderless mRNAs. A single TSS-

associated SNP was identified, with position -1 of the vapB22

(Rv2830c) TSS switched from G to A in Lineage 2. This may

contribute to the decreased expression of vapB22 observed in

these strains (supplementary table S7D, Supplementary

Material online).

The lack of direct SNP associations leads us to infer that

differential expression of TA genes reflects general differences

in regulatory networks between the lineages. A series of

genes that are preferentially expressed in Lineage 1 strains

have previously been implicated in the H37Rv response to

acid stress and cell wall damage, including ahpC and ahpD,

fabD, and lpqS (Fisher et al. 2002) (supplementary table S6A,

Supplementary Material online). Upregulation of these genes

may be associated with the stress-related sigma factor sigB

(Rv2710), which has 2-fold higher expression in Lineage 1 but

falls outside the statistical cut-off (P¼ 0.06).

Discussion

The importance of the present study is in establishment

of direct links between genetic differences observed among

clinical isolates of the MTBC and phenotypic consequences at

the level of transcription. This required the identification of all

lineage-specific SNPs, which was performed for all six phylo-

genetic lineages, and is provided here for the TB community as

an important future resource, necessary for the lineage typing

of clinical isolates. Bioinformatic analyses of this data set

showed a high percentage of nonsynonymous SNPs identified

across the MTBC, which are likely to impair protein function. It

has been suggested that this reflects a low frequency of pu-

rifying selection and has the potential to generate substantial

functional diversity (Hershberg et al. 2008). Interestingly, a

similar phenomenon has been observed in humans, where

recent demographic expansions have led to the accumulation

of low-frequency genetic variants associated with strong func-

tional effects (Keinan and Clark 2012; Tennessen et al. 2012).

Considering the tight link between the MTBC and its human

host, with parallel population dynamics (Comas et al. 2013), it

is interesting to speculate that these human expansions might

have had a similar effect on the genetic diversity of the MTBC

(Hershberg et al. 2008).

Focusing on Lineages 1 and 2, we predicted functional

impairment of eight transcriptional regulators; transcriptional

profiling provided confirmatory evidence in four cases.

Elevated expression of virS in Lineage 1 recapitulates

results of a previous microarray comparison of modern and

ancient lineages (Homolka et al. 2010), with the absence of

activation of the associated MymA regulon providing further

evidence that the mutant virS lacks functional activity.

Experimental deletion of virS in M. tuberculosis H37Rv resulted

in pleiotropic cell wall defects and reduced growth in the

spleen of guinea pigs (Singh et al. 2005), raising the possibility

that this mutation may reduce the virulence of Lineage 1

strains.

Genes with lineage-specific patterns of differential expres-

sion were characterized by a high frequency of SNPs associ-

ated with TSSs. A striking observation was that SNPs

generating a -10 consensus motif (TAnnnT) were frequently

associated with the emergence of a new TSS. SNP-created -10

motifs accounted for 19 of the 168 (11%) lineage-specific

differentially expressed transcripts. In addition to their effect

on expression of downstream genes, as in the case of

Rv3134c/DosR , TSS arising within coding regions may also

play a role in generating functionally active truncated proteins.

Ppm1 is a bifunctional enzyme, fusing an N-terminal apolipo-

protein N-acyltransferase with a polyprenyl phosphomannose

synthase that are encoded by separate genes in other myco-

bacteria (Gurcha et al. 2002; Rana et al. 2012). The C-terminal

domain has recently been shown to be essential for optimal

growth, whereas the N-terminal is unessential (Zhang et al.

2012). An internal TSS provides the option of separating the

two activities, freeing the polyprenyl phosphomannose

synthase to participate in other glycosylation pathways. A con-

served internal TSS suggests that this option is retained by the

MTBC, with additional flexibility in Lineage 1 provided by a

new SNP-associated TSS and coincident predicted impairment

of N-acyltransferase activity. It has been proposed that

changes in the mannosylation of cell surface components

have an important impact on recognition of mycobacteria

by receptors on innate immune cells (Torrelles and

Schlesinger 2010), and redistribution of mannose between

lipoglycans and lipoproteins represents an attractive hypothe-

sis to account for the differential inflammatory response to

Lineage 1 and Lineage 2 strains (Portevin et al. 2011).

Enhanced Lineage 1 transcription of mgtA (Rv0557) could

also contribute to differences in macrophage phenotype

(Torrelles et al. 2009).

New TSSs associated with SNP-generated TAnnnT motifs

were also observed at a similar frequency in antisense orien-

tation. With the introduction of RNA-seq approaches, perva-

sive expression of antisense transcripts has been recognized as

a common feature of bacterial transcriptomes (Lasa et al.

2011; Raghavan et al. 2012). Interspecies comparison of up-

stream sequences in Escherichia coli and Salmonella typhimur-

ium suggests that selective pressure for conservation of

antisense promoters is lower than in the case of sense pro-

moters (Raghavan et al. 2012). Whether this applies to intra-

specific comparisons with much smaller evolutionary distances

is not known, but we observed a broadly similar pattern of

sense and antisense diversity in our MTBC lineage comparison,

which may reflect the reduced purifying selection and
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increased genetic drift within MTBC (Hershberg et al. 2008).

The biological significance of antisense transcripts is unknown;

it is possible that double-stranded RNA molecules differ from

single-stranded mRNAs in their efficiency of translation and

susceptibility to degradation. The new TSS in umaA that gen-

erates antisense to the adjacent pcaA raises the intriguing

possibility of a mechanism for co-ordinated regulation of the

two genes. Both proteins are involved in modification of

mycolic acids, and lineage-specific differential expression

could again contribute to variation in innate immune reactivity

(Rao et al. 2006; Barkan et al. 2012).

For the remaining differentially expressed genes, we were

unable to identify any direct genotypic link, and we presume

that they reflect downstream secondary effects of the primary

mutations. The most striking feature is the overrepresentation

of TA gene pairs, contributing to 10% of the total set of

differentially expressed genes. TAs were noted in previous mi-

croarray studies comparing M. bovis with M. tuberculosis

(Golby et al. 2007) and ancient with modern strains

(Homolka et al. 2010). TA systems were originally identified

by their role in plasmid maintenance but are now recognized

as a common feature of bacterial genomes (Pandey and

Gerdes 2005). With 62 annotated TA pairs (Lew et al.

2011), M. tuberculosis has more TAs than any other bacterium

(Pandey and Gerdes 2005; Makarova et al. 2009). The toxin

component is typically an endonuclease, with activity directed

toward ribosome-associated mRNAs, rRNAs, and tmRNA, re-

sulting in blockage of translation. An attractive hypothesis is

that the role of TAs in M. tuberculosis is to drive the bacteria

into reversible growth arrest in unfavorable environments, by

responding to changes in antitoxin stability and proteolytic

activities. Based on this model, we interpret their differential

expression as a read-out of lineage differences in environmen-

tal sensing. Comparison of the overall TA transcription

response suggests that the core lineage pattern is overlaid

by strain-specific responses, and it can be envisaged that var-

iability in the combined proteolytic and transcriptional regula-

tory network could readily generate heterogeneity within

clonal populations.

Although it is clear that genotypic diversity generates

transcriptional diversity between the two MTBC lineages,

it remains to be shown whether this has biological and

clinical consequences during infection. Both lineages are

highly successful pathogens with proven long-term ability to

maintain transmission cycles and it is likely that phenotypic

diversity will reflect evolution under different circumstances

rather than loss or gain of ability to cause disease. The

differences that we have detected suggest that strains from

the two lineages may present alternative ligand repertoires to

host cells and respond differently to environmental changes

generated by the host immune response. This in turn may

confer varying degrees of fitness in different epidemiological

settings.

Supplementary Material

Supplementary figures S1–S4 and tables S1–S12 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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