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Variations in structural MRI quality 
significantly impact commonly used measures 
of brain anatomy
Alysha D. Gilmore, Nicholas J. Buser and Jamie L. Hanson*   

Abstract 

Subject motion can introduce noise into neuroimaging data and result in biased estimations of brain structure. 
In-scanner motion can compromise data quality in a number of ways and varies widely across developmental and 
clinical populations. However, quantification of structural image quality is often limited to proxy or indirect meas-
ures gathered from functional scans; this may be missing true differences related to these potential artifacts. In this 
study, we take advantage of novel informatic tools, the CAT12 toolbox, to more directly measure image quality from 
T1-weighted images to understand if these measures of image quality: (1) relate to rigorous quality-control checks 
visually completed by human raters; (2) are associated with sociodemographic variables of interest; (3) influence 
regional estimates of cortical surface area, cortical thickness, and subcortical volumes from the commonly used 
Freesurfer tool suite. We leverage public-access data that includes a community-based sample of children and 
adolescents, spanning a large age-range (N = 388; ages 5–21). Interestingly, even after visually inspecting our data, we 
find image quality significantly impacts derived cortical surface area, cortical thickness, and subcortical volumes from 
multiple regions across the brain (~ 23.4% of all areas investigated). We believe these results are important for research 
groups completing structural MRI studies using Freesurfer or other morphometric tools. As such, future studies should 
consider using measures of image quality to minimize the influence of this potential confound in group comparisons 
or studies focused on individual differences.
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1  Introduction
Neuroimaging methods are increasingly common, but 
with these advancements, there has been a greater under-
standing of the potential confounds and limitations of 
these research techniques. One of the most common 
limitations of neuroimaging research is that of motion-
related artifacts. This type of noise is caused by partici-
pant movement during a neuroimaging session and may 
impact assessment of brain structure and function [1–4]. 
For those interested in neurodevelopment and mental 

health, such noise and bias may be particularly impor-
tant to address. While head motion varies considerably 
among individuals, children typically move more than 
adults and patient groups move on average more than 
controls [5, 6].

Multiple resting state fMRI studies have highlighted 
the importance of this issue, as very small differences in 
motion have been shown to yield significant differences 
in estimates of functional connectivity among healthy 
samples [1, 3]. In fact, head movements within fractions 
of a millimeter have been shown to significantly bias cor-
relations between BOLD-activation time series’ in a dis-
tant dependent manner, leading to spurious estimates of 
connectivity within functional networks [3, 7]. Further, 
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recent work has shown that head motion is consistent 
within individual subjects from one scanning session to 
the next, raising the potential for motion to confound 
the exploration of individual differences within the same 
population [8]. Particularly challenging, these differences 
persist even after extensive motion correction procedures 
[9, 10]. This has, thus, motivated a methodological sub-
field focused on effective ways to reduce motion-related 
noise in resting-state and other forms of functional MRI.

While a great deal of progress has been made in quanti-
fying and addressing the impact of head motion in func-
tional analyses, less attention has been given to structural 
MRI, such as estimates derived from T1-weighted 
images. It is, however, clear that head motion has been 
shown to compromise derived measures of volume and 
thickness in regions of cortical gray matter [11–14]. 
Such effects remain after different forms of manual and 
automatic correction, suggesting that in-scanner motion 
induces spurious effects that do not reflect a processing 
failure in software, rather, they reflect systematic bias 
(e.g., motion-induced blurring) and this may appear simi-
lar to gray matter atrophy [13]. Particularly concerning, 
many neuroimaging groups will visually inspect scans and 
include scans of “fair” or “marginal” quality. As research-
ers focus on different groups (e.g., children versus ado-
lescents; clinical groups versus non-clinical groups), this 
potentially creates an “apples versus oranges” compari-
son; all scans may “pass” visual inspection, but one group 
has excellent image quality and clarity, while another has 
visible motion and is only above these passing thresholds. 
Such issues are sadly still ignored quite broadly in neu-
roimaging but have significant implications for poten-
tial results. For example, Ducharme and colleagues [15] 
probed potential non-linear trajectories of neurodevel-
opment during childhood and adolescence in a sample 
without any quality control (QC), with standard QC, and 
also more stringent QC. Using no QC, 16.4% of the brain 
showed either quadratic or cubic developmental trajecto-
ries; this however dropped to 9.7% and 1.4% of the brain 
for standard and more stringent quality control. Such 
patterns strongly underscore the importance of these 
issues when working with pediatric, clinical, or any other 
potential “high-motion” populations.

While the impact of movement on structural MRI is 
clear, methods of quantifying and addressing motion-
related noise in T1-weighted images have been limited. 
With particularly noisy structural data, researchers tradi-
tionally “flag” problematic scans and remove these sub-
jects from further analyses. This process involves raters 
visually assessing each T1-weighted structural image. 
A limitation of this strategy is that many phenotypes of 
interest are inherently more prone to head motion (e.g., 
children under 9; individuals with clinical diagnoses [12, 

14]). Also, human-rating systems are relatively imprac-
tical for large scale datasets. A further challenge is that 
visual inspection by human raters is relatively subjec-
tive. Numerous studies have showcased this, with mod-
erately concerning inter- and intra- related variability 
among human-rating systems [16]. Further, even for 
T1-weighted scans that pass “visual inspection”, there 
may still be important variations in data quality which 
impact morphometric estimates. As noted previously 
and put another way, some scans may be “just above” 
threshold for raters, while other volumes may be of 
utmost quality; both types of scans, however, would be 
simply considered “usable” [12].

Thinking holistically, these multiple problems are in 
part due to the limited information about noise typically 
available for T1-weighted MRI scans. T1-weighted MRI 
scans involve the acquisition of only one, higher resolu-
tion anatomical volume. To date, this has prohibited rich 
assessments of noise and subject movement in contrast 
to fMRI. Functional MRI involves the acquisition of doz-
ens, often hundreds, of lower resolution brain volumes; 
this allows for the calculation of frame-by-frame changes 
in a volume’s position, and a clear metric of subject 
movement during fMRI scanning acquisitions. The ease 
in collection of this sort of data has led some to advocate 
for the use of fMRI-derived motion parameters, such as 
mean Framewise Displacement (FD), to identify struc-
tural brain scans that contain motion‐related bias. Recent 
work has showed that by additionally removing FD out-
liers from a sample of visually inspected T1-weighted 
images, the effect sizes of age and gray matter thickness 
were attenuated across a majority of the cortex [17]. It 
is, therefore, possible that some past results of asso-
ciations between participant variables and brain mor-
phometry derived from T1-weighted images may be 
inaccurate, likely particularly inflated in “motion-prone” 
populations. Additional work would be necessary to 
clarify precisely how motion-related bias and noise in 
T1-weighted images varies and overlaps across distinct 
study populations.

While past structural MRI studies with T1-weighted 
images have suffered from the limitations noted above, 
advancements of novel informatic tools may overcome 
these issues. Quality assessment tools have been recently 
introduced that provide easy-to-implement, automated, 
quantitative measures of neuroimaging data. For exam-
ple, the MRI Quality Control tool (MRIQC) has recently 
been introduced and can speak to different quality 
attributes of T1-weighted (and other MRI) images [18]. 
Similarly, the Computational Anatomy Toolbox for SPM 
(CAT12) assesses multiple image quality metrics and 
provides an aggregate “grade” for a given structural MRI 
scan [19]. Thinking about past research, it is unclear if 
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structural MRI quality is related to commonly derived 
structural measures (e.g., cortical surface area; corti-
cal thickness; regional subcortical volumes). Thoughtful 
work by Rosen and colleagues [20] began to investigate 
this idea. These researchers found that metrics from 
Freesurfer, specifically Euler number, were consistently 
correlated with human raters’ assessments of image qual-
ity. Furthermore, Euler number, a summary statistic of 
the topological complexity of a reconstructed brain sur-
face, was significantly related to variations in cortical 
thickness.

While important, one of Rosen and colleagues’ major 
results could be described as “collinear” in nature—a 
measure of Freesurfer re-construction (Euler number) is 
related to measures output by Freesurfer (cortical thick-
ness) [20]. In theory, inaccuracy or variability of Free-
surfer re-construction could be due to MR quality, or 
algorithmic issues. The use of an independent measure 
of quality in relation to Freesurfer outputs would provide 
stronger evidence of the potential impact of T1-weighted 
MRI quality on morphometric measures. In addition, 
Rosen and colleagues did not investigate if Euler number, 
their measure of MR quality, was related to subcortical 
(e.g., amygdala) volumes or cortical surface area. Given 
the major interest from cognitive and affective neurosci-
entists in these type of morphometric measures [21, 22], 
it will be important to know if T1-weighted image qual-
ity impacts variations in these structures. Accounting for 
such variations may be important in reducing potential 
spurious associations and increasing the replicability of 
effects.

To these ends, we investigated three key questions: (1) 
if an integrated measure of image quality, output by the 
CAT12 toolbox, uniquely related to visual rater judge-
ment (retain/exclude) of structural MRI images; (2) if 
variations in image quality related to sociodemographic 
and psychosocial variables (e.g., age; sex; clinical diag-
nosis); (3) if CAT12 image quality was associated with 
differences in commonly used morphometric measures 
derived from T1-weighted images in Freesurfer (cortical 
surface area, cortical thickness, and subcortical volume).

2 � Materials and methods
2.1 � Participants
Data from 388 participants between the ages of 
5–21  years of age with T1-weighted structural images 
were downloaded from two data waves of an ongoing 
research initiative, The Healthy Brain Network (HBN), 
launched by The Child Mind Institute in 2015. For sam-
ple characteristics, see Table  1. Participants with cog-
nitive or behavioral challenges (e.g., being nonverbal, 
IQ < 66), or with medical concerns expected to confound 
brain-related findings were excluded from the HBN 

project. The HBN protocol spans four sessions, each 
approximately 3 h in duration. For additional information 
about the full HBN sample and measures, please see the 
HBN data-descriptor [23].

2.2 � MRI data acquisition
MRI acquisition included structural MRI (T1- and 
T2-weighted), magnetization transfer imaging, and quan-
titative T1- and T2-weighted mapping. Here, we focused 
on only T1-weighted structural MRI scans. A Siemens 
3-Tesla Tim Trio MRI scanner located at the Rutgers 
University Brain Imaging Center (RU) was equipped 
with a Siemens 32-channel head coil. T1-weighted scans 
were acquired with a Magnetization Prepared-RApid 
Gradient Echo (MPRAGE) sequence with the following 
parameters: 224 slices, 0.8 × 0.8 × 0.8  mm resolution, 
TR = 2500  ms, TE = 3.15  ms, and Flip Angle = 8°. All 
neuroimaging data used in this study are openly avail-
able for download with proper data usage agreement via 
the International Neuroimaging Data-sharing Initiative 
(fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_
network/). Again, please see the HBN data-descriptor for 
additional information [23].

2.3 � Visual quality inspection
All T1-weighted scans were separated by release wave 
then visually inspected by a series of human raters that 

Table 1  Demographic table

a  n (%); mean (SD)

Table displaying demographic characteristics of our sample, including 
participant age, sex, psychiatric diagnosis (binary indicator based on structured 
interview), general cognitive ability, and body mass index. This table also 
displays the mean (and standard deviations) for our MRI quality metric of 
interest, CAT12 scores, as well as Freesurfer’s Euler number

Sample characteristics N = 388a

Sex
Female 142 (37%)

Male 246 (63%)

Age (in years) 10.1 (3.4)

Diagnosis
No history 60 (16%)

One or more disorder 306 (84%)

[Missing] 21

General cognitive ability 98 (17)

[Missing] 52

BMI 19.5 (5.2)

[Missing] 8

Structural MRI quality, CAT12 Toolbox 0.83 (0.07)

Freesurfer Euler number 113 (107)

[Missing] 24
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were trained to recognize frequent indications of scan 
artifacts and motion. This training provided exam-
ples and descriptions for artifacts including “ringing”, 
“ghosting”, “RF-Noise”, “head coverage”, and “suscep-
tibility”. Examples of this protocol are detailed in our 
Additional file  1. Each rater was instructed to give 
a score between 1 and 10, with high number being 
assigned to higher quality images. A score of a 6 was 
chosen as a cutoff for scan inclusion in further research. 
This choice was motivated by examining the mean and 
median of ratings from 6 research assistants who exam-
ined the structural MRI scans; the mean of all ratings 
was 6.14 and the median was 6. Additional information 
about rating distributions and correlations between 
raters is detailed in our Additional file 1. To minimize 
any rater idiosyncrasy, all ratings were z-scored (within 
rater), averaged across raters, and compared to the 
averaged z-score for the cutoff (6.0) points. Scans for 
which the averaged z-scored rating was greater than the 
averaged z-score cutoff point were retained (Passing 

visual inspection,  N = 209) and the rest were removed 
from further analysis. In our Additional file 1, we also 
completed additional analyses with subjects who did 
not pass visual quality inspection, examining similar 
relations between image quality and morphometric 
outputs.

2.4 � Image quality metrics
The CAT12 toolbox (Computational Anatomy Tool-
box  12) from the Structural Brain Mapping group, 
implemented in Statistical Parametric Mapping, was 
used to generate a quantitative metric indicating 
the quality of each T1-weighted image [19, 24]. The 
method employed considers four summary measures of 
image quality: (1) noise-to-contrast ratio; (2) coefficient 
of joint variation; (3) inhomogeneity-to-contrast ratio, 
and (4) root-mean-squared voxel resolution. To pro-
duce a single aggregate metric that serves as an indi-
cator of overall quality, this toolbox normalizes each 

Fig. 1  Graphic depiction of the study’s procedures. Structural MRI images were rated by multiple trained research assistant and also processed in 
the CAT12 toolbox (a). Human raters rated each image and then these ratings were averaged; MRI images, with a rating > 6, were then processed in 
Freesurfer, and relations between CAT12 scores and Freesurfer outputs were examined (b)
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measure and combines them using a kappa statistic-
based framework, for optimizing a generalized linear 
model through solving least squares [25]. This measure 
ranged from 0 to 1, with higher values indicating bet-
ter image quality. Additional information is available 
at: http://​www.​neuro.​uni-​jena.​de/​cat/​index.​html#​QA. 
Quality assessment for one T1-weighted scan could 
not be completed through the CAT12 toolbox due to 
excessive noise. Of note, and relevant for the use of the 
CAT12 toolbox as a quality control tool, generation of 
image quality metrics took approximately 18  min per 
subject/scan (on entry-level computers, e.g., an Apple 
iMac with a 2.8-GHz quad‐core Intel Core i5 processor 
and 16 GB of RAM).

2.5 � Sociodemographic, cognitive, and psychiatric 
measures

Sociodemographic (self-report), cognitive, and psychiat-
ric data was assessed through the COllaborative Infor-
matics and Neuroimaging Suite (COINS) Data Exchange 
after completion of appropriate data use agreements. 
We selected a number of measures that we believed may 
covary with T1-weighted MRI quality. Motivated by past 
studies, these included: age, sex, body mass index (BMI), 
general cognitive ability (IQ), and clinical diagnoses. 
The Wechsler Intelligence Scale for Children (WISC-
V) was used as a measure of general cognitive ability 
(IQ) and was completed on 336 participants in the sam-
ple; the WISC-V is an individually administered clinical 
instrument for assessing the intelligence of youth par-
ticipants 6–16 and generates a general cognitive ability 
score (Full-Scale Intelligence Quotient; FSIQ). Related to 
clinical diagnoses, the presence of psychopathology was 
assessed by a certified clinician using semi-structured 
DSM-5-based psychiatric interview (i.e., the Schedule 
for Affective Disorders and Schizophrenia for Children; 
KSADS-COMP). This data was available for 367 par-
ticipants in our sample. Mean, standard deviation, and 
ranges for all the sociodemographic, cognitive, and psy-
chiatric measures are noted in Table 1. Additional infor-
mation about these measures is noted in our Additional 
file 1.

2.6 � Image pre/processing (Freesurfer)
Standard-processing approaches from Freesurfer (e.g., 
cortical reconstruction; volumetric segmentation) were 
performed in version 7.1. Freesurfer is a widely docu-
mented and freely available morphometric processing 
tool suite (http://​surfer.​nmr.​mgh.​harva​rd.​edu/) The tech-
nical details of these procedures are described in prior 
publications [26–31]. Briefly, this processing includes 

motion correction and intensity normalization of 
T1-weighted images, removal of non-brain tissue using 
a hybrid watershed/surface deformation procedure [32], 
automated Talairach transformation, segmentation of the 
subcortical white matter and deep gray matter volumet-
ric structures (including hippocampus, amygdala, cau-
date, putamen, ventricles), tessellation of the gray matter 
white matter boundary, and derivation of cortical surface 
area and cortical thickness. Of note, the "recon-all" pipe-
line with the default set of parameters (no flag options) 
was used and no manual editing was conducted. After 
successful processing, we extracted volumes from sub-
cortical structures, as well as mean cortical surface area 
and cortical thickness for the 34 bilateral Desikan–Kil-
liany (DK) atlas regions [33]. Freesurfer was implemented 
using Brainlife.io, (brainlife.app.0, https://​doi.​org/​10.​
25663/​bl.​app.0), which is a free, publicly funded, cloud-
computing platform for reproducible neuroimaging pipe-
lines and data sharing [34], for additional information, 
visit http://​brain​life.​io/). Scans from four participants 
did not complete processing in Freesurfer due to techni-
cal issues; this brought the total sample size that passed 
visual inspection and with Freesurfer processing com-
pleted) to N = 205. Graphical depictions of our methods 
are shown in Fig. 1.

Fig. 2  ROC curves showing the validity of image quality (derived 
from the CAT12 toolbox) for discriminating passing (versus failing) 
human rater visual checks of quality. Sensitivity and specificity were 
both high, suggesting image quality was able to robustly parse this 
binary categorization. 95% Confidence Intervals of these ROC curves 
are shown in red

http://www.neuro.uni-jena.de/cat/index.html#QA
http://surfer.nmr.mgh.harvard.edu/
https://doi.org/10.25663/bl.app.0
https://doi.org/10.25663/bl.app.0
http://brainlife.io/
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2.7 � Statistical modeling
We first constructed logistic regression models that 
used an aggregated measure of T1-weighted image qual-
ity from the CAT12 toolbox and the outcome of pass-
ing or failing visual quality assurance checks completed 
by trained human raters. Receiver operating character-
istic curves were computed to understand true positive 
(sensitivity) and false positive rates. For these receiver 
operating characteristic measures, the area under the 
curve (AUC) was computed to show classification perfor-
mance at all classification thresholds (and distinguishing 
between classes of passing or failing visual quality assur-
ance checks). We additionally constructed: (1) Bayesian 
logistic models, and (2) confusion matrices. Bayesian 
logistic models probed potential over-fitting and biases 
common to Frequentist logistic models [35]. Confu-
sion matrix construction involved logistic model fitting 
on 80% of our full sample (as a “training” set) and then 

application of these parameters to the remaining 20% 
of our sample (the “test” set). Next, bivariate correla-
tions were calculated to examine relations between our 
image quality and sociodemographic variables of inter-
est, including age, sex, IQ, BMI, and clinical diagnosis. 
Finally, we computed 158 bivariate correlations between 
T1-weighted image quality and Freesurfer outputs (68 
mean cortical surface area from the DK atlas; 68 mean 
cortical thickness estimates from the DK atlas; 22 sub-
cortical regions). Of note, cerebral spinal fluid Freesurfer 
subcortical outputs (e.g., lateral ventricle; left-choroid-
plexus) were excluded from analyses.

Given the number of statistical tests conducted and 
to further reproducibility, we adjusted all p-values of 
this last step based on the Benjamini and Hochberg 
false discovery rate correction [36]. This commonly 
used approach has been shown to have appropriate 
power to detect true positives, while still controlling the 

Fig. 3  To further probe the ability of CAT12 scores to accurately classified inclusion/exclusion of MRI images (derived from our human raters), 
confusion matrices were constructed. Of note, 80% of our data was used in our training set and 20% in our test set. This graphic displays the 
different metric of accurate classification including sensitivity, specificity, accuracy, and kappa



Page 7 of 15Gilmore et al. Brain Inf.             (2021) 8:7 	

proportion of type I errors at a specified level (α = 0.05). 
This was done “within” each morphometric output cat-
egory (i.e., correcting for 68 correlations for surface area 
and MRI quality). We graphed all results with ‘ggseg’ R 
library [37]. All reported correlations are derived from 
linear regression models with 1 independent variable, so 
this can be seen as equivalent to a bivariate (Pearson’s) 
correlation coefficient. A pdf version of our RMarkdown 
output is available in our Additional file 1 and online (at 
https://​github.​com/​jlhan​son5/​BRAI-D-​20-​00036​R1).

2.8 � Supplemental modeling
To probe the robustness of the results reported in the 
main document, we also completed a number of follow-
up analyses related to our variables of interest. These 
included: (1) constructing logistic regression models 
and ROC curves with CAT12 and another marker of 
image quality, Freesurfer’s Euler number; (2) examin-
ing associations between Freesurfer outputs and struc-
tural MRI quality after controlling for the important 
sociodemographic factor of age; (3) testing associations 
between Freesurfer outputs and CAT12 scores, after 
controlling for Freesurfer’s Euler number; (4) probing 
relations between Freesurfer outputs and CAT12 scores 
in participants excluded after visual quality checks, and 
(5)  charting relations between Freesurfer Outputs and 
Freesurfer’s Euler Number while controlling CAT12 Scan 

Fig. 4  Scatterplot showing participant age (in years; horizontal axis) 
and image quality (an aggregated measure of noise-to-contrast ratio, 
coefficient of joint variation, inhomogeneity-to-contrast ratio, and 
root-mean-squared voxel resolution, ranging from 0–1; vertical axis). 
Dot color indicates whether the participants passed visual quality 
checks (pass = turquoise; fail = salmon)

Table 2  Relations between cortical surface area and structural 
MRI quality (as measured by the CAT12 Toolbox)

Area parcel t_statistics p_value p_adjusted

lh_bankssts 0.44371 0.65772 0.79866

lh_caudalanteriorcingulate 2.08777 0.03805 0.11760

lh_caudalmiddlefrontal 1.17122 0.24286 0.48195

lh_cuneus − 0.44706 0.65530 0.79866

lh_entorhinal 1.22860 0.22062 0.45462

lh_fusiform 0.81376 0.41672 0.59110

lh_inferiorparietal 0.30567 0.76016 0.86025

lh_inferiortemporal 4.10177 0.00006 0.00080 
lh_isthmuscingulate 0.18245 0.85541 0.89489

lh_lateraloccipital − 0.61571 0.53877 0.73272

lh_lateralorbitofrontal 4.36176 0.00002 0.00046 
lh_lingual 0.13832 0.89012 0.91709

lh_medialorbitofrontal 3.23941 0.00140 0.01357 
lh_middletemporal 2.61381 0.00961 0.05029

lh_parahippocampal 1.09311 0.27562 0.49322

lh_paracentral 0.73901 0.46074 0.63940

lh_parsopercularis 0.81284 0.41725 0.59110

lh_parsorbitalis 2.54329 0.01172 0.05311

lh_parstriangularis 2.14037 0.03350 0.11390

lh_pericalcarine 0.23182 0.81691 0.88174

lh_postcentral − 0.35881 0.72011 0.85907

lh_posteriorcingulate 2.88885 0.00428 0.02910 
lh_precentral − 0.92631 0.35537 0.56197

lh_precuneus 2.04056 0.04257 0.12586

lh_rostralanteriorcingulate 3.08607 0.00231 0.01961 
lh_rostralmiddlefrontal 4.67811 0.00001 0.00018 
lh_superiorfrontal 1.95419 0.05203 0.13748

lh_superiorparietal 1.06070 0.29007 0.49980

lh_superiortemporal 0.94196 0.34732 0.56197

lh_supramarginal 1.46012 0.14578 0.34183

lh_frontalpole 2.33001 0.02077 0.07848

lh_temporalpole 2.11599 0.03555 0.11510

lh_transversetemporal 0.85295 0.39468 0.59110 

lh_insula 2.37299 0.01856 0.07426 

rh_bankssts 0.83044 0.40725 0.59110

rh_caudalanteriorcingulate 0.85123 0.39563 0.59110

rh_caudalmiddlefrontal 1.93317 0.05459 0.13748

rh_cuneus − 0.18496 0.85344 0.89489

rh_entorhinal 1.25415 0.21121 0.44882

rh_fusiform 1.93642 0.05418 0.13748

rh_inferiorparietal 0.46049 0.64565 0.79866

rh_inferiortemporal 3.35107 0.00096 0.01085
rh_isthmuscingulate 1.05208 0.29400 0.49980

rh_lateraloccipital 0.55048 0.58259 0.76184

rh_lateralorbitofrontal 4.10849 0.00006 0.00080
rh_lingual − 0.25066 0.80233 0.87997

rh_medialorbitofrontal 4.91858 0.00000 0.00012
rh_middletemporal 2.29156 0.02294 0.08211

rh_parahippocampal 0.29054 0.77169 0.86025

https://github.com/jlhanson5/BRAI-D-20-00036R1
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Rating. Please see our Additional file  1 for these addi-
tional analyses.

3 � Results
3.1 � Relations between T1‑weighted MRI quality and visual 

rejection/acceptance of structural images
Logistic regression was used to examine relationships 
between our aggregated T1-weighted MRI quality 
measure and the outcome of passing or failing quality 
assurance checks completed by trained human raters. 
Logistic regression models indicated that T1-weighted 
MRI quality, derived by the CAT12 toolbox, was sig-
nificantly related to passing or failing quality assurance 
checks completed by trained human raters (z = 7.877, 
p < 0.005; Nagelkerke’s  R2 = 0.8951). This indicated that 
greater CAT12 MRI quality scores were related to a 
higher likelihood of passing visual inspection. Receiver 
operating characteristic analyses indicated a mean 
AUC of 98.9% (with 95% confidence intervals span-
ning 98.2–99.6%, as shown in Fig.  2). Bayesian GLM 
modeling suggested a similar relation, with higher MRI 
quality significantly relating to passing visual checks 
(z = 8.141, p < 0.005). As shown in Fig.  3, Confusion 

matrices indicated strong model prediction, out of 
sample (derived from 80% of our sample, to a heldout 
20%)–accuracy = 0.938 and Kappa = 0.874 

3.2 � Bivariate correlations between T1‑weighted image 
quality and sociodemographic variables of interest

We next examined correlations between T1-weighted 
image quality, sociodemographic variables of inter-
est (e.g., age, sex, BMI, and clinical diagnosis). As 
expected and in line with other reports, image qual-
ity was related to age (r = 0.321, p < 0.005; as shown in 
Fig. 4). Older subjects typically had better quality scans. 
Interestingly, no other sociodemographic factors were 
significantly related to image quality (Sex p = 0.196; 
BMI p = 0.227; Clinical Diagnosis [binary indicator] 
p = 0.189). The BMI finding is in contrast to past results 
reported in adults [8, 38]. There was a trend associa-
tion for image quality and IQ (r = 0.101, p = 0.06), with 
high IQ relating to better image quality. Of note, this 
is for all participants (not only those passing human 
rater visual inspection). If associations are investi-
gated in only those passing visual inspection, the asso-
ciation with age and image quality remains significant 
(p = 0.036). All other associations were non-significant 
(all p’s > 0.3).

3.3 � Associations between Freesurfer outputs 
and structural MRI quality

We next examined correlations between T1-weighted 
MRI quality and 158 morphometric outputs from Free-
surfer (68 mean cortical surface area estimates from 
the DK atlas; 68 mean cortical thickness estimates also 
from the DK atlas; 22 subcortical regions). Related 
to cortical surface area, there was variability in how 
T1-weighted image quality related to mean surface area 
from differ brain parcels (t-statistic range = -0.926–
4.918). In aggregate, this association was modest (Mean 
t-statistic = 1.473 ± 1.33); however, in 12 areas, the 
association between image quality and mean surface 
area was significant, even after correcting for multiple 
comparisons (pfdr-corrected < 0.05, as displayed in Table 2 
and Fig. 5). For cortical thickness, there was again vari-
ability in relation between mean thickness for parcels 
and image quality (t-statistic range = -2.376–6.571), 
with modest associations in the aggregate (mean t-sta-
tistic = 1.510 ± 2.04). However, relations between image 
quality and cortical thickness for 23 regions was sig-
nificant, even after correcting for multiple compari-
sons (pfdr-corrected < 0.05, as shown in Table 3 and Fig. 6). 
Finally, for subcortical volume, similar patterns were 
seen (t-statistic range = -−0.5896–3.337; mean t-sta-
tistic = 1.312 ± 1.016, as shown in Table  3 and Fig.  6). 

Table displays relations between MRI quality (CAT12 score) and cortical surface 
area for different brain parcels in Freesurfer’s DK atlas. The left side of the table 
shows regions in the left hemisphere, while the right side shows the right 
hemisphere. On each side, region is in the first column, and t-statistic (of CAT12 
and cortical surface area) is in the second column. The third column is the 
uncorrected p-value, while the fourth column is this test statistic corrected for 
multiple comparisons (for all 68 cortical parcels). Italics indicates regions that 
were p < .05 (uncorrected), while bold indicates regions that were p < .05 (FDR 
corrected)

Table 2  (continued)

Area parcel t_statistics p_value p_adjusted

rh_paracentral 0.96544 0.33546 0.55636

rh_parsopercularis 1.15082 0.25114 0.48195

rh_parsorbitalis 2.56615 0.01099 0.05311

rh_parstriangularis 0.04814 0.96165 0.96165

rh_pericalcarine − 0.09957 0.92079 0.93453

rh_postcentral 1.38743 0.16681 0.37810

rh_posteriorcingulate 1.30056 0.19486 0.42744

rh_precentral 0.33314 0.73937 0.86025

rh_precuneus 2.43302 0.01583 0.06726

rh_rostralanteriorcingulate 2.91711 0.00392 0.02910
rh_rostralmiddlefrontal 2.67074 0.00817 0.04832
rh_superiorfrontal 1.90633 0.05800 0.14085

rh_superiorparietal 0.55646 0.57850 0.76184

rh_superiortemporal 1.09531 0.27466 0.49322

rh_supramarginal 2.65600 0.00853 0.04832
rh_frontalpole 0.47238 0.63715 0.79866

rh_temporalpole 1.14111 0.25515 0.48195

rh_transversetemporal − 0.32295 0.74706 0.86025

rh_insula 1.96440 0.05083 0.13748
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Of note, volumes from two regions, the left amygdala 
and the posterior portion of the corpus callosum, were 
related to image quality (pfdr-corrected < 0.05) after cor-
recting for multiple comparisons  (as shown in Table 4 
and  Fig.  7). In the aggregate, we examined 158 mor-
phometric outputs from Freesurfer and 37 were sig-
nificantly related to image quality, after correcting for 
multiple comparisons. Of note, if one did not correct 
for multiple comparisons, 56 regions (or ~ 35.4% of the 
outputs) were related to image quality at p < 0.05.    

4 � Discussion
The primary goals of this study were threefold: (1) to see 
if an integrated measure of image quality (output by the 
CAT12 toolbox) related to visual rater judgement (retain/
exclude) of T1-weighted MRI images; (2) to examine if 
direct measures of T1-weighted imaging quality were 
associated with sociodemographic and behavioral vari-
ables of interest; (3) to investigate if there were associa-
tions between commonly used Freesurfer outputs and 
T1-weighted image quality. Related to the first goal (and 
perhaps as expected), the measure of image quality out-
put by the CAT12 toolbox was strongly related to visual 
rater judgement of T1-weighted MRI images. Logistic 

regression models and receiver operating characteris-
tic analyses supported this idea. Connected to this sec-
ond goal, we found significant associations between 
image quality and age; there were, however, no relations 
between IQ, BMI, sex, or clinical diagnosis. Finally, we 
demonstrated commonly derived structural MRI meas-
ures, derived from T1-weighted images, were strongly 
related to image quality. Even after correcting for mul-
tiple comparisons, numerous measurements of cortical 
surface area, cortical thickness and subcortical volumes 
were connected to image quality. This was for a large per-
centage (23.4%) of the brain regions investigated, suggest-
ing diffuse, but significant, impacts of image quality on 
structural morphometric measures. Interestingly, many 
of the regions that survive multiple comparisons (e.g., 
entorhinal, precentral, caudal middle frontal parcels) 
were found to be influential in the automated quality con-
trol suite, Qoala-T [16]. Examined collectively, our results 
have significant implications for studies of neurodevelop-
ment and other applied work using T1-weighted MRI, 
as motion artifacts are especially problematic for young 
children and clinical populations; these groups may have 
difficulty remaining still during the time required to col-
lect high-resolution neuroimaging data (Table 4).

Fig. 5  A graphic depiction (from the R library ggseg) showing associations between image quality (assessed by the CAT12 Toolbox) and derived 
(mean) cortical surface area. This is shown for the DK atlas commonly used in Freesurfer. Lateral and medial views are shown for the right (top) and 
left (bottom) hemispheres. The left panel shows the overall t-statistics for the relation in each parcel, while the right panel shows parcels where the 
relation between surface area and image quality survives multiple comparisons
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Contextualizing our results with past research reports, 
we find significant bivariate associations between image 
quality and age. However, we did not find associations 
between image quality and factors such as general intel-
ligence (IQ), and BMI. Such findings are in contrast to a 
few prior publications [8, 38]. This may be due to the age-
range of our sample (5–21 years of age), while those rel-
evant past studies have been primarily completed in adult 
samples. Building off of previous studies, we find image 
quality is related to derived measures of brain anatomy, 
irrespective of typical (binary) quality threshold cut-offs. 
Even in structural scans of high quality (that “pass” visual 
inspection), in-scanner motion appears to influence mor-
phometric estimations. Indeed, accurate quantification of 
regional grey matter volume relies on reliable segmenta-
tion from high-resolution MR images. Head motion dur-
ing an MRI scan can bias segmentation, which in turn 
can impact morphometric measurements.

Our results have important implications when thinking 
about structural MRI, especially for studies attempting 
to center-in on individual differences using T1-weighted 
MR scans. We used more direct measures of T1-weighted 
image quality, rather than measures derived from resting 

Table 3  Relations between cortical thickness and structural MRI 
quality (as measured by the CAT12 Toolbox)

Area parcel t_statistics p_value p_adjusted

lh_bankssts 1.08997 0.27700 0.40948

lh_caudalanteriorcingulate − 1.34432 0.18032 0.29907

lh_caudalmiddlefrontal 4.30970 0.00003 0.00022
lh_cuneus 0.15952 0.87342 0.91373

lh_entorhinal 5.07313 0.00000 0.00001
lh_fusiform 2.68890 0.00776 0.02526
lh_inferiorparietal 2.74840 0.00652 0.02463
lh_inferiortemporal 2.60408 0.00988 0.03055
lh_isthmuscingulate − 1.90339 0.05838 0.12807

lh_lateraloccipital 2.86879 0.00455 0.02062
lh_lateralorbitofrontal 2.02652 0.04400 0.10011

lh_lingual − 1.65309 0.09983 0.18348

lh_medialorbitofrontal − 0.23206 0.81673 0.88155

lh_middletemporal 2.26172 0.02476 0.06734

lh_parahippocampal 0.60225 0.54767 0.65336

lh_paracentral 1.85395 0.06518 0.13850

lh_parsopercularis 1.76791 0.07856 0.15382

lh_parsorbitalis 1.22890 0.22051 0.33322

lh_parstriangularis 1.00086 0.31807 0.45060

lh_pericalcarine − 1.57667 0.11641 0.20831

lh_postcentral 1.76425 0.07917 0.15382

lh_posteriorcingulate − 0.24391 0.80755 0.88155

lh_precentral 6.57110 0.00000 0.00000
lh_precuneus 0.61377 0.54005 0.65336

lh_rostralanteriorcingulate − 1.52622 0.12849 0.21843

lh_rostralmiddlefrontal − 0.18503 0.85339 0.90672

lh_superiorfrontal 1.77457 0.07745 0.15382

lh_superiorparietal 2.90099 0.00412 0.02058
lh_superiortemporal 4.18747 0.00004 0.00032
lh_supramarginal 3.78244 0.00020 0.00138
lh_frontalpole − 1.29074 0.19824 0.30869

lh_temporalpole 5.46017 0.00000 0.00000
lh_transversetemporal 0.81222 0.41760 0.55680

lh_insula 0.97027 0.33305 0.46219

rh_bankssts 1.55943 0.12043 0.20998

rh_caudalanteriorcingulate − 0.57201 0.56794 0.66586

rh_caudalmiddlefrontal 4.45687 0.00001 0.00013
rh_cuneus 0.89066 0.37415 0.50884

rh_entorhinal 5.28642 0.00000 0.00001
rh_fusiform 2.58405 0.01046 0.03091
rh_inferiorparietal 1.28643 0.19974 0.30869

rh_inferiortemporal 2.89207 0.00424 0.02058
rh_isthmuscingulate − 2.20428 0.02861 0.07483

rh_lateraloccipital 2.78964 0.00577 0.02372
rh_lateralorbitofrontal 2.17463 0.03080 0.07756

rh_lingual − 0.63065 0.52897 0.65336

rh_medialorbitofrontal − 2.37653 0.01839 0.05211

rh_middletemporal 2.78051 0.00593 0.02372
rh_parahippocampal 2.02490 0.04417 0.10011

Table displays relations between MRI quality (CAT12 score) and cortical thickness 
for different brain parcels in Freesurfer’s DK atlas. The left side of the table shows 
regions in the left hemisphere, while the right side shows the right hemisphere. 
On each side, region is in the first column, and t-statistic (of CAT12 and cortical 
thickness) is in the second column. The third column is the uncorrected p-value, 
while the fourth column is this test statistic corrected for multiple comparisons 
(for all 68 parcels). Italics highlighting indicates regions that were p < .05 
(uncorrected), while bold indicates regions that were p < .05 (FDR corrected)

Table 3  (continued)

Area parcel t_statistics p_value p_adjusted

rh_paracentral 2.68693 0.00780 0.02526
rh_parsopercularis 2.71333 0.00722 0.02526
rh_parsorbitalis 0.12045 0.90424 0.91774

rh_parstriangularis 0.75355 0.45198 0.59105

rh_pericalcarine − 0.14035 0.88852 0.91545

rh_postcentral 0.64465 0.51987 0.65336

rh_posteriorcingulate − 1.05990 0.29043 0.42020

rh_precentral 5.57632 0.00000 0.00000
rh_precuneus 0.38736 0.69889 0.79208

rh_rostralanteriorcingulate 0.49376 0.62200 0.71688

rh_rostralmiddlefrontal − 0.09858 0.92157 0.92157

rh_superiorfrontal 1.29407 0.19709 0.30869

rh_superiorparietal 2.97047 0.00333 0.02056
rh_superiortemporal 2.89752 0.00417 0.02058
rh_supramarginal 1.71206 0.08839 0.16696

rh_frontalpole − 0.28271 0.77768 0.86692

rh_temporalpole 5.11553 0.00000 0.00001
rh_transversetemporal 2.07574 0.03916 0.09510

rh_insula 0.71959 0.47259 0.60635
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state (e.g., Refs [14, 17].). Use of resting state may cap-
ture aspects of participant movement, but it is not spe-
cifically during the T1-weighted MRI scan. Furthermore, 
this type of information may not be available for all stud-
ies, but the measure we employ here could be derived for 
any T1-weighted scan. Using this more direct measure of 
MRI quality, we found impacts on morphometric vari-
ables typically generated from T1-weighted MR images. 
For example, other studies have used proxy measures for 
image quality derived from subject-motion during func-
tional scans [12, 17]. However, proxy measures for sub-
ject-motion may be missing true differences obscured by 
motion [20]. Our findings build off of past work by Rosen 
and colleagues’ that found Freesurfer Euler number was 
related to Freesurfer cortical thickness measures. Here, 
however, we used a more direct metric of image quality, 
derived from the CAT12 toolbox, and examined correla-
tions with this measure and commonly used Freesurfer 
outputs. This use of an independent image quality met-
ric provides stronger evidence of the impact of image 
quality on subcortical volume, cortical surface area, and 
cortical thickness. Across these Freesurfer outputs, there 
was variability in image quality and relations with surface 

area, thickness and volumes; positive and negative rela-
tions were commonly noted across the different atlases. 
However, the only relations between image quality and 
Freesurfer outputs that survived multiple comparisons 
were positive in nature–greater image quality related to 
higher values in these regions. Interestingly, many of the 
regions that survive multiple comparisons (e.g., entorhi-
nal, precentral, caudal middle frontal parcels) were found 
to be influential in the automated quality control suite, 
Qoala-T [16]. These areas may be particularly impacted 
by participant motion and image quality. Finally, and of 
interest to those studying emotion, we find that volumet-
ric measures of amygdala were related to image quality, 
with higher image quality relating to higher volumes in 
this area.

Considering our project, as well as past studies, 
our results suggest it will be important to consider 
image quality in future structural MRI analyses using 
T1-weighted images. In line with current work, studies 
interested in individual and/or group differences should 
flag/exclude scans of extremely poor quality. Further-
more, in the future, research groups may think about 
accounting for individual differences in motion-related 

Fig. 6  A graphic depiction (from the R library ggseg) showing associations between image quality (assessed by the CAT12 Toolbox) and derived 
(mean) cortical thickness. This is shown for the DK atlas commonly used in Freesurfer. Lateral and medial views are shown for the right (top) and 
left (bottom) hemispheres. The left panel shows the overall t-statistics for the relation in each parcel, while the right panel shows parcels where the 
relation between cortical thickness and image quality survives multiple comparisons
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image quality by using more direct measures of image 
quality as covariates in morphometric analyses. Such a 
strategy could address indirect effects of motion-related 
image quality and to confirm main effects for their vari-
ables of interest. However, as with any covariate of “no 
interest”, if motion is collinear with other variables, 
important variance related to factors of interest may be 
removed. Nuanced future work will need to address this 
as past work has noted relations between MR image qual-
ity and general cognition, body mass index, and clinical 
group status [6, 8, 38].

Of note, there are many important limitations of our 
data and our results that must be highlighted. First, the 
public access dataset we used here, the Healthy Brain 

Network, is not a truly random sample. The dataset 
has a limited age range (5–21  years of age) and also 
employed a community-referred recruitment model. 
Study advertisements are specifically targeting fami-
lies who have concerns about one or more psychiatric 
symptoms in their child. Given these factors, it is per-
haps not surprising that our human raters excluded a 
large number of MRI scans. The Healthy Brain Network 
scanned many individuals who would not typically be 
involved with MRI research (e.g., youth with high lev-
els of psychopathology and other developmental chal-
lenges), and therefore perhaps less likely to produce 
high quality data. However, the data loss rate seen in 
our project is actually in keeping with reports from past 

Fig. 7  A graphic depiction (from the R library ggseg) showing associations between image quality (assessed by the CAT12 Toolbox) and subcortical 
volumes. This is shown for the Freesurfer ASEG atlas. Coronal (left) and sagittal (right) views are shown. The left panel shows the t-statistic for the 
relation in each subcortical volume, while the right panel shows parcels where the relation between volume and image quality survives multiple 
comparisons
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groups [39, 40]. Research teams interested in neurode-
velopment and working in pediatric samples may think 
about use of prospective motion correction tools that 
localize the head position throughout the scan [41–43]. 
Second, Freesurfer is only one approach to deriving 
measures from structural MRI scans. Other metrics, 
such as voxel-based morphometry or region of inter-
est drawing, may be similarly impacted by image qual-
ity. These approaches, however, often depend on tissue 
segmentation and would likely also be influenced by 
image quality. This should be investigated in the future 
by research teams employing such methods. Finally, we 
used a composite measure of image quality, constructed 
in the CAT12 toolbox. This may be influencing some of 
the results reported. There are many metrics of image 
quality, each potentially capturing unique aspects of 
noise relevant for MRI morphometry. We relied on 
this aggregated metric that combined noise-to-contrast 
ratio, coefficient of joint variation, inhomogeneity-to-
contrast ratio, and root-mean-squared voxel resolution.

Expanding on this last issue, how to measure image 
quality is an area of much needed research. Here, being 
able to have a single “grade” (output by CAT12) moti-
vated our decision to use this toolbox. We believe that 
researchers working in applied disciplines could use 
this single metric in their work to do quality control 
assessments, as well as a potential control variable in 
statistical models. Studies in the future could take an 
integrated approach to different measures connecting 
automated metrics of image quality (i.e., CAT12, Free-
surfer’s Euler number, MRIQC, Qoala-T) to trained 
human ratings and “crowd sourced” judgements of MR 
images [44, 45]. Such future work will need to balance 
how to reduce down these multiple metrics to fewer 
variables (to aid applied research teams) while isolating 
unique sources of noise. We feel that CAT12 is a rea-
sonable starting point, as it is quick to run (~ 18 min/
subject), has a relatively easy to use interface, and does 
not require intense computational resources.

5 � Conclusions
Limitations, notwithstanding, we demonstrate that 
direct measures of structural imaging quality are strongly 
linked to commonly used structural MRI measures, as 
well as participant age. Importantly, we show that vari-
ations in image quality are strongly related to deriva-
tion of brain anatomy. Accounting for variations in 
image quality could impact results from applied studies 
(focused on age, clinical status, etc.). Unique to the work, 
we used more direct measures of structural MRI quality 
rather than proxies of motion and noise. In the future, 
research groups may consider accounting for such meas-
ures in analyses focused on individual differences in age, 
cognitive functioning, psychopathology, and other fac-
tors. This may lead to greater reproducibility in reported 
effects, as well as a way to minimize any potential spuri-
ous associations.
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Table 4  Relations between subcortical volumes and structural 
MRI quality (as measured by the CAT12 Toolbox)

Table displays relations between MRI quality (CAT12 score) and subcortical 
volumes in Freesurfer’s ASEG atlas. Region is in the first column, and t-statistic (of 
CAT12 and subcortical volume) is in the second column. The third column is the 
uncorrected p-value, while the fourth column is this test statistic corrected for 
multiple comparisons (for all 22 subcortical regions of interest). Bold indicates 
regions that were p < .05 (uncorrected), while italics indicates regions that were 
p < .05 (FDR corrected)

Area parcel t_statistics p_value p_adjusted

Left-Thalamus-Proper − 0.10352 0.91765 0.97864

Left-Caudate 0.18568 0.85288 0.97864

Left-Putamen 1.64437 0.10163 0.22358

Left-Pallidum 1.32804 0.18563 0.31415

brain-stem 1.39762 0.16373 0.30017

Left-Hippocampus 0.87275 0.38381 0.55460

Left-Amygdala 3.26946 0.00126 0.01389
Left-Accumbens-area 0.02680 0.97864 0.97864

Left-VentralDC 0.82099 0.41260 0.55460

Right-Thalamus-Proper − 0.58969 0.55604 0.67961

Right-Caudate 0.07730 0.93846 0.97864

Right-Putamen 1.71325 0.08817 0.21891

Right-Pallidum 1.74292 0.08284 0.21891

Right-Hippocampus 0.79323 0.42856 0.55460

Right-Amygdala 1.89779 0.05912 0.21678

Right-Accumbens-area 1.48388 0.13937 0.27874

Right-VentralDC 1.01197 0.31274 0.49144

cc-posterior 3.33701 0.00100 0.01389
cc-mid-posterior 1.70579 0.08956 0.21891

cc-central 1.96198 0.05111 0.21678

cc-mid-anterior 2.33941 0.02027 0.14866

cc-anterior 1.96509 0.05075 0.21678
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