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A B S T R A C T   

The COVID-19 epidemic has emerged as one of the most severe public health crises worldwide, especially in 
Europe. Until early July 2021, reported infected cases exceeded 180 million, with almost 4 million associated 
deaths worldwide, almost a third of which are in continental Europe. We analyzed the spatio-temporal distri-
bution of the disease incidence and mortality rates considering specific periods in this continent. Further, we 
applied Global Moran’s I to examine the spatio-temporal distribution patterns of COVID-19 incidence rates and 
Getis-Ord Gi* hotspot analysis to represent high-risk areas of the disease. Additionally, we compiled a set of 40 
demographic, socioeconomic, environmental, transportation, health, and behavioral indicators as potential 
explanatory variables to investigate the spatial variations of COVID-19 cumulative incidence rates (CIRs). Or-
dinary Least Squares (OLS), Spatial Lag model (SLM), Spatial Error Model (SLM), Geographically Weighted 
Regression (GWR), and Multiscale Geographically Weighted Regression (MGWR) regression models were 
implemented to examine the spatial dependence and non-stationary relationships. Based on our findings, the 
spatio-temporal distribution pattern of COVID-19 CIRs was highly clustered and the most high-risk clusters of the 
disease were situated in central and western Europe. Moreover, poverty and the elderly population were selected 
as the most influential variables due to their significant relationship with COVID-19 CIRs. Considering the non- 
stationary relationship between variables, MGWR could describe almost 69% of COVID-19 CIRs variations in 
Europe. Since this spatio-temporal research is conducted on a continental scale, spatial information obtained 
from the models could provide general insights to authorities for further targeted policies.   

Introduction 

Coronavirus disease (COVID-19), originating from Hubei province in 
China in early December 2019, became a global health crisis due to its 
rapid spread (World Health Organization (WHO) 2020a). As of June 30, 
2021, more than 180 million infected cases and almost 4 million asso-
ciated deaths have been reported globally (World Health Organization 
(WHO) 2021a). Europe accounts for almost a third of the total disease 
infections. On the mentioned date, this continent had about 56 million 
infected cases and almost 1,183,000 associated deaths caused by 
COVID-19. COVID-19 transmission is not confined to national borders or 
geographical territories since social, economic, and political communi-
cations and activities have risen dramatically worldwide. Accordingly, 
coronavirus spread is a complex issue, and it is better not to limit the 
study to a specific level (Kianfar et al., 2021). In Europe, the first 
COVID-19 infected case was found in France in December 2019 

(Newyork Post, May 5, 2020). After that, other European countries 
became infected rapidly, and the number of cases and associated deaths 
increased dramatically and got out of control (World Socialist WebSite 
November 3, 2020). 

In Europe, Sannigrahi et al. (Sannigrahi et al., 2020) analyzed the 
spatial relationship between the COVID-19 infected cases and associated 
deaths and socio-demographic determinants using spatial regression 
techniques. Their data investigation extended from December 31, 2019, 
to April 29, 2020, indicated that there was a significant statistical as-
sociation between infected cases and two variables, namely income and 
poverty. They also demonstrated that the total population (of each 
country) had the most influence on COVID-19 associated deaths in Eu-
ropean countries. Dye et al. (Dye et al., 2020) also implemented a 
flexible, empirical model (skew-logistic) to find the most influential 
variables on the geographical dynamics and variations of COVID-19 
mortalities across the continental Europe. Considering population 
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density, imposed contact rates (e.g., non-pharmaceutical interventions) 
among individuals, and the number of populations exposed to the 
infection as potential determinants, they indicated that countries with 
fewer COVID-19 death rates had smaller populations, had shorter epi-
demics which had peaked sooner, and also started their stay-at-home 
restrictions and quarantine policies earlier than other countries in 
Europe. Miller et al. (Miller et al., 2020) applied descriptive analysis to 
examine the spatial distribution of COVID-19 globally. The results 
proved that China, Italy, Iran, and Spain experienced the highest disease 
prevalence on March 17, 2020. As can be seen, much research has been 
done on different dimensions of COVID-19 to understand the spatial 
patterns of disease spread and identify the factors affecting its severe 
prevalence. The applicability of spatial analysis tools and techniques is 
remarkable in better understanding the behaviors of COVID-19 epide-
miology (Kianfar et al., 2021). In addition, Geographic Information 
System (GIS) is a practical tool for analyzing various spatial distribution 
patterns of infectious diseases (Mollalo et al., 2018). 

In this GIS-based study, we applied Global Moran’s I and Getis-Ord 
Gi* analyses to examine the spatial distribution patterns of COVID-19 
incidence rates and specify high and low-risk regions of the disease in 
continental Europe, which is the first objective of this study. The focus of 
this research was on the most specific dates of the disease in Europe. 
Considering the WHO table (World Health Organization (WHO) 2021a), 
which shows the situation of each continent, we extracted the seven 
most specific dates. Thus, the first COVID-19 peak in Europe, minimum 
incidence after the first peak, the second wave of the outbreak, second 
peak, and minimum infection after the second peak, start of vaccination, 
and the last time we used before vaccination proves its effectiveness 
(February 28, 2021), were the dates we considered in our study. 
Furthermore, we have included European Union (EU) countries and 
some other non-EU countries in the process of spatial analyses and 

modeling for better comparing the situation of countries in terms of 
COVID-19 infections and enabling further comparative investigations. 
Countries such as Russia, Turkey, Belarus, Ukraine, Armenia, Moldova, 
Macedonia, and so on. Moreover, five global (OLS, SEM, SLM) and local 
(GWR, MGWR) regression models were implemented to identify how 
well these techniques can describe the distribution of COVID-19 inci-
dence rates, based on several potential explanatory variables, which is 
the second objective of this study. Noteworthy, due to the unpredictable 
nature of COVID-19, considering a wide range of potential explanatory 
variables from different categories can help us discover the most influ-
ential variables on the disease prevalence and lead to more accurate and 
reliable results in modeling the disease. 

Since this research is conducted on a continental scale, it can give us 
an overview of the COVID-19 situation across countries situated in one 
of the most affected continents. Furthermore, by identifying the factors 
that significantly impact the higher prevalence of the disease, it could be 
considered as a helpful resource for officials and authorities to make 
practical decisions (Mollalo et al., 2020). 

2. Materials and Methods 

2.1. Data collection and preparation 

World Health Organization (WHO) is responsible for monitoring and 
collecting the daily data of COVID-19 worldwide. Considering the 
Europe continent as the study area of this research (Fig. 1), the country- 
level number of confirmed cases and associated deaths of COVID-19 for 
European countries were retrieved from WHO (World Health Organi-
zation (WHO) 2021b). Weekly and cumulative data of the disease for 
each country were retrieved for the seven most specific periods. These 
specific dates were March 30, 2020 (first peak in Europe), June 1, 2020 

Fig. 1. Continental Europe (Location of the study area).  
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Table 1 
Description of potential explanatory variables and data sources.  

Category Explanatory variable Description Source 
Demographic Population density Counts of all residents per sq. km of land area World Bank (The World Bank 

February 1, 2021)  
Population, male  Counts all male residents regardless of legal status or citizenship. World Bank  

Population female  Counts all female residents regardless of legal status or citizenship.  World Bank  

Pop male rate  % of the population that is male World Bank  

Pop female rate  % of the population that is female World Bank  

Population in the largest city % of a country’s urban population living in that country’s largest metropolitan 
area. 

World Bank  

Urban population  Refers to people living in urban areas World Bank  

Urban population growth Annual growth of people living in urban areas  World Bank  

Rural population  Refers to people living in urban areas World Bank  

Rural pop growth  Annual growth of people living in rural areas  World Bank   

pop ages 0-14  
Population between the ages 0 to 14 as a percentage of the total population. World Bank  

Population ages 15-64 Population between the ages 15 to 64 as a percentage of the total population. World Bank  
*Population ages 65 and above  Population 65 years of age or older as a percentage of the total population World Bank  

Hospital beds (per 1,000 people) Including inpatient beds available in public and private rehabilitation centers. World Bank  
Nurses and midwives (per 1,000 
people) 

Including professional, enrolled, and other associated personnel, such as primary 
care nurses.  

World Bank  

Physicians (per 1,000 people)  Including generalist and specialist medical practitioners.  World Bank 

Socioeconomic Unemployment, total The share of the labor force that is without work but available for employment. World Bank  
Unemployment, male The share of the male labor force that is without work but available for 

employment. 
World Bank  

Unemployment, female  The share of the female labor force that is without work but available for 
employment. 

World Bank  

Employment to population ratio, 15+ The proportion of a country’s population that is employed. World Bank  
Life expectancy at birth, total (years)  The number of years a newborn infant would live. World Bank   

Out-of-pocket expenditure  % of current health expenditure spending on health directly out-of-pocket by 
households. 

World Bank  

Inflation The annual percentage change in the cost to the average consumer of acquiring a 
basket of goods 

World Bank  

*Poverty % of the population living below the national poverty line World Bank  
GDP Gross domestic product divided by midyear population. World Bank  
GNI Gross national income, converted to U.S. dollars World Bank 

Transportation Air transport, passengers carried Domestic and international aircraft passengers of air carriers registered in the 
country. 

World Bank  

Railways, passengers carried The number of passengers transported by rail times kilometers traveled. World Bank 
Health Prevalence of HIV, total % of people who are infected with HIV.  World Bank  

Diabetes prevalence (% of population 
ages 20 to 79) 

% of people ages 20-79 who have type 1 or type 2 diabetes.  World Bank  

Incidence of tuberculosis The number of new tuberculosis cases arising in a given year World Bank  
Health-related mortality Mortality from CVD, cancer, diabetes or CRD between ages 30 and 70 World Bank 

Environmental  
Altitude 

Time Averaged Map of Tropopause Height (Daytime/Ascending, AIRS-only) 
daily 1 deg. 

NASA, Giovanni (Giovanni March 
1, 2021)   

Rain 
Time Averaged Map of Total precipitation rate daily 0.25 deg. NASA, Giovanni   

SO2 
Time Averaged Map of SO2 Column Amount daily 0.25 deg. NASA, Giovanni   

CO 
Time Averaged Map of CO Emission (ENSEMBLE) monthly 0.5 × 0.625 deg. NASA, Giovanni   

Temperature 
Time Averaged Map of Air Temperature (Daytime/Ascending) daily 1 deg. NASA, Giovanni   

NO2 
Time Averaged Map of NO2 Total Column (30% Cloud Screened) daily 0.25 deg. NASA, Giovanni  

PM2.5 air pollution, mean annual 
exposure 

The average level of exposure to concentrations of particles measuring less than 
2.5 microns in aerodynamic diameter  World Bank 

Behavioral Prevalence of current tobacco use (% of 
adults) 

The percentage of the population ages 15 years and over who currently use any 
tobacco product  World Bank  
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(minimum incidence after the first peak), and September 24, 2020 (the 
second wave of the outbreak). November 2, 2020 (second peak in 
Europe), December 21, 2020 (minimum infection after the second peak), 
January 4, 2021 (start of vaccination), and February 28, 2021 (last time 
we used for modeling and the time before vaccination proves its effec-
tiveness). We have extracted these times from WHO based on the weekly 
prevalence of COVID-19 in continental Europe (World Health Organi-
zation (WHO) 2021a). Based on these periods, we calculate the cumu-
lative incidence rates (CIRs) (by dividing the number of infected cases by 
the population of each country) and cumulative mortality rates (CMRs) 
(by dividing the number of mortalities by the population of each 
country) of COVID-19 for each country, both from the beginning of the 
prevalence (cumulative) and weekly (seven days before each of the 
specific dates). Further, we joined both types of these CIRs and CMRs to 
the boundary shapefile of countries using ArcGIS Desktop 10.8. Note-
worthy, retrospective data can be beneficial for related institutions and 
researchers to understand past behaviors and predict future trends af-
terward (Iyanda et al., 2020). 

A set of 40 demographic, socioeconomic, environmental, trans-
portation, health, and behavioral indicators was compiled at the 
country-level and considered as potential explanatory variables. 
Further, all variables were attached to the corresponding boundary 
shapefile of European countries in the ArcMap environment. Names, 
descriptions, and sources of all variables are provided in Table 1. 

Global Moran’s I and Getis Ord Gi*were applied as spatial analysis 
methods to identify the spatial distribution patterns of the disease 
incidence rates and specify high-risk countries across Europe, respec-
tively. Moreover, five global (OLS, SEM, and SLM) and local (GWR and 
MGWR) models were implemented to investigate the relationship be-
tween COVID-19 CIRs (dependent variable) and selected explanatory 
variables. 

2.2. Spatial pattern analysis 

2.2.1. Spatial autocorrelation (Global Moran’s I) 
Global Moran’s I was applied in the ArcMap environment to examine 

the spatial distribution of COVID-19 incidence rates (both weekly and 
cumulative) for all countries in the study area. This method performs by 
considering both locations and values of features simultaneously in the 
study area. Global Moran’s Index ranges between -1 and +1, demon-
strating that the spatial distribution of the disease is clustered (> 0), 
dispersed (= 0), or random (< 0). This analysis also measures a z-score 
and p-value. For a significant statistical value of z-score or p-value, when 
Moran’s Index is positive, the distribution of the disease incidence rates 
has a propensity towards a clustered pattern. However, for a negative 
Moran’s Index, the mentioned distribution tends towards a dispersed 
pattern (Moran, 1950). 

2.2.2. Hotspot analysis 
Getis-Ord Gi* approach was applied in the ArcMap environment to 

detect significant high and low-risk clusters of COVID-19 spread. The 
Gi* spatial statistics (Ord & Getis, 2001) identifies high and low-risk 
clusters of the disease based on distance. To be an intense hotspot or 
cold spot cluster, a country with a significant value of incidence rate 
should be surrounded by other countries with large incidence rates. A 
large positive value of z-score depicts a cluster of a hotspot. However, a 
small negative value of z-score demonstrates a cold spot cluster. The 
larger or smaller the z-score, the more intense pattern of clusters. When 
the z-score is close to zero, the spatial clusters are not obvious (Getis & 
Ord, 2010). 

2.3. Spatial statistical models 

2.3.1. Ordinary Least Squares (OLS) 
The OLS regression is a global linear modeling technique that can 

understand the global relationships between the set of control and 
response variables. Considering the assumption of spatial stationary and 
homogeneity, this global regression method investigates the relation-
ship between the set of explanatory and dependent variables (Oshan 
et al., 2019). The formula of OLS is characterized by: (Ward & Gleditsch, 
2018) 

yi = β0 + xiβ + εi (1)  

where yi denotes the COVID-19 CIRs (dependent variable) at the ith 
location (country). β0 is the estimated intercept, representing the value 
of y when x is equal to 0, xi signifies the vector of selected explanatory 
variables, β indicates the vector of regression coefficients, and εi is a 
random error term. 

One of the main functions of the OLS is to optimize the regression 
coefficients (β) by diminishing the sum of squared distances between the 
observed data and the values predicted by the model (Oshan et al., 
2019). Moreover, Variance Inflation Factor (VIF) was used to quantify 
the intensity of any multicollinearity in the regression analysis. Multi-
collinearity occurs when there is a linear relationship between two or 
more explanatory variables. Large values of VIF represent redundancy 
among explanatory variables. If the VIF value for each explanatory 
variable is more than 7.5, it should be eliminated from the regression 
model. VIF is denoted by: 

VIFi =
1

1 − R2
i

(2)  

where R2
i demonstrates the coefficient of determination for regressing 

the ith explanatory variable on other ones. 
Regarding the case of COVID-19 spread, the observations are 

spatially correlated. However, OLS method considers no dependency or 
correlation among COVID-19 CIRs, leading to a bias in coefficient pre-
diction (Goodchild et al., 1993). Although OLS might be an inefficient 
method in the case of COVID-19 (Ward & Gleditsch, 2018), it was 
applied in this study in order to help evaluate and compare the accuracy 
and robustness of the findings. Then, two variants of OLS, namely SEM 
and SLM, were implemented to consider spatial dependence and 
weights. 

Spatial Error Model (SEM) 
The OLS often refuses to consider the explanatory variables with 

spatial dependence (Wu et al., 2020). However, the SEM considers 
spatial dependency in the OLS error term (Mollalo et al., 2020) by 
decomposing the error term of OLS into two components, including the 
error term and the random error term. The formula of SEM is as follows: 
(Ward & Gleditsch, 2018) 

yi = β0 + xiβ + λWiξi + εi (3)  

where λ signifies the coefficient of spatial component errors, Wi repre-
sents the weight matrix (a vector of spatial weights) which determines 
the neighbors at country i and connects the independent variable to the 
explanatory variables at that country, and ξi describes the spatial error 
component. 

2.3.3. Spatial Lag Model (SLM) 
Based on the “spatially-lagged dependent variable”, the SLM model 
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considers the spatial dependency between the response variable and 
explanatory variables. It delineates that in the neighborhood location, 
an independent variable could have impacts on the other independent 
variables (Wu et al., 2020). The SLM equation is as follows: (Ward & 
Gleditsch, 2018) 

yi = β0 + xiβ + ρWiyi + εi (4)  

where ρ is the spatial autoregressive coefficient (spatial lag parameter). 

2.3.4. Geographically Weighted Regression (GWR) 
Traditional global regression techniques, namely OLS, SEM, and 

SLM, consider that the spatial relationship between explanatory vari-
ables and the dependent variable is stationary, meaning that the re-
lationships are spatially constant across the study area (Brunsdon et al., 
1996). Local GWR model was introduced by (Brunsdon et al., 1996) for 
relaxing this assumption and allowing the parameters to vary over 
space. Unlike global regression models, which produce a single regres-
sion equation to summarize global relationships (Kala et al., 2017), GWR 
detects spatial variation within relationships in a model and produces 
valuable information to explore and explain spatial non-stationarity 

(Fotheringham et al., 2003). Thus, considering spatial context by 
GWR, this method predicts local regression parameters separately for all 
locations (Oshan et al., 2020). The GWR equation is as follows: 
(Fotheringham & Oshan, 2016) 

yi = βi0 +
∑m

j=1
βijXij + εi, i = 1, 2, 3,…, n. (5)  

where yi represents the COVID-19 CIR value at the ith country, βi0 il-
lustrates the local predicted intercept, βij denotes the jth regression 
parameter for the ith country, Xij specifies the values of jth explanatory 
variables, and εi signifies a random error term. Parameter estimates at 
each country and for each independent variable in the form of a matrix is 
denoted by: (Fotheringham & Oshan, 2016) 

β̂(i) = (X′W(i)X)− 1X′W(i)y (6)  

where β̂(i) represents the vector of parameter estimates (v × 1), X 
shows the selected independent variables in the form of matrix (n × v), 
W(i) denotes the spatial weights in the form of matrix (n × n), and y 
demonstrates the vector observation of COVID-19 CIRs as the response 

Fig. 2. Weekly cumulative incidence rates (CIRs).  
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variable (v × 1) (Fotheringham & Oshan, 2016). The diagonal matrix of 
W(i) is created by the weights of each spatial unit considering its dis-
tance from the ith location. The calibration of the matrix is based on a 
locally weighted regression (Brunsdon et al., 1998). A particular band-
width and a kernel function need to be defined to compute W(i) matrix. 
Gaussian and bisquare kernel functions are the most usual methods to 
perform the model calibration. Besides, the bandwidth is mostly exam-
ined based on the Euclidian distance and the number of nearest neighbor 
(Mollalo et al., 2020). 

2.3.5. Multiscale geographically weighted regression (MGWR) 
Compared to global methods, although GWR creates more benefits to 

the regression process in the context of geographic variations, it con-
siders a fixed spatial scale for all the relationships in the modeling 
process. In the case of COVID-19, a constant spatial scale is not reliable 
due to the various spatial processes involved with several spatial scales 
(Fotheringham et al., 2017). While GWR restricts the relationships to 
vary at a constant spatial scale, MGWR allows the relationship between 
dependent and selected explanatory variables to vary at diverse spatial 
scales by applying different kernel bandwidths across the study area 
(Oshan et al., 2019). MGWR is denoted by: (Fotheringham et al., 2017) 

yi = βi0 +
∑m

j=0
βbwjXij + εi, i = 1, 2, 3,…, n. (7)  

where βbwj describes the bandwidth, which is used to calibrate the jth 
conditional relationship in the modeling process (Fotheringham et al., 
2017). 

Moreover, MGWR method can reduce collinearity and demonstrate 
the spatial heterogeneity more precisely (Wolf et al., 2018). 

2.4. Regression modeling 

To investigate which risk factors are associated with the COVID-19 
CIRs, a variety of candidate explanatory variables are included to 
insert into the modeling process. Since there are a large set of candidate 
variables, a stepwise forward approach was carried out to remove the 
non-significant independent variables and obtain a model with the 
highest fitness. In doing so, Pearson’s correlation analysis was imple-
mented to identify the level of correlation between each pair of 
explanatory variables. In the final step, Variance Inflation Factor (VIF) 
was used to detect the most correlated variables with COVID-19 CIRs 
and measure the multicollinearity among the explanatory variables. 
Consequently, the most uncorrelated variables were identified as the 

Fig. 3. Weekly cumulative mortality rates (CMRs).  
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input of the regression analysis (final selected variables are starred in 
Table 1). A spatial weight matrix was implemented based on first-order 
Queens’ contiguity, which determines whether countries are neighbors 
(by sharing a boundary) or not. This spatial weight matrix was applied to 
express the structure of spatial units and investigate the relationship 
between countries (Wang et al., 2020). Due to the existence of spatial 
autocorrelation within the local models, the spatial weight matrix is an 
essential part of these models (Brunsdon et al., 2002). 

The selected explanatory variables remained unchanged in all 
models. Global models, namely OLS, SEM, and SLM, were implemented 
in GeoDa 1.14 software package (geodacenter.github.io). Furthermore, 
local models such as GWR and MGWR were run in MGWR 2.2 software 
(https://sgsup.asu.edu/sparc/mgwr). An adaptive bisquare kernel 
function with the specified bandwidth size was used to eliminate the 
impact of spatial units outside the neighborhood. Corrected Akaike In-
formation Criterion (AICc) was used to designate the optimal bandwidth 
(Oshan et al., 2019). Moreover, the adjusted R2 and AICc were examined 
to measure the model fit/performance in expressing COVID-19 CIRs 
across continental Europe. The higher value of adjusted R2 and the lower 
value of AICc demonstrates that the model has a better performance. 

Results 

We used specific periods to study the spatial-temporal distribution of 
the COVID-19 incidence rates across Europe. These periods were March 
30 (first outbreak peak), June 1 (minimum incidence after the first 
peak), November 2 (second outbreak peak), and December 21 (mini-
mum infection after the second peak), respectively. Other periods were 
September 24 (second wave of the outbreak), January 4 (start of 
vaccination), and February 28 (the last time we used). In this study, we 
first prepared weekly maps of COVID-19 CIRs and CMRs. As shown in 
Fig. 2, A shows the first peak, and D shows the second peak of the disease 
spread. From the onset of the second wave to the second peak of the 
disease, in about a month, more than ten countries in Central and 
Western Europe were classified as red and orange countries (dangerous 
regions) (Fig. 2 C, D). In Fig. 2, F indicates the rate of infection after 
vaccine delivery. B and E also illustrate the minimum prevalence after 
the first and second COVID-19 peaks, respectively. 

In addition to the CIRs, we also calculated and mapped the CMRs for 
the same periods (Fig. 3). Mortality rates rose before the vaccination in 
Europe, especially after November 2, 2020. However, after COVID-19 
vaccination, there has been a declining trend, proved by the results 
obtained in this study (Figs. 3, 5). 

In the cumulative spatial distribution map (since the beginning of the 

Fig. 4. Cumulative incidence rates (CIRs) from the beginning of the disease spread.  
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Fig. 5. Cumulative mortality rates (CMRs) from the beginning of the disease spread.  

Fig. 6. Weekly CIRs (left) and CMRs (right) of February 28, 2021.  
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outbreak in Europe), the trends of CIRs and CMRs are logically 
increasing, as can be seen in Figs. 4 and 5. The last date used in this study 
to investigate the spatial distribution trend of the CIRs and CMRs can 
also be seen in Figs. 6 (Weekly) and 7 (from the beginning of the disease 
spread). At a glance at all spatial distribution maps, it can be concluded 
that the CIRs and CMRs distribution is often concentrated in central and 
western Europe, but to ensure this, we examined the spatial distribution 
patterns of the disease both globally and locally (Fig. 7). 

For this purpose, we applied Moran’s I spatial autocorrelation 
(global test) and Hotspot analysis (local test) tools in the spatial statistics 
toolbox in the ArcMap for all designated periods. We entered the CIRs 
into the Global Moran’s I analysis for all the seven periods we used in 
this study. According to the results, except September 24 (the second 
wave), all other periods showed a cluster pattern (Fig. 8). In other 
words, the pattern of COVID-19 CIRs distribution in Europe has been 
clustered since the beginning of the outbreak (Fig. 8, left column). Then, 
where these clusters are concentrated should be sought in the hotspot 
analysis. After performing this analysis on periods with a cluster pattern, 
the maps in Fig. 8 (right column) were obtained. The figures in the left 
column depict Global Moran’s I results. As illustrated in Fig. 8, March 30 
and June 1 demonstrated relatively similar clusters. As can be seen, in 
both results, the Moran’s index shows numbers greater than zero 
(0.1205, 0.1087) with high levels of significance (p-values: 0.0007, 
0.0013) (z-scores: 3.3861, 3.2055) for the mentioned periods. The fig-
ures in the right column show the hotspot results. Hotspot analysis di-
vides polygons into seven categories. Three cold spots (negative z- 
scores) with a 99%, 95%, and 90% confidence level. Three hotspots 
(positive z-scores) with a level of 99%, 95%, and 90% confidence, and 
finally, one non-significant category, meaning that no cluster was found 
due to a high p-value. All these seven categories are shown in various 
color schemes. On November 2 and December 21, the patterns of spatial 

distribution of CIRs were highly clustered (Moran’s index: 0.0956, 
0.1019) with the high levels of significance (p-values: 0.0073, 0.0062) 
(z-scores: 2.6790, 2.7326). In addition, the high-risk coronavirus clus-
ters are mostly located in Western Europe and then in the Central re-
gions of this continent. Moreover, relatively similar results were found 
on January 4 and February 28, so that the distribution pattern of the 
disease CIRs were clustered, having the Moran’s I of 0.0945, 0.0896, z- 
scores of 2.5549, 2.3838, and the p-values of 0.0106, 0.0171, 
respectively. 

After extracting the high-risk COVID-19 clusters and determining 
their geographical locations in the study area, the question is what 
variables have made the geographical location of the high-risk clusters 
usually located in central and Western Europe. Therefore, at this stage, 
we were looking to find these influential variables that have led to the 
creation of these hotspot clusters of COVID-19. For this purpose, we used 
40 potential explanatory variables in this research. After examining the 
relationship between explanatory variables and dependent variable 
(correlation analysis) for the CIRs of COVID-19 for all periods whose 
spatial pattern had a cluster distribution, only two variables had a sig-
nificant relationship with COVID-19 CIRs. These two variables were 
poverty and population aged over 65 at the country level. The spatial 
distributions of these two influential variables are shown in Fig. 9. 

Therefore, we inserted these two selected variables into various 
global and local regression models. To compare these regression models 
in terms of their applicability in explaining the variability of COVID-19 
CIRs, we considered the corrected AIC and adjusted R2 of each of these 
models. The model that gives us a smaller AIC and a larger R2 would be 
more efficient than other models. The chosen variables in the OLS 
method exhibit minimum multi-collinearity since their VIF is lower than 
the threshold of 5 (VIF = 1.21) (Table 2) (O’brien, 2007). Also, due to 
their low P value (< 0.001), these selected variables were highly 

Fig. 7. CIRs (left) and CMRs (right) of February 28, 2021, from the beginning of the disease spread.  
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associated with the disease CIRs. As illustrated in Table 2, the OLS 
method presented a poor performance due to the relatively low adjusted 
R2 (52%) and a high AICc (208.48). Adjusted R2 of 52% indicated that 
almost 0.48 of the disease incidence rates in the Europe continent are 
caused by unknown variables that might not be captured by the OLS 
model. To increase the efficiency of the OLS in the COVID-19 CIRs 
modeling, we applied two other global regression models, namely SLM 
and SEM to consider the spatial dependency. 

As presented in Table 4, the adjusted R2 values of SLM and SEM were 
55% and 56%, respectively. Furthermore, the AICc decreased from 
208.48 (obtained by the OLS) to 207.16 and 205.02 for SLM and SEM 
models, respectively. The higher adjusted R2 and lower AICc indicate 
that the autoregressive models performed better in modeling COVID-19 
CIRs. Moreover, the lag coefficients of both SLM and SEM, namely 
Lambda and Rho, were highly significant (P < 0.001) (Table 3). Note-
worthy, the SEM outperformed SLM due to higher adjusted R2 and lower 
AICc. However, performances of these autoregressive methods were 
relatively inefficient due to the non-consideration of the scale of 
geographical processes associated with COVID-19 CIRs modeling. 

However, in the case of COVID-19, local regression techniques can 
produce better results by examining local spatial disparities in the re-
lationships between explanatory variables and disease CIRs. Local 

models, including GWR and MGWR, were applied for this purpose 
Table 4. shows that the value of adjusted R2 boosted from 56% (SEM) to 
62% in the GWR. Furthermore, the AICc considerably decreased from 
205.02 to 97.329, demonstrating that the results derived from GWR 
model were strongly fitter than global models. Finally, by assuming 
different spatial scales, MGWR indicated the most efficient results due to 
the highest value of adjusted R2 (69%) and lowest value of AICc 
(89.239) among all other regression models in this study. 

Figs. 10 and 11 map the coefficients of both GWR and MGWR models 
for two selected explanatory variables. As illustrated in Fig. 10, in both 
GWR and MGWR methods, population over 65 showed similar patterns 
in explaining the spatial variation of disease incidence rates across 
Europe. In describing the spatial distribution of COVID-19 CIRs, the 
elderly population was a significant variable in central, southern, 
western, southwestern, and northern European countries, including 
Germany, Italy, France, United Kingdom, Ireland, the Netherlands, 
Belgium, Czech, Sweden, Norway, Austria, Switzerland, Denmark, Ice-
land, and so on. This range of positive coefficient values represents that 
older people are at higher risks of COVID-19 in mentioned regions. 
However, considering this variable, both local methods showed rela-
tively poor performances in describing CIRs at Eastern Europe regions, 
including Russia, Turkey, and Georgia (Fig. 10). 

Fig. 8. Global Moran’s I analysis (left column) and Hotspot analysis (right column).  
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Fig. 11 indicates that poverty was another substantial variable in 
explaining the geographic distribution of disease incidence rates, spe-
cifically in western, central-western, northern, southern, and south-
western nations of continental Europe; Namely Spain, Portugal, France, 
Italy, Slovenia, Croatia, Bosnia and Herzegovina, Netherlands, Belgium, 
United Kingdom, Czech, Austria, Ireland, Iceland, and Norway. Like the 
previous variable, both local models represented weak performances in 
eastern areas of the study area. It is worth mentioning that the influence 
of both selected explanatory variables (poverty and elderly population) 
on disease incidence rates was often consistent between GWR and 
MGWR approaches (Figs. 10,11). 

Fig. 12 demonstrates the geographic variation of local R2 values, 
delineating the performances of GWR and MGWR models in terms of 
predicting the values of COVID-19 CIRs across Europe. Higher local R2 

values depict better performance of estimation. As observed, the values 
obtained from these local models are significantly inconsistent in the 
study area. MGWR offered highly better performance in all regions. As is 
illustrated by Fig. 12, considering MGWR, countries located in central, 

western, southwestern, and northwestern of the Europe continent 
showed higher values of local R2 compared to the GWR model. Iceland 
(0.7352), Ireland (0.7295), Portugal (0.7271), United Kingdom 
(0.7266), Spain (0.7251), France (0.7225), Andorra (0.7221), Belgium 
(0.7219), Netherlands (0.7208), Luxembourg (0.7199), were the top ten 
countries having the highest Local R2 obtained from MGWR model. The 
highest Local R2 obtained from GWR model were for Iceland (0.6593), 
Ireland (0.6499), Portugal (0.6455), United Kingdom (0.6454), Spain 
(0.6423), France (0.6384), Belgium (0.6378), Andorra (0.6377), 
Netherlands (0.6362), and Luxembourg (0.6346), respectively. It illus-
trates that the predictions obtained by MGWR model in the study area 
were relatively better. 

Discussion 

The COVID-19 pandemic has become one of the most dangerous and 
damaging crises in recent years, especially in Europe. As of June 24, 
2021, the disease has claimed the lives of almost 4 million people 

Fig. 8. (continued). 
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Fig. 8. (continued). 

Fig. 9. Spatial distribution of Poverty (left) and Population 65+ (right) in continental Europe (as the most influential variables on COVID-19 prevalence).  
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worldwide and has left irreversible social, economic, and environmental 
impacts. Discovering the pattern of COVID-19 distribution and identi-
fying the variables affecting the prevalence of the disease can help au-
thorities create more targeted policies to reduce the speed of the 
outbreak. Using GIS-based techniques, we analyzed the spatial distri-
bution pattern of the disease incidence and mortality in seven specific 
periods in continental Europe. Further, we specified hotspot regions of 
the disease in different periods. Additionally, by obtaining various po-
tential variables, we applied five regression methods to identify the most 
influential variables on the disease spread and model the disease inci-
dence rates across the continent. 

Based on our study, by examining the weekly spatial-temporal dis-
tribution of COVID-19 incidence and mortality rates, the trend is 
increasing, and there are two peaks that are seven months apart (from 
March 30, 2020 (first peak) to November 2, 2020 (second peak)). Most 
of the high-risk regions and countries affected by COVID-19 were 
located in central and western Europe. Besides, poverty and the elderly 
population (the two most influential explanatory variables) had a sig-
nificant relationship with the disease incidence rates in Europe. These 
two variables can well describe the spread of COVID-19 in Europe. 
Noteworthy, this result was consistent with hotspot clusters in central 
and western Europe, meaning that most countries with higher COVID-19 
incidence rates were either relatively poorer or had older populations, 
namely Luxemburg, Switzerland, Slovenia, France, Italy, Liechtenstein, 
and Slovenia (Fig. 9). Monitoring these two influential variables can be 
helpful in improving the condition and reducing the disease incidence. 
In addition, among the regression methods applied to the variables, local 
methods provided more accurate results by inserting spatial scales in the 
modeling process. We found that MGWR was the most parsimonious 
model, which could better describe the geographical context of the 
disease incidence rates (Mansour et al., 2021). 

Many articles considered the elderly population as one of the most 
influential variables (Mansour et al., 2021, Sun et al., 2020, Tian et al., 
2020, Wang et al., 2020). For instance, by implementing various global 
and local regression models, (Mansour et al., 2021) showed that popu-
lation over 65 was among the other selected variables that were found to 
be statistically significant regarding COVID-19 prevalence in Oman. 
Moreover, (Sannigrahi et al., 2020) presented that for both infected 
cases and associated deaths of COVID-19, higher records were identified 
in western Europe (Italy, Spain, France, Germany, United Kingdom, 
Belgium, and the Netherlands). They concluded that this result might be 
attributed to the sociodemographic variables of these regions. For 

instance, Italy has the oldest population (aged 65 and above) among all 
European countries. Other countries, namely Spain, France, and the 
Netherlands, had been greatly influenced by this factor (Sannigrahi 
et al., 2020). Mentioned research also presented that socioeconomic 
variables, specifically poverty could be a significant variable in 
increasing the prevalence of coronavirus disease in Europe (Sannigrahi 
et al., 2020). Since poor people have less financial ability to access 
health centers than others, they may be present in the community 
without being treated or hospitalized and communicate with others, 
increasing the risk of disease transmission. Another hypothesis is that 
poor people, who are generally illiterate, are less likely to be vaccinated 
and underestimate the positive effects or overestimate the risks of 
vaccination, leading to a more severe outbreak of the disease in the 
community (Mollalo & Tatar, 2021). This variable also was among the 
potential determinants affecting higher prevalence and mortality of 
COVID-19 worldwide (Abedi et al., 2021, Bhayani et al., 2020, Ramírez 
& Lee, 2020, Cordes & Castro, 2020). 

In this study, even though environmental variables were extracted 
and considered for continental European countries, we did not find any 
substantial relationship between such variables and COVID-19 spread. 
This result was also obtained by other studies (Briz-Redón & Serra-
no-Aroca, 2020, Baker et al., 2020). 

However, there were a considerable number of papers reported that 
environmental factors, including temperature (Guo et al., 2011, Bashir 
et al., 2020), air quality (Zhang et al., 2020, Yao et al., 2020), and hu-
midity (Matthew et al., 2021, Qi et al., 2020) could be among the factors 
influencing the more severe prevalence of COVID-19. 

Following the vaccination process in Europe by February 15, the 
weekly incidence of COVID-19 dropped significantly. The weekly 
number of cases in this continent decreased from 1,900,152 on January 
4 to 973,796 on February 15 (World Health Organization (WHO) 
2021a). This weekly decrease occurred mainly in the United Kingdom, 
Ireland, Ukraine, Greece, and Romania. Besides, the weekly CMRs have 
risen significantly since the second outbreak wave (September 24, 
2020). This trend continued until early February 2020, when the 
vaccination process received a great deal of attention in Europe. After 
vaccination, we saw a declining trend in both CIRs and CMRs in Europe, 
based on WHO situation by region table (World Health Organization 
(WHO) 2021a). Considering the CIRs from the beginning of the 
epidemic, it can be seen that the number of orange-colored countries has 
increased significantly since the second wave (September 24, 2020). 
These countries (high-risk category), which included only Andorra on 

Table 2 
Summary statistics of global OLS regression model.  

Variable Coefficient St. Error T-statistic Probability VIF 
Intercept -2.8556 1.2005 -2.3786 0.0331 — 
Poverty 0. 2537 0.0537 4.7226 0.0000 1.2172 
Population 65+ 0.2307 0.0708 3.2583 0.0008 1.2172  

Table 3 
Summary statistics of SEM and SLM regression models.  

Variable Coefficient   St. error   z-score   p-value   
SLM SEM  SLM SEM  SLM SEM  SLM SEM 

Intercept -3.0482 -2.9315  1.1788 1.1870  -2.585 -2.4696  0.0097 0.0135 
Poverty 0.2473 0.2484  0.0523 0.0520  4.7294 4.7744  0.0000 0.0000 
Population 65+ 0.2265 0.2420  0.0696 0.0709  3.2506 3.4118  0.0011 0.0006 
Lag coefficient (Rho) 0.0790 —  0.1189 —  0.6647 —  0.0001 — 
Lag coefficient (Lambda) — 0.1462  — 0.1739  — 0.8407  — 0.0004  

Table 4 
Comparison of goodness of fit for OLS, SEM, SLM, GWR and MGWR regression 
models.  

Criterion OLS SLM SEM GWR MGWR 
Adj. R2 0.52 0.55 0.56 0.62 0.69 
AICc 208.48 207.16 205.02 97.329 89.239  
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September 24, rose to seven countries in the second peak (November 2, 
2020), including Andorra, Belgium, Czech Republic, Luxemburg, San 
Marino, Spain, and France. The number of these high-risk countries 
dramatically increased in the following periods. In all periods, high-risk 
clusters were located in central and western Europe. The spatial distri-
bution patterns of COVID-19 incidence rates at March 30, and June 1 
were highly clustered. In these two times, which show relatively similar 
patterns, the United Kingdom, Ireland, Spain, and Portugal were the 
hotspots of COVID-19. Over time, the number of high-risk countries 
increased, as shown in the maps. The distribution of COVID-19 clusters, 
as in previous times, was located mainly in western and central Europe. 
Northern European countries, including Finland, Norway, and Russia, 
were among the cold spot areas of the disease on November 2, 2020, 
December 21, 2020, and January 4, 2021. In general, the Nordic 
countries were in the low-risk clusters at the time of the study, and the 
countries in western and central Europe were hotspot regions with the 

highest levels of confidence (Sannigrahi et al., 2020). 
Due to the large scale considered in this study, data availability was 

one of the most significant limitations. Moreover, due to the particular 
circumstances of some countries and the lack of accurate information 
sharing, access to accurate disease data and other information about 
explanatory variables faced some difficulties, which may bias the re-
sults. Although we tried to display and model the COVID-19 situation for 
all countries simultaneously, a study on a higher spatial resolution (sub- 
country level) can provide more accurate results. Another limitation of 
this study was the lack of considering each country’s lockdown policies. 
Some countries started their quarantine policies faster and more strictly 
after the epidemic announcement than other countries that did not 
consider any specific restrictions. Furthermore, though we did not 
consider any dynamic data as potential variables in our modeling, they 
need to be included in future research. For instance, (Kraemer et al., 
2020) showed that real-time human mobility data could be an 

Fig. 10. The effects of Population aged 65+ in describing COVID-19 incidence rates using GWR (left) and MGWR (right) across continental Europe.  

Fig. 11. The effects of Poverty in describing COVID-19 incidence rates using GWR (left) and MGWR (right) across continental Europe.  
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influential factor in spreading COVID-19. Besides, including individual 
characteristics and considering a smaller group of infected people in the 
modeling process could improve the results (Kwan, 2012). 

Conclusion 

Currently, despite quarantine-related restrictions and policies 
imposed by various countries in Europe, the COVID-19 is still wide-
spread. Thus, spatial techniques can be useful in identifying various 
spatial distribution patterns and hotspots of the disease and detecting 
the most significant risk factors. By applying spatial analysis methods, 
we found that the most high-risk areas of the disease are located in 
central and western Europe. Besides, poverty and the elderly population 
were the most influential factors related to higher COVID-19 prevalence. 
MGWR could explain the highest goodness-of-fit among all the applied 
regression models, indicating the most parsimonious model. Given that 
the countries of continental Europe were among the most COVID-19 
infected areas throughout the world, trying to control the factors 
influencing the spread of the disease can lead to a considerable reduc-
tion in near future. Moreover, the outcomes of this study can become 
helpful for policymakers to take necessary actions in combating the 
COVID-19 pandemic. 
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