
ARTICLE

Combating subclonal evolution of resistant cancer
phenotypes
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Metastatic breast cancer remains challenging to treat, and most patients ultimately progress

on therapy. This acquired drug resistance is largely due to drug-refractory sub-populations

(subclones) within heterogeneous tumors. Here, we track the genetic and phenotypic sub-

clonal evolution of four breast cancers through years of treatment to better understand how

breast cancers become drug-resistant. Recurrently appearing post-chemotherapy mutations

are rare. However, bulk and single-cell RNA sequencing reveal acquisition of malignant

phenotypes after treatment, including enhanced mesenchymal and growth factor signaling,

which may promote drug resistance, and decreased antigen presentation and TNF-α sig-

naling, which may enable immune system avoidance. Some of these phenotypes pre-exist in

pre-treatment subclones that become dominant after chemotherapy, indicating selection for

resistance phenotypes. Post-chemotherapy cancer cells are effectively treated with drugs

targeting acquired phenotypes. These findings highlight cancer’s ability to evolve phenoty-

pically and suggest a phenotype-targeted treatment strategy that adapts to cancer as it

evolves.
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Each patient’s tumor has the potential for a unique evolu-
tionary trajectory. Tumor subclones, defined as cells with
distinct genetic lineages, have revealed remarkable genomic

heterogeneity in most epithelial cancers, providing a substrate for
evolution under the selective pressure of treatment1, 2. Solid
tumors generally lack significant numbers of common actionable
mutations, making it difficult to link mutational genotype to an
obvious treatment strategy3, 4. In addition, tumor cell phenotypes,
defined by processes such as cell growth, survival, and differ-
entiation states, can also evolve over time due to genetic, epige-
netic, or environmental factors5, 6. Our approach focuses on
linking these two phenomena—clonal evolution and genomic
diversity—by tracking changes in subclonal structure over time to
identify and target phenotypes driving drug resistance that
emerge as tumors progress. As the majority of genetic alterations
found in resistant tumor subclones occur in a small proportion of
tumors and do not lead to survival advantage7, 8, characterizing
patient tumors by these more generalizable oncogenic phenotypes
can facilitate directed drug treatment.

Our current study focuses on the metastatic setting, where
cancer is usually not curable. Currently, treatment decisions are
based on the availability of targeted therapies (for HER2+ and ER
+ cancers) and on metastatic site, symptoms, prior use of che-
motherapy, and overall health, and comorbidities9. Therefore,
treatment decisions are generally made independent of patient
tumor phenotype or heterogeneity and do not account for tem-
poral cancer evolution10.

Here, we use DNA sequencing data from four breast cancer
patients, followed for years, to delineate the genetic events
occurring in cancer cells as they change during treatment with
different drugs, and to identify the cancer’s subclonal evolution in
response to therapy. Further, bulk and single-cell RNA sequen-
cing data identify gene expression patterns, or signatures, for key
pathways that represent specific cellular phenotypes, such as cell
growth and death processes. Critically, these data are used to link
tumor subclone evolution to emerging oncogenic phenotypes
associated with acquired resistance. We develop treatment stra-
tegies that target phenotypes in resistant tumor subclones that are
polyclonal and/or phenotypically unique. Altogether, our research
provides genomic assessment of tumor subclones combined with
a dynamic approach that could allow adaptive therapy that
matches the tumor’s capacity for evolution.

Results
Patient treatment history and approach. Genetic and pheno-
typic evolution of four metastatic ER+ breast cancers was
examined over 2–15 years and 3–6 samples per patient. Patients
were selected based on the availability of repeated longitudinal
samples, generally from metastatic pleural or ascites fluids. For
each patient, subclonal evolution was identified through bulk
and/or single-cell DNA sequencing at multiple points in the

patient’s treatment history (Fig. 1, #1 and #2). RNA-Seq identified
biological phenotypes associated with these evolving subclones,
and effective treatments for post-chemotherapy subclones,
as shown by drug assays using patient tumor cells (Fig. 1; #3
and #4).

Subclonal heterogeneity and evolution of four breast cancers.
Subclonal evolution of four breast cancers was determined with
60 × whole-genome sequencing (WGS), 100 × whole-exome
sequencing (WES) and targeted single-cell DNA sequencing,
along with SubcloneSeeker11 analysis. Variants identified were
validated by detection in RNA-Seq data (Supplementary Fig. 1),
single-nucleotide polymorphism (SNP) array (Supplementary
Fig. 2), and matched clinical sequencing results for BRCA2-
mutant patients. The specific sequencing performed for each
patient is indicated by filled squares (WGS), inverted triangles
(WES), and empty squares (scDNA-Seq; Fig. 2). Somatic WGS
single-nucleotide variants (SNVs) and indels found in copy-
neutral regions were grouped into mutation clusters based on
their presence or absence at specific timepoints. Next, the cancer
cell fraction (CCF—the percent of cancer cells harboring a
mutation cluster) of each mutation cluster was determined by
identifying the variant allele frequency (VAF) of maximum
density at each timepoint; subclones were then classified using
rules previously described11. For patient #1, this approach was
validated by SubcloneSeeker analysis of WES data (Supplementary
Fig. 3) and refined by targeted single-cell DNA sequencing
(scDNA-Seq). scDNA-Seq was performed by PCR-amplifying
regions surrounding 17 subclonal mutations, identified fromWES,
from single-cell DNA prepared using Fluidigm C1, followed by
next-generation sequencing, which confirmed SubcloneSeeker
predictions (Supplementary Fig. 4, Methods section). Subclones
are represented as the outer circles containing mutation clusters
(represented by smaller colored circles) in Fig. 2, with the CCF of
each subclone indicated as a percentage next to each subclone. In
addition, VAFs for copy-neutral somatic mutations (SNVs and
indels) used to determine subclones are shown as a heatmap to the
left of each panel in Fig. 2. Copy-number alterations (CNAs) and
structural variants for each patient are shown in Circos plots in
Fig. 3. Mutations in Cancer Gene Census12 “cancer genes” are
shown explicitly, by name, in Figs. 2 and 3.

Patient #1 (ER + /HER2 + ) samples were collected over more
than 2 years from malignant pleural effusion and ascites fluids.
Samples were obtained before, during, or after the following
treatments: (1) paclitaxel and trastuzumab followed by docetaxel,
(2) liposomal doxorubicin, (3) trastuzumab and MM-111 (an
experimental HER2/HER3 antagonist13) followed by (4) carbo-
platin and gemcitabine (Fig. 2a; see Supplementary Data 1 for full
history), after which the patient succumbed to disease. Truncal
mutations (defined as mutations present in all subclones and
timepoints) in patient #1 included loss of heterozygosity of the
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patient’s germline BRCA2 E1493fs mutation, an ESR1 L538P
(activating14) mutation, homozygous structural variants (likely
inactivating) in SMAD4 and MAP2K4 (Figs. 2a and 3a), and
increased ERBB2 copy (3 copies), consistent with HER2 + status
(Supplementary Fig. 5). Following a response to paclitaxel with

trastuzumab, the patient acquired three new subclones, suggesting
independent acquired resistance mechanisms (“Tax + trast”; see
Fig. 2a). One of these subclones, SC2, appeared at low CCF after
paclitaxel and trastuzumab (<1%) but came to dominate with
CCF of 100% after subsequent treatment with liposomal
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doxorubicin (“Doxorubicin”; Fig. 2a), to which the patient
partially responded. This bottleneck subclone possessed an
SLC25A40-ABCB1 fusion resulting from a structural deletion on
chromosome 7, which fused the active promoter and 5′ UTR of
SLC25A40 to the ABCB1 gene, preserving the entire ABCB1
coding region and leading to increased levels of the ABCB115

drug efflux pump (Fig. 2a, inset and Supplementary Figs. 6 and
7a). SC2 also possessed a copy gain on chromosome 10, including
CDK1, and loss on chromosome 2 (Fig. 3a, blue arrows). In
addition, the bottleneck subclone SC2 possessed 1047 new SNVs
and indels (“Bottleneck mutations” in Fig. 2a, left; dark-orange
circles in Fig. 2a, right), including mutations in cancer-associated
genes NR4A3 and FANCD212.

Previous research shows that summarizing mutations by
trinucleotide context reveals tumor-specific mutation signa-
tures16. To determine how mutation signatures evolve over time,
we first ascertained the trinucleotide context of truncal and
subclone-specific SNVs (Fig. 4a). We then quantified the presence
of 30 mutation signatures16 from COSMIC12 in various
subclones17 (Fig. 4b). Interestingly, both truncal and subclonal
variants showed enrichment of BRCA-deficiency-induced muta-
tions in patient #1 (Fig. 4b, signature 3), consistent with BRCA2
inactivation. In contrast, APOBEC (apolipoprotein B mRNA
editing enzyme, catalytic)-associated mutations16 evolved sig-
nificantly, appearing in a subclone after paclitaxel and trastuzu-
mab (subclone SC1; Figs. 2a, 4a, third column, and Fig. 4b, third
bar). Indeed, 31.3% of subclone-specific SNVs in this subclone
were APOBEC-associated (Fig. 4a, asterisks) compared to 10.0%
of subclone-specific variants in its parental subclone (Fig. 4a,
second column and Fig. 4b, second bar; P= 5.5 × 10−22 by two-
sample proportion test), and 12.7% of truncal (gray) variants
(Fig. 4a, first column and Fig. 4b, first bar; P= 1.5 × 10−53 by two-
sample proportion test). As a negative control, germline SNPs in
patient #1 (and other patients) were also analyzed; these lacked
the BRCA-deficiency and APOBEC signatures (Supplementary
Fig. 8). Together, these data indicate that some mutational
processes can evolve and differ (APOBEC) between subclones,
while others (BRCA-associated) remain constant during cancer
progression.

Patient #2 (ER + /HER2 + ) was followed for over 3 years,
including 6 pleural effusions. Samples were obtained before,
during, or after the following treatments: (1) capecitabine, (2)
exemestane, (3) exemestane and everolimus, (4) vinorelbine, (5)
carboplatin and gemcitabine, (6) fulvestrant, (7) liposomal
doxorubicin, (8) paclitaxel, (9) Abraxane, and (10) eribulin
(Fig. 2b, Supplementary Data 2). This patient was pseudo-
tetraploid, as determined by CNAs inferred from WGS
(Supplementary Fig. 9a–c) and DNA content quantification
(Supplementary Fig. 9d), due to an early genome doubling event,
necessitating modifications to subclone identification (Methods
section). Patient #2 possessed a germline heterozygous BRCA2
E49* mutation that underwent loss of heterozygosity in the
patient’s cancer, a possibly oncogenic FLT4 E766D somatic
mutation, and moderate ERBB2 amplification (5 copies; Supple-
mentary Fig. 5) at all timepoints. This patient initially possessed
one major subclone (SC3) with a CCF of <80% (Fig. 2b).

Towards the end of treatment with the anti-estrogen exemestane
a new minor subclone (SC4), with CCF of 10%, appeared
possessing an ESR1 D540G mutation (Figs. 2b and 3b), which
may have promoted exemestane resistance14. The patient’s
disease progressed, and after more than two years and numerous
treatments, patient #2’s cancer was dominated by a new subclone
(SC5), derived from the ESR1-mutant subclone SC4, with CCF of
~100% (Fig. 2b). The bottleneck subclone SC5 possessed 936 new
SNVs and indels (“Bottleneck mutations”; Fig. 2b heatmap). One
of these, an in-frame BRCA2 A47-P59 deletion, removed the
inactivating frameshift in one copy of BRCA2 to likely restore
function and gain resistance to platinum therapy18 (Fig. 2b,
“BRCA2 reversion” inset, and Supplementary Fig. 10a). Addi-
tionally, SC5 acquired two unique ABCB1 fusions (PTK2-ABCB1
and AFF3-ABCB1) that also provided ABCB1 with a strong
promoter while maintaining the ABCB1 coding region intact
(Fig. 2b, bottom-right inset and Supplementary Fig. 11), and
apparently promoted ABCB1 expression (Supplementary Fig. 7b).
It is unclear whether the two fusions were acquired sequentially
due to selective pressure for additional ABCB1 expression, or co-
existed in the original refractory subclone. Unlike patient #1, new
mutational signatures did not appear in patient #2 after
treatment, and the BRCA-deficiency signature was relatively
constant, consistent with BRCA2 inactivation (Fig. 4a, b). The
BRCA-deficiency signature in BRCA2-revertant SC5 is potentially
due to BRCA-loss-induced mutagenesis in an SC5 precursor prior
to the reversion event.

Patient #3 (ER + /HER2-) was followed for more than 3 years,
including 3 pleural effusions. Samples were obtained before,
during, or after: (1) two doxorubicin courses, (2) letrozole, and
(3) exemestane (Fig. 2c, Supplementary Data 3). The patient
showed clinical benefit from each treatment followed by
progression. Truncal mutations included MAP3K1 mutations
(R532fs and Q1406*) inactivating this tumor suppressor19.
Initially two subclones existed: SC6, possessing mostly C> T
mutations (Fig. 4a), dominated with a CCF of 73%, while
subclone SC7 represented 19% of cells (Fig. 2c). However, after
doxorubicin, letrozole, and exemestane a new SC7-derived
subclone came to dominate with a CCF of 100% (SC8; Fig. 2c).
This bottleneck subclone possessed a striking 5540 additional
SNVs and indels (Fig. 2c, “Bottleneck mutations”), representing
six times the number truncal SNVs (n= 921). 67.4% of the new
bottleneck SNVs were APOBEC-associated compared to 11.1% of
truncal SNVs (Fig. 2c; Fig. 4a, see “SC8”; P= 9.8 × 10−275 by two-
sample proportion test). APOBEC signature weights were like-
wise higher among bottleneck mutations (Fig. 4b, see “SC8” and
signatures 2/13) compared to truncal, and pre-existed in the
bottleneck subclone’s precursor before treatment (Fig. 4b, “SC7”),
suggesting a genetic lineage with enriched APOBEC mutagenesis.
Among the 5540 new mutations in SC8 were ESR1 Y539N, which
may have promoted letrozole or exemestane resistance14, APC
V1822D, and CDH1 (E-cadherin) R154T mutations (Figs. 2c and
3c). Additionally, the bottleneck subclone SC8 gained copies of
chromosome 5p, and lost regions of 1p, 2q, 15, and 22 (Fig. 3c,
green arrows). Lost regions included apoptosis genes CASP8,
CASP10, and BID, potentially leading to apoptosis defects.

Fig. 2 Subclonal evolution of four breast cancers over 2–15 years. a–d Subclonal evolution of breast cancer patients #1 to #4 through treatment. Left side
shows variant allele frequencies of copy-neutral somatic SNVs and indels (WGS) organized into clusters, with relevant cancer-associated mutations (may
or may not be copy-neutral and includes structural variants) indicated. Right shows subclone evolution. Subclones are indicated by large circles; mutation
clusters are indicated by small colored circles. Relevant mutations in subclones are indicated by text or boxed insets. CCF is indicated as percent next to
subclone. Filled squares indicate timepoints sequenced by whole-genome sequencing (WGS), filled inverted triangles indicate whole-exome sequencing
(WES), and empty squares indicate targeted single-cell DNA sequencing (scDNA). Abr, Abraxane; cap, capecitabine; cb, carboplatin; dox, doxorubicin;
erib, eribulin; exem, exemestane; fulv, fulvestrant; gem, gemcitabine; Tax, paclitaxel; trast, trastuzumab; vinorel, vinorelbine. *Patient #3 day 0 had RNA-
Seq only. gBRCA2 indicates a germline BRCA2 mutation
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Patient #4 (ER + /HER2-) was followed for 15 years, including
her primary tumor ductal carcinoma in situ (DCIS) and recurrent
pleural effusions, including the following treatments: (1)
doxorubicin with cyclophosphamide (“AC”; Fig. 2d), (2) anti-
estrogens tamoxifen and letrozole, with capecitabine between, (3)

cisplatin followed by fulvestrant, interferon treatment for a non-
cancer diagnosis, carboplatin, then tamoxifen (“Platinum/anti-
ER”), and (4) paclitaxel followed by olaparib (“Tax/olaparib”;
Fig. 2d, Supplementary Data 4). This patient possessed a germline
BRCA2 inactivating (V643fs) mutation, and relatively few truncal
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mutations. Two independent tumor subclones were present at a
CCF of ~50% each at day 0, with a BRCA2 V2620fs mutation,
representing the surviving subclone, which also possessed a TSC2
P670S mutation, giving rise to subsequent samples (Figs. 2d and
3d). (These two subclones were likely independent since the
survivor (dark-green) had a minor peak possibly representing a
surviving subclone within it, precluding the possibility of blue
mutations being in the same cells as dark-green based on VAF
densities and opposing evolutionary pattern of the two clusters
(Supplementary Fig. 12). 13 years later, after transition from
DCIS to metastatic disease, the patient had acquired additional
mutations in TP53 (G279E homozygous), PTEN (L302fs and
N329fs), MAP2K4 (G183fs homozygous), and TGFBR2 (G68S).
At this first metastatic timepoint (day 4970) there were two major
subclones, SC9 (CCF of 20%) and SC10 (80%). Subsequently the
patient received platinum-based therapy (cisplatin and carbopla-
tin) which selected for SC11 (evolved from SC10). SC11
contained a BRCA2 reversion (L638fs) restoring the frame of
the V643fs mutation after only a few aberrant amino acids, likely
restoring BRCA2 function (Fig. 2d, bottom-right inset and
Supplementary Fig. 10b). The BRCA2 V643fs germline mutation
and somatic reversion (L638fs) were in cis as seen in reads
spanning both mutations (Supplementary Fig. 13). After further
treatment with paclitaxel and olaparib, the BRCA2-revertant
SC11 decreased from CCF of 52% to 8%, while SC12 became

dominant at 74%. SC12, which survived olaparib, may have
acquired a direct reversion20 of the germline BRCA2 V643fs
mutation, as the V643fs VAF decreased to 0.28 at day 5586 from
an average of 0.51 in all other samples, including germline
(Supplementary Fig. 14). BRCA2 reversions are thought to also
promote olaparib resistance21. Interestingly, even though both
SC11 and (possibly) SC12 may have restored BRCA2 function,
the response to paclitaxel and olaparib was different between the
two subclones, with one responding and one non-responsive,
suggesting additional resistance mechanisms were important for
survival to these drugs. In addition, patient #4’s DCIS-to-
metastatic conversion was accompanied by enrichment in
APOBEC-associated mutations (Fig. 4a, b, see “SC9”) compared
to truncal mutations (40.9% APOBEC-associated mutations
among post-DCIS SNVs vs. 16.6% in truncal; P= 2.0 × 10−34 by
two-sample proportion test), while SC12 was also enriched in
APOBEC mutations compared to truncal (32.7%; P= 8.7 × 10−17

by two-sample proportion test).
While each patient’s subclone evolution differed, several

themes emerged. First, effective treatments resulting in long-
term cancer control generally resulted in genetic bottleneck
events in which one major subclone survived (SC2, SC5, and
SC8). Second, two patients acquired ABCB1 promoter fusions
previously unreported in breast cancer, potentially promoting
drug resistance. Third, BRCA2 reversion events in breast cancer
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may contribute to resistance in platinum and/or PARP inhibitor-
treated BRCA2 carriers. Lastly, mutational signatures differed
significantly between subclones. Some mutational signatures
(APOBEC-associated) can apparently be acquired de novo,
independent of the parent subclone’s mutational processes, while
others, such as BRCA-loss-associated signatures, are more
consistent throughout evolution (Fig. 4). This is consistent with
previous findings that APOBEC-associated mutagenesis appears
later during lung cancer progression22. Acquisition of new
mutational processes may provide a fitness advantage to some
subclones, as their ability to evolve in response to treatment may
be enhanced if a new mutational process provides bursts of
mutagenesis23 increasing genetic diversity.

Single-cell RNA-Seq identifies resistance phenotypes. Single-
cell RNA-Seq (scRNA-Seq) has several advantages over bulk
RNA-Seq, including analysis of intratumoral heterogeneity and
exclusion of non-malignant cells affecting bulk measurements24.
We performed scRNA-Seq on all four patients, at two timepoints
each which were reflective of either pre- and post-bottleneck
event (patients #1-3) or first metastatic timepoint pre-treatment
(“sensitive”) and the last timepoint following progression
(“resistant”). Specific timepoints measured were: patient #1 days
305 and 732, patient #2 days 290 and 1320, patient #3 days 249
and 1168, and patient #4 days 4970 and 5586. We identified cells
as normal or cancer based on their copy number profiles inferred
from scRNA-Seq24 (Supplementary Figs. 15–18). As expected, we
found that non-copy-altered (normal) cells expressed higher
mesothelial and fibroblast markers than copy-altered (cancer)
cells25, 26 (Supplementary Fig. 19). This led to a dataset of 428
individual breast cancer cells from 8 specimens generated using
the Fluidigm C1 scRNA-Seq platform, which currently has
among the highest sensitivity for detecting lower-abundance RNA
molecules, high quantification accuracy27, and enables micro-
scopic visualization to exclude doublets. We detected a median of
4739 genes per cell (Supplementary Fig. 20a), comparable to
previous studies24, and found concordance between matched bulk
RNA-Seq and scRNA-Seq averaged across cells simulating a bulk
sample (r= 0.90 with ~18,000 genes detected in both bulk RNA-
Seq and scRNA-Seq simulated bulk sample, Supplementary
Fig. 20b), indicating good data quality.

To identify phenotypes emergent in resistant tumors, we first
used t-SNE analysis to observe global transcriptional differences
in resistant versus sensitive tumor cells (Fig. 5a). We then
identified pathway signatures changing between pre- and post-
treatment samples, rather than individual genes, since multi-gene
signatures are more stable against technical noise and gene
dropout in scRNA-Seq data28 (see schematic in Supplementary
Fig. 20c). We applied the 3331 C2 signatures29 to each single cell
using ssGSEA30 to obtain enrichment scores for each signature,
and ranked each signature by its P-value comparing pre- and
post-treatment single-cell enrichment scores by t-test in each
patient (Fig. 5b). This analysis revealed that two broad classes of
signatures were most dramatically different between pre- and
post-treatment samples: (1) epithelial-mesenchymal transition
(EMT)- and stem-cell-associated31 signatures (red arrows), and
(2) immune-associated signatures (blue arrows), including tumor
necrosis factor alpha (TNF-α) and antigen presentation signa-
tures. Specifically, we observed increased EMT in 3 patients,
suggesting that EMT may promote chemoresistance (Fig. 5c).
Further, our analysis revealed that TNF-α signaling and antigen
presentation decreased after treatment in multiple patients
(Fig. 5c). This suggests that treatment selects for subclones that
avoid immune responses, as loss of both TNF-α signaling32 and
antigen presentation33 are likely to suppress basal or treatment-

induced immune responses. Due to their importance and
targetability in cancer, we also analyzed signatures for receptor
tyrosine kinase activation34, including the downstream Akt and
K-Ras pathways. A signature inclusive of all 58 receptor tyrosine
kinases (RTKs)34 showed an increased post-treatment RTK
phenotype in multiple patients (Fig. 5c). Further, our custom
experimentally generated Akt and K-Ras signatures35 showed
that the Akt signature was increased in patients #2 and #3 and the
K-Ras signature was increased in patients #1, #3, and #4
(Supplementary Fig. 21), indicating that increased post-
treatment RTK expression may have promoted increased Akt
and Ras signaling. We validated the significance of pathway
dysregulation using PAGODA, which addresses technical noise in
scRNA-Seq experiments using a probabilistic over-dispersion-
based approach28 (Supplementary Fig. 22). To test whether these
results may be due to batch effects rather than biological
differences, we ran the patient #2 pre-treatment (day 290) sample
on two different capture chips (different days), and found that
EMT, RTK, and TNF-α phenotypes were consistent between
these two pre-treatment replicates compared to post-treatment
(Supplementary Fig. 23a). Expression was highly concordant
between replicates (r= 0.91; Supplementary Fig. 23b). Further,
the upregulation of RTK pathways, EMT state, and anti-apoptotic
signaling as resistance developed in patients were also seen in
bulk RNA-Seq (Supplementary Figs. 24a, 25 and 26) and western
blot and immunofluorescence using patient cells (Supplementary
Figs. 24b, c and 27).

Individual genes related to the phenotypes were statistically
analyzed using the proportion of tumor cells expressing each gene
between pre- and post-treatment samples in each patient
(Supplementary Fig. 28). This revealed significant differences,
by two-sample proportion test (P< 0.05), between pre- and
post-treatment proportions of cells expressing the EMT- and
stem cell-associated genes VIM (vimentin31) and ID436; the RTK
genes AXL and ROR134; the TNF-α pathway genes TNF (TNF-α)
and TNFAIP337; and the antigen processing gene TAP138

(Fig. 5d). In addition, the essential antigen presentation gene
B2M, encoding the β2-microglobulin subunit required for HLA
class I cell-surface expression39, was expressed in all cells but was
statistically decreased (P< 0.05 by t-test) in 3 of 4 patients
(Fig. 5d, top-right).

Resistance phenotypes pre-exist subclonally. Our analysis shows
that cancers acquire additional malignant phenotypes in response
to therapy. This likely occurs through (1) genetic selection for
subclones with these features and/or (2) drug-induced changes.
While the studies above identify phenotypes emergent across all
tumor cells in resistant states, we next wanted to test whether
acquired phenotypes were present before treatment in survivor
subclones (scenario #1). Thus, using the subclonal characteriza-
tion based on the DNA sequencing analysis described previously,
we interrogated if the subclones that survive chemotherapy
exhibited key phenotypes prior to treatment, or if these pheno-
types emerged only after treatment. To assign each cell to a
subclone, we primarily used CNAs inferred from scRNA-Seq24

data (Supplementary Figs. 15–18; “*” indicates relevant CNAs). A
window size of 101 genes was used for averaging gene expression
to infer CNAs from scRNA-Seq24, which gave superior noise
reduction relative to smaller windows and similar results to larger
windows (Supplementary Fig. 29). CNAs that were partially
present before treatment, and subsequently increased post-
treatment (i.e., 2.5 then later 3.0 copies), were assumed to
represent a pre-treatment survivor subclone, while those that
were partially present pre-treatment but later disappeared (i.e.,
2.5 then later 2.0 copies) were assumed to represent a
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Fig. 6 Pre-existence of post-treatment phenotypes in pre-treatment survivor subclones. a Plots of P-values (one-way ANOVA) comparing scRNA-Seq
ssGSEA enrichment scores for 3331 C2 signatures, plus the receptor tyrosine kinases (all-58) signature and our anti-apoptosis signature, between
subclones in each indicated patient’s pre-treatment sample. x-axis, P-value ranks (higher ranks are more significant); y-axis, −log10(P-value). b Patient
#1 ssGSEA enrichment scores for single cells in each pre-treatment subclone, with post-treatment cells shown for comparison and the dominant post-
treatment subclone indicated. Each dot represents a single cell. P-values are by Student’s t-test. Subclones correspond to those shown in Fig. 2a. “X”
indicates disappearing subclone while “Surv” indicates the subclone giving rise to the post-treatment sample. c Schematic showing subclonal phenotypic
heterogeneity and evolution in pre-treatment patient #1 cells. d As in b but for patient #3. Subclones correspond to those in Fig. 2c. e as in b but for patient
#4, with subclones as shown in Fig. 2d
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disappearing subclone. See Supplementary Fig. 30 for identifica-
tion of such CNAs, which were insufficiently detectable in patient
#2, who was omitted from this analysis. Single cells were assigned
to either survivor or disappearing subclones based on these CNAs
(Supplementary Figs. 15–18). Subclonal CNAs expected to co-
occur in the same subclone based on their pattern of evolution
(chromosome 3, 4, and 9 CNAs in patient #1; chromosome 2 and
5 CNAs in patient #3; chromosome 7 and 11 CNAs in patient #4;
Supplementary Fig. 30) tended to indeed co-occur in single cells
based on scRNA-Seq inferred copy (Supplementary Figs. 15, 17–18),
thus validating our scRNA-Seq inferred copy.

We also sought to validate these single-cell subclone assign-
ments by determining whether subclone-specific SNVs had
coverage in scRNA-Seq data. Though mutation detection was
sparse, as seen by others40, two subclone-specific SNVs in patient
#3 had sufficient coverage in patient #3 scRNA-Seq data for
analysis while other patients lacked adequate coverage (Supple-
mentary Fig. 31; Methods section). Importantly, these two SNVs
validated single-cell subclone assignments based on inferred
scRNA-Seq CNA as they were only detected in cells predicted to
harbor them based on CNA (Supplementary Fig. 17, bottom).

To identify how subclones present at the same timepoint differ
in phenotype, we compared ssGSEA enrichment scores for 3331
C2 signatures, plus the all-58 RTKs signature34 and our
anti-apoptosis signature, between pre-treatment subclones by
one-way ANOVA for each patient (Fig. 6a). We used
pre-treatment (sensitive) timepoints for this analysis as the
majority of post-treatment timepoints have a single subclone
present following the bottleneck event. For reference, we also
included the signature analysis on the post-treatment resistant
subclone for these patients (Fig. 6b). The patient #1 pre-treatment
survivor subclone that gave rise to the post-treatment bottleneck
subclone had decreased antigen presentation and moderately
increased EMT compared to the dominant dying subclone,
suggesting that these phenotypes were at least partly genetic and
pre-existed before treatment. B2M (β2-microglobulin) itself was

also statistically decreased in the pre-treatment survivor subclone
compared to the dominant dying subclone (Supplementary
Fig. 32). Thus, in patient #1, several pre-treatment subclones
varied in antigen presentation and EMT levels (Fig. 6c). A
subclone with decreased antigen presentation and partially
increased EMT (light-orange) possessed a selective advantage
and thus gave rise to the post-treatment bottleneck subclone
(dark-orange), which had additionally evolved a progressively
increased EMT state and increased RTK expression (Fig. 6c).
Additionally, the patient #3 survivor subclone possessed an
enhanced PI3K signature that was apparently carried into its
descendant subclone after treatment (Fig. 6d). Finally, the patient
#4 survivor subclone possessed decreased expression of transcrip-
tional targets of the HOXA5 tumor suppressor41, decreased TNF
signaling, decreased antigen presentation, and increased RTK
expression, which were likewise present in its descendant post-
treatment subclones (Fig. 6e). These data indicate that in some
cases the post-treatment EMT, RTK, and immune-avoidance
phenotypes pre-existed before treatment in genetically defined
subclones.

Targeting evolving phenotypes using adaptive treatments. It is
important to identify adaptive therapeutic regimens that effec-
tively target the dynamic, heterogeneous nature of breast cancer.
Even where it is not possible to target a specific mutation, we can
match treatments to altered phenotypes. Because RTK activation
increased after bottleneck events in most of our patients (Fig. 5c,
Supplementary Figs. 21–25), we hypothesized that post-treatment
cells may have acquired sensitivity to drugs targeting this phe-
notype. To test this hypothesis, we compared the response of
patient #1 pre- and post-doxorubicin cancer cells (days 305 and
732) to inhibitors of MEK and Akt (trametinib and MK220642),
two important RTK effectors34. Patient-derived breast cancer cells
were grown using a modified fibroblast feeder approach, which
has been shown to promote the growth of primary cancer
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Fig. 7 Acquired sensitivity to drugs targeting post-chemotherapy phenotypes. a Drug response assay comparing pre- and post-doxorubicin patient #1
cancer cells’ sensitivity to drugs after 3-day treatment (fibroblast feeder system; CellTiter-Glo was used). b Indicated cells were treated with equimolar
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Bliss independence; P-value is by Student’s t-test (two-tailed). Fibroblast feeder system was used and fibroblast signal was subtracted out in a, b and
percentages are relative to DMSO control mean. Error bars show s.d. of four technical replicates
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cultures, even from small tissue samples, compared to other
methods43, 44 (Methods section).

Post-doxorubicin patient #1 cells were moderately more
sensitive to MEK and Akt inhibitors than pre-doxorubicin cells
(Fig. 7a). We also tested these drugs in combination due to
redundancy between PI3K and MAPK signaling45. Remarkably,
post-doxorubicin cells were dramatically more sensitive to the
equimolar combination of trametinib and MK2206 (Fig. 7b, top),
with a combined IC50 of 4.37 µM in post-doxorubicin cells and
unmet IC50 in pre-doxorubicin cells due to lack of response (see
also Supplementary Fig. 33a). The combination was synergistic at
3.125 µM (Fig. 7b, bottom) and 6.25 µM (Supplementary Fig. 33b),
in post-doxorubicin but not pre-doxorubicin cells. Further, as
IC50-based drug response may be confounded by proliferation
rates46, we measured the effect of drug on proliferation rate in
pre- and post-doxorubicin cells by comparing MEK + Akt
inhibitor response in these cells at day 3 to the day 0 (day of
drug addition) baseline (Supplementary Fig. 34). This revealed
that, in post-doxorubicin cells, 3.13 µM combined equimolar
dosing of trametinib and MK2206 was cytostatic, while the
highest dose (6.25 µM) caused decrease in cell number over time,
suggesting the possibility of clinical response to this combination.
No dose caused change in proliferation rates of pre-doxorubicin
cells, indicating acquired dependence on the MEK and Akt
pathways only after treatment (Supplementary Fig. 34). These
data suggest that enhanced RTK signaling post-doxorubicin
(Fig. 5c) induced increased dependency on downstream PI3K and
MAPK signaling. Therefore, when comparing drug efficacy
between a patient’s pre- and post-treatment timepoints, we find
differential responses to drugs that correlate with the different
phenotypes present in the pre-treatment and post-treatment
timepoints. These findings indicate that the development of
disease refractory to one treatment may be associated with
enhanced sensitivity to an alternative treatment targeting post-
treatment phenotypes. This approach can potentially be
employed in drug-resistant cancers to improve outcomes.

Discussion
Together, these data indicate that using transcriptional profiling
to measure the broad phenotypic changes in patients can permit
individualized therapeutic approaches to more effectively combat
the dynamic and heterogeneous nature of cancer. While
numerous genetic drivers likely promote acquired drug resistance,
these genetic drivers likely converge on a smaller set of drug
resistance phenotypes. Thus, phenotypic analysis can provide a
feasible approach to more targeted care, even in situations where
the precise genetic driver of cellular phenotypic change cannot be
identified. Patient-specific tumor information could help the
oncologist select therapy to better control the disease for longer
periods of time and spare patients the toxicities from drugs that
are unlikely to control disease due to emerging drug resistance.

The adaptive phenotype-targeted treatment approach we
describe is analogous to the adaptive genotype-targeted approach
used in lung cancer. Lung cancers with EGFR or ALK activating
mutations generally acquire resistance to inhibitors targeting
these proteins within 1 year due to secondary mutations that
render the drugs ineffective or dysregulation of alternative RTK
pathways5, 47. This has led to effective adaptive therapy and
extended survival for many patients48, 49. These efforts were
enabled through genetic analysis of post-treatment cancer speci-
mens to determine the compendium of mutations promoting
resistance. We propose that identification of the compendium of
phenotypic changes occurring after treatment may likewise
identify more effective treatment strategies. Further, targeting
these phenotypic changes early in the disease progression, rather

than after outright resistance, may promote better outcomes,
since even short-term drug treatment may induce phenotypes
promoting drug resistance50, 51.

Another strategy proposed for management of drug-resistant
disease is maintenance of the index treatment, perhaps in com-
bination with a new therapy or at intermittently high dosing,
particularly in cases where partial sensitivity to the drug remains
as with HER2 or EGFR inhibition52, 53. This strategy is likely to
be most effective when the index treatment is relatively non-toxic,
but may not be an effective long-term strategy for chemotherapy,
where treatment duration and dosing can be limited by toxicity.
In these cases, targeting the acquired phenotype alone without
continued usage of the index therapy may be effective, as we have
shown.

Our approach is designed to lead to clinically actionable stra-
tegies. Using multiple genetic and genomic tools to analyze het-
erogeneity of cancer in longitudinal samples delivers a
mechanism to examine cancers as they change during treatment
in actual patients. Current barriers to using this approach widely
include the challenge of consistently re-sampling tumor samples
during treatment and access to targeted agents currently not
approved for breast cancer. However, we believe the technology
described here can soon provide useful information to the
oncologist that allows a ‘proactive’ approach to treatment choices
instead of a ‘reactive’ approach. Utilizing individualized therapy
along with additional drug regimens earlier in the treatment
course may lead to prolonged stable disease and less drug resis-
tance. In cases where drug resistance emerges, the oncologist
could continue to customize treatments based on the molecular
mechanisms currently driving tumor growth. Further, employing
this strategy early in the treatment of breast cancer may prevent
progression into metastatic disease.

By providing real time information specific to a patient’s
tumor, more informed decisions about continuing or modifying
therapy can be made. Identifying common phenotypes of resis-
tance to therapy will identify more generalizable targets for
rational treatment of cancer patients. Ultimately, the genomic
assessment of tumor subclones in real time combined with a
dynamic approach of adaptive therapy that matches the tumor’s
capacity for evolution may benefit patient treatment strategies.

Methods
Statistical analysis. scRNA-Seq ssGSEA enrichment scores and B2M expression
were compared between pre- and post-treatment by Student’s t-test (two-tailed).
Within-sample subclone comparisons were done by one-way ANOVA. A
two-proportion test was used to compare the number of scRNA-Seq cells
expressing each gene between pre- and post-treatment (two-tailed). Fisher’s exact
test was performed on scDNA-Seq data to identify mutations co-occurring in
single cells. P-value plots were generated by plotting −1×log10 (P-value), by
two-tailed t-test or one-way ANOVA, on the y-axis against the ranks for these
same values (higher ranks for lower P-values). Error bars for all drug assays
represent standard deviation of four technical replicates from one assay. P-values
were not adjusted for multiple comparisons; instead, analysis focused on lowest 5%
of P-values when multiple comparisons were performed (Figs. 5b and 6a). Esti-
mation of variance between groups, analysis of normality, and sample size esti-
mation were not performed.

Human subjects. Informed consent was obtained from all patients in this study.
Protocols were approved by the University of Utah Institutional Review Board.

Samples and processing. Breast cancer samples were obtained from malignant
pleural effusions or ascites (or FFPE in one case). After fluid drainage, cells were
pelleted at 3000 × g for 5 min. Cells were resuspended in buffer (17 mM Tris, pH
7.4, and 135 mM NH4Cl) and incubated at 37 °C for 5 min, followed by cen-
trifugation, which was repeated until red blood cells were absent from pellet. Cells
were washed thrice with PBS and frozen in 90% FBS with 10% dimethyl sulfoxide
(DMSO). The patient #2 day 1320 pleural effusion had cancerous chunks from
which DNA or RNA was isolated directly. For scRNA-Seq of this sample, minced
chunks were dissociated in Renaissance medium (Cellaria) with 1% TrypLE (Life
Technologies) and 1 U/μl DNase I and 2 mg/ml collagenase (Roche) for 20 min at
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37 °C (shaking occasionally), followed by 10 min in a Biomaster 80 (Seward) and
passing chunks through a 21-gauge syringe, and freezing in 10% DMSO for storage
until scRNA-Seq.

DNA/RNA isolation and sequencing. Frozen vials of pleural effusion or ascites
cells were thawed, and cells were pelleted to remove DMSO in supernatant and
resuspended in buffer as described in Miltenyi OctoMACS and QuadroMACS
instructions. CD45+ white blood cells were depleted from non-tumor-chunk
samples (most samples) using the Miltenyi OctoMACS magnetic separation system
with MS columns or the QuadroMACS magnetic system with LD columns along
with anti-CD45 microbeads from Miltenyi. Germline DNA was obtained from
peripheral blood mononuclear cells (PBMCs) from each patient or by sorting for
CD45+ white blood cells from pleural effusions. DNA was isolated using Qiagen’s
QIAamp DNA Micro Kit, or for FFPE, the QIAamp DNA FFPE Tissue Kit. WES
was performed at the Huntsman Cancer Institute’s High Throughput Genomics
Core Facility (HCI) using the Agilent SureSelect QXT Human All Exon v5 + UTRs
kit and library prep and an Illumina HiSeq 2500 instrument with 125 cycles and
paired-end sequencing. WGS was performed at the McDonnell Genome Institute
at Washington University, NantOmics, or HCI using the Illumina TruSeq Nano
DNA Library Prep Kit or PCR-free library prep and an Illumina HiSeq 2500 or X
instrument with paired-end sequencing. RNA was isolated using Qiagen RNeasy
Micro/Mini Kit and sequenced at HCI or NantOmics using Illumina TruSeq
Stranded mRNA Sample Prep with oligo dT selection or TruSeq Stranded Total
RNA Sample Prep Kit with RiboZero Gold library prep and Illumina HiSeq
sequencing.

Single-cell DNA sequencing. Frozen viable pleural effusion or ascites vials were
thawed and CD45+ white blood cells were depleted using Miltenyi’s QuadroMACS.
Individual cells were captured using Fluidigm C1 chips (10–17 μm cell diameter);
whole-genome amplification was performed per manufacturer’s instructions.
Targeted amplification of mutation-containing regions was performed using
Fluidigm Access Array and BioMark instruments per manufacturer’s instructions.
Libraries were sequenced on Illumina MiSeq. Reads were aligned to hg19 with
BWA MEM v0.7.8. Variants were called using MuTect v1.1.4. Co-occurrence of
mutations (at least 1 mutant read) in individual cells was evaluated using Fisher’s
exact test. Single cells with more than one subclone-defining mutation are shown.

Whole-exome sequencing variant identification. Read quality was verified using
FastQC and reads were trimmed using Trimmomatic54 v0.32 (http://www.
usadellab.org/cms/index.php?page=trimmomatic). Alignment to hg19 was done
with BWA MEM55 v0.7.8 (https://github.com/lh3/bwa). BAM files were refined
using PicardTools’ MarkDuplicates and FixMateInformation tools, BamTools56

filter tool (https://github.com/pezmaster31/bamtools), and GATK’s57 Realigner-
TargetCreator, IndelRealigner, and BaseRecalibrator (v3.2-2; https://www.
broadinstitute.org/gatk/download/). WES somatic SNVs were called with MuTect
v1.1.4 (https://www.broadinstitute.org/cancer/cga/mutect) and annotated with
Oncotator v1.3.0.0 (https://github.com/broadinstitute/oncotator). CNAs were
called from WES using VarScan58 v2.3.7 (http://dkoboldt.github.io/varscan)
copynumber and copyCaller, from pileups generated by SAMTools, to determine
copy-number 2 genes for SubcloneSeeker. Segmentation was done with DNAcopy
in R. Segmented data were converted to gene level using UCSC’s refGene.txt (hg19)
annotation. Log2 fold-change values were converted to absolute copy using 2n+1

where n is log2 fold-change from diploid. Copy number values were shifted in each
sample to make the 2-copy peak centered at 2 and multiplied around the 2-axis to
maximize number of genes near (within 0.1) of 1, 3, and 4 (to adjust for normal
contamination).

Whole-genome sequencing variant identification. WGS DNA sequences were
aligned to hg19 using BWA MEM using SpeedSeq. SNVs and indel variants were
identified using FreeBayes59 on each patient (see code repository for parameters).
Variants were annotated using SnpEff and variants with quality below 5 were
excluded. Somatic mutations were identified using “somatics” (https://github.com/
brentp/gobio/tree/master/somatics), and only somatic mutations with germline
VAF below 0.001 were used for subclone structure determination. As a secondary
variant calling approach, we used VarScan somatic. This revealed the APC
mutation in patient #3 not detected by FreeBayes; all other small variants discussed
were identified with FreeBayes.

Structural variants were detected from WGS as follows. We used
SAMBLASTER v0.1.22 to extract discordant paired-end reads and split reads.
LUMPY60 v0.2.12, or LUMPY within the SpeedSeq suite (sv utility), was used to
call structural variants based on these reads, followed by SVTYPER (v0.0.2) to
determine VAFs for each variant. Somatic variants were identified as with
FreeBayes variants. Variants with quality <400 were excluded, except for patient #2
ABCB1 fusions, which did not meet quality thresholds but were included due to
corroborating identification in RNA-Seq data. Circos plots were made from
FreeBayes, LUMPY, and CNA analysis. Circos plots show evolving mutations
(going from VAF below 0.05 to 0.05 or above for small mutations and a threshold
of 0.075 for structural) in color and truncal (ubiquitous) variants in gray; Cancer
Gene Census12 genes are shown by name, while other mutations are indicated by

tick marks. Copy number alterations (CNAs) were determined from WGS data
using VarScan as described for WES. For Circos plots CNA tracks, 30-segment
window averages (absolute copy) were plotted after adjustment for normal
contamination.

Validation of variants in bulk RNA-Seq data. Somatic SNVs identified by
FreeBayes from WGS data were validated by detecting the SNVs in matched
RNA-Seq data using UNCeqR61, 62 in “interrogate” mode. RNA-Seq data were
aligned using Rsubread as described in “RNA-Seq data processing.” Each patient’s
somatic SNVs were input into UNCeqR in the form of a BED file encompassing the
(trinucleotide) regions containing the mutations, along with the matched RNA-Seq
BAM file for the same cancer sample. For each somatic SNV, UNCeqR determined
the number of mutant and wild-type reads for each SNV, allowing determination
of the RNA-Seq VAF. Only SNVs with germline VAF below 0.001, and in regions
with at least 10-read coverage in RNA-Seq, were considered. 80.6–97.9% of each
patient’s somatic SNVs were detectable in RNA-Seq (Supplementary Fig. 1a), with
excellent patient specificity (Supplementary Fig. 1b). Genomic fusion events
identified by LUMPY60 were corroborated by RNA-Seq.

Validation of CNAs using SNP array. One sample from patient #3 was analyzed
for CNA by both WGS and SNP array for validation of WGS-based CNA calling
pipeline (Supplementary Fig. 2). DNA was analyzed using the Illumina Infinium
OmniExpressExome-8 v1.4 kit and the iScan system according to manufacturer
instructions. Germline controls came from healthy individual data provided by the
manufacturer. 30-SNP window averages (signal intensity) were used and regions
containing measured SNPs were identified in WGS 30-segment window average
data for comparison.

Correction for normal contamination. VAFs for WGS FreeBayes-identified
somatic variants were corrected for normal contamination by determining tumor
purity using CNA data. Absolute copy of each gene was determined using VarScan
and DNAcopy in R as described in previous sections. Perfectly pure tumor samples
have a large copy peak at 2 and smaller peaks at 1, 3, and 4, while normal-
contaminated samples have a profile collapsing towards 2. We centered the largest
peak at 2 and then multiplied values around the 2-axis using a range of multipliers
until the maximum number of genes possible fell within 0.1 of 1, 3, and 4. The
multiplier thus obtained was used to calculate tumor purity (=1.0/multiplier), and
VAFs for FreeBayes somatic mutations were multiplied by the sample’s multiplier
to obtain adjusted VAF. VAFs used and reported are all adjusted except for
structural variant VAFs, those in Supplementary Figs. 1 and 17 (bottom and
legend), the germline BRCA2 germline V643fs mutation VAFs in patient #4 given
its presence in both normal and cancer cells, and patient #4 day 0 sample for which
tumor purity was difficult to ascertain.

Identification of evolution clusters and subclones from WGS. Clusters of
co-evolving mutations were identified from the WGS SNV and indel data (after
normal contamination correction) by clustering copy-neutral (absolute copy
1.5–2.5 or, in the case of pseudo-tetraploid patient #2, between 3.6 and 4.4)
mutations based on the samples in which they were present (at VAF of at least
0.05). Consensus VAFs for each mutation cluster were determined using kernel
density estimation in R; CCFs for each cluster were then obtained by multiplying
these values by 2 (or 4 for pseudo-tetraploid patient #2). In some cases two density
peaks were present for a mutation cluster at a specific timepoint, indicating dif-
ferent sub-clusters and possibly additional subclones. Also, in some cases the CCF
was determined based on the VAF of an index resistance mutation in the subclone,
particularly when the CCF of the subclone was very low. Mutation clusters with the
most mutations were incorporated into subclone analysis. Subclone structures were
then determined using CCFs thus calculated, using rules described elsewhere11. For
patient #1, an additional subclone was made apparent from deeper WES and
scDNA-Seq (purple mutations in Fig. 2a) that was not detectable by WGS. Further,
one patient #1 subclone (with light-orange mutations in Fig. 2a) had more subtle
variation in CCF and its CCF was calculated based on the presence of a chro-
mosome 9q amplification (i.e., average absolute copy of 2.5 in this region indicates
50% of cells with 3 copies and 50% of cells without the amplification). Subclone
SC3’s CCF in patient #2 was likewise estimated based on CNA.

Identification of subclones using SubcloneSeeker. We started with diploid,
missense SNVs identified from deep WES by MuTect for patient #1 to corroborate
WGS-based subclone findings. These variants were then subjected to Affinity
Propagation Clustering63 (via R package apclust (https://cran.r-project.org/web/
packages/apcluster/citation.html)), with similarity calculated via expSimMat(r = 2,
w= 0.1), to identify groups of variants that share similar VAFs across all samples.
We then performed subclone structure reconstructions at adjacent pairwise time-
points through the pairwise joint analysis capability of SubcloneSeeker11, and
manually merged structures into a longitudinal evolution history, abiding to the
same evolutionary consistency rule implemented in pairwise merging.
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Mutational signatures. Mutational signatures were identified for WGS FreeBayes
SNVs by first determining the trinucleotide sequence around SNV mutation sites,
with the mutation site in the center, using an in-house script. For trinucleotides
starting with an A or G, the reverse complement was used to minimize the number
of mutation contexts as reported previously16. From these data we identified the
percent of mutations that fell into each trinucleotide and transition/transversion
pattern in each mutation cluster. These data were then used to determine COSMIC
mutation signature weights using the deconstructSigs17 package in R. COSMIC
mutation signatures are defined at http://cancer.sanger.ac.uk/cosmic/signatures.
Germline SNPs identified by FreeBayes were also analyzed for each patient using a
similar approach.

RNA-Seq data processing. RNA-Seq data were processed with Rsubread64 v1.16.1
(https://bioconductor.org/packages/release/bioc/html/Rsubread.html) in R using
only uniquely mapped reads and the Hamming distance to break ties. The max-
imum indels allowed per alignment was 5. Gene-level expression values were
processed to fragments per kilobase of transcript per million mapped reads (FPKM;
bulk RNA-Seq) or transcripts per million (TPM; scRNA-Seq).

Pathway predictions using ASSIGN. EGFR, K-Ras G12V, and Akt pathway
signatures were developed as described elsewhere35 and can be found on GEO at
GSE73628. RNA-Seq data was adjusted for batch effects using ComBat. Differen-
tially expressed gene lists for each pathway were selected using ASSIGN65 Bayesian
gene selection. Gene lists were then used to estimate pathway activity in patient
samples (see code repository for parameters). Molecular Signatures Database gene
lists were also used as ASSIGN input in some cases.

Single-cell RNA-Seq. Frozen viable patient pleural effusions were thawed and
CD45+ white blood cells, and in some cases fibroblasts (Anti-Fibroblast
Microbeads, Miltenyi), were depleted using quadroMACS (Miltenyi). Cells were
loaded into a Fluidigm C1 or C1 HT single-cell mRNA-seq chip (for 10–17 µm cell
diameter), imaged via microscopy, and single-cell libraries were prepared per
manufacturer’s instructions using SMARTer chemistry. Illumina paired-end
sequencing was performed and data were processed to TPM using Rsubread.
Chambers containing more than one cell by microscopic imaging were excluded
from analysis. Cells expressing fewer than 1700 genes or with fewer than 150,000
mapped reads were also excluded. CNAs were inferred from scRNA-Seq using the
approach described elsewhere24 using a window size of 101 genes. See code
repository for complete details. Normal human mammary epithelial cells on which
scRNA-Seq was performed using Fluidigm C1 were used as the normal (2-copy)
state. Cells were assigned to subclones if they possessed CNAs associated with
specific subclones. CNAs partially present pre-treatment, and increased post-
treatment (i.e., increasing from absolute copy 2.2 to 3.0), were assumed to belong to
the surviving subclone, while those partly present pre-treatment that disappeared
were assumed to represent disappearing subclones. Cells were assigned to either
survivor or disappearing subclones based on these CNAs. Validation of these
subclone assignments was done by identifying subclonal (non-truncal) somatic
WGS SNVs in scRNA-Seq data. UNCeqR was used for this purpose as with bulk
RNA-Seq (see “Validation of variants in bulk RNA-Seq data”). SNV sites had to
have at least 10 scRNA-Seq read coverage in a cell to make a call as to whether the
cell was wild-type or mutant for the SNV, and SNVs with scRNA-Seq VAF never
exceeding 0.2 in any cell were not analyzed. Two sub clone-defining 3′ UTR SNVs
in patient #3 had coverage in at least one cell in each subclone and met the other
criteria described above (in genes BHLHE40, defining dying subclone SC6 and
DDX47, defining surviving subclone SC7; median coverage of these SNVs was 215
and 91, respectively, in pre-treatment single cells with expression). Other patients
lacked mutations meeting the above criteria. Violin plots of scRNA-Seq ssGSEA
scores and TPM were generated with Seurat in R. As a secondary approach con-
firming our scRNA-Seq analysis using ssGSEA, we also performed PAGODA
pathway over-dispersion analysis28 on scRNA-Seq cells from each patient (cancer
cells only) using R, with transcript count data as input rather than TPM.

Heatmaps. RTK heatmaps were generated by adding the minimum non-zero
FPKM expression value for the RTKs to FPKM values for every RTK and calcu-
lating log2 fold change from day 0. Heatmap was generated using Complex-
Heatmap in R.

ssGSEA. ssGSEA was run using GSVA v1.14.1 in R (https://www.bioconductor.
org/packages/release/bioc/html/GSVA.html) using RNA-Seq FPKM (bulk) or TPM
(single-cell) values and Molecular Signatures Database C2 (version 5) signatures
and custom signatures described. Full EMT signature names described in the text
are ANASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGNATURE,
JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP, and
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION; immune sig-
natures in Fig. 5c are PHONG_TNF_TARGETS_UP and REACTOME_ANTI-
GEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTIDE_LOADING_
OF_CLASS_I_MHC; proliferation signatures are SA_REG_CASCADE_OF_
CYCLIN_EXPR, KALMA_E2F1_TARGETS, and KONG_E2F3_TARGETS. Our

custom anti-apoptosis gene set consisted of the 6 anti-apoptotic Bcl-2 family
members66 BCL2, BCL2L1, BCL2L2, MCL1, BCL2L10 and BCL2A1, and the 8
inhibitors of apoptosis family members67 NAIP, BIRC2, BIRC3, XIAP, BIRC5,
BIRC6, BIRC7, and BIRC8. The all-58 RTKs signature was assembled from a
review34.

TopHat fusion. TopHat68 v2.0.6 (http://ccb.jhu.edu/software/tophat/index.shtml)
was run on bulk RNA-Seq data using hg19 followed by TopHat-Fusion Post (see
code repository for parameters). This identified the SLC25A40-ABCB1 fusion
transcript in patient #1 but missed the ABCB1 fusions in patient #2, which we
identified manually by searching for reads fusing the 3′ end of ABCB1 exon 2 with
transcripts aligning elsewhere (Blast search).

Western blots. Western blots were performed by scraping cells in cold PBS and
lysing pelleted cells in lysis buffer (5 mM EDTA, 150 mM NaCl, 50 mM Tris, pH
8.0, 1% Triton X-100, and 0.1% SDS with protease and phosphatase inhibitor
cocktails from Sigma) for 15 min on ice. Cleared diluted supernatants were boiled
in Laemmli buffer 10 min and 20–30 μg of protein per lane was run by SDS-PAGE
and transferred to polyvinylidene difluoride membrane. Western blot on untreated
patient #1 cells was done on never-passaged cells and assay was performed once.
Cells were cultured in Renaissance medium. Antibodies used were from Cell Sig-
naling and the catalog numbers were: #5741 (vimentin), #4695 (Erk1/2), #9272
(Akt), #4267 (EGFR), #4370 (p-Erk1/2), #4060 (p-Akt), and #2234 or #3777
(p-EGFR).

Immunofluorescence staining. Patient #1 never-cultured pleural effusion or
ascites cells were plated at ~3,000 cells/well in 384-well black plates with clear
bottom in Renaissance medium (Cellaria) with 5% FBS, 25 ng/ml cholera toxin
(Sigma), and 1% antibiotic/antimycotic (Life Technologies); to this was added 20%
filtered pleural effusion fluid from another patient. After 3–4 days of culture, cells
were washed twice with PBS and fixed in 2% paraformaldehyde (Electron
Microscope Sciences) in PBS for 15 min. Cells were washed thrice with PBS and
permeabilized in 0.1% Triton X-100 in PBS. Permeabilized cells were incubated
with primary antibody in 2% bovine serum albumin overnight at 4 °C. Samples
were washed twice with PBS containing 0.05% Tween-20, then incubated with
Alexa-conjugated secondary antibodies (Thermo Fisher) and DAPI (Invitrogen)
for one hour. Samples were washed twice and stored in PBS at 4 °C. Imaging was
performed using an automated high-throughput fluorescence microscope (Olym-
pus scanR). This experiment was performed one time.

DNA content measurement. Frozen viable pleural effusions were thawed and
washed. Cells were resuspended in 4% paraformaldehyde in PBS and fixed 15 min.
Cells were pelleted and resuspended in 5 ml PBS for 15 min. Cells were pelleted and
resuspended in staining buffer (2% FBS in PBS). 3 µM DAPI was added and
incubated 15 min. Cells were washed twice in PBS and resuspended in PBS, fol-
lowed by flow cytometry.

Cell culture and drug assays. The fibroblast feeder system used for drug assays
was modified from that reported previously43. We plated 800 irradiated mouse
embryonic fibroblasts and 5600 never-cultured patient-derived cells (“cancer +
fibroblast” assay), thawed from frozen viable state, per well in white 384-well plates
(quadruplicate). Control wells with 800 fibroblasts per well and no cancer cells
were also plated (“fibroblast-only” assay). Medium included 10 µM Y-2763243.
2–3 days later drug was given. 3 days after drug addition, viability was measured
using CellTiter-Glo. Cancer + fibroblast signal and associated fibroblast-only signal
are shown in Supplementary Fig. 33a, while cancer + fibroblast minus fibroblast (to
obtain cancer-only signal) are shown in Fig. 7a, b and Supplementary Fig. 34. Data
were normalized to dimethyl sulfoxide treatment mean for cancer + fibroblasts or
cancer + fibroblast minus fibroblast. IC50’s for cancer + fibroblast minus fibroblast
were generated in GraphPad Prism using regression analysis. Synergy was calcu-
lated by Bliss independence (Fig. 7b, and Supplementary Fig. 33b). A
two-sided t-test was performed to compare actual combination response with
expected response. Patient Western blot (Supplementary Figs. 24b, 27) was done in
Renaissance medium and was performed one time.

Code availability. Custom code used can be found at https://bitbucket.org/
samuelwb/tumorhetcode.

Data availability. Somatic mutation data and scRNA-Seq gene expression data for
each patient are available on the European Genome-phenome Archive (EGA)
under accession EGAS00001002436, with controlled access, the details of which
can be found on the website under this accession. Custom gene expression sig-
natures can be found on GEO at GSE73628.
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