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Abstract: Endometrial cancer is the most common gynecological cancers in developed countries.
Many of the mechanisms involved in its initiation and progression remain unclear. Analysis providing
comprehensive data on the genome, transcriptome, proteome, and epigenome could help in selecting
molecular markers and targets in endometrial cancer. Multiomics approaches can reveal disturbances
in multiple biological systems, giving a broader picture of the problem. However, they provide a
large amount of data that require processing and further integration prior to analysis. There are
several repositories of multiomics datasets, including endometrial cancer data, as well as portals
allowing multiomics data analysis and visualization, including Oncomine, UALCAN, LinkedOmics,
and miRDB. Multiomics approaches have also been applied in endometrial cancer research in order
to identify novel molecular markers and therapeutic targets. This review describes in detail the latest
findings on multiomics approaches in endometrial cancer.
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1. Introduction

Endometrial cancer (EC) is the most common gynecological cancer in developed coun-
tries. According to the GLOBOCAN database, in 2020, there were 417,367 new cases and
97,370 deaths due to EC worldwide [1]. Endometrial cancer affects mainly postmenopausal
women, most often in the sixth and seventh decades of life; however, it is estimated that up
to 25% of cases are diagnosed before the menopause [2,3]. Typically, two types of endome-
trial cancer are distinguished, with type I accounting for the majority of all EC cases. Type I
includes the endometrioid EC, which has a good prognosis and is estrogen-dependent. In
contrast, type II includes non-endometrioid EC and high-grade EC with poor prognosis [2].

In recent years, due to the use of array- and sequencing-based technologies, an ad-
ditional EC classification into four genomic groups has emerged: polymerase ε (POLE)
ultra-mutated, microsatellite instability (MSI), copy number low, and copy number high [4].
According to the recommendations for the management of patients with EC by the Euro-
pean Society of Gynecological Oncology (ESGO), the European Society for Radiotherapy
and Oncology (ESTRO), and the European Society of Pathology (ESP), a fifth group can also
be distinguished, which is a combination of markers from the previous groups [5]. This
classification has a particularly strong prognostic value in high-risk endometrial cancer
where adjuvant therapies are recommended. Furthermore, the introduction of molecular
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classification may affect the clinical maintenance [6]. If molecular tools are available, the
use of this classification in all endometrial cancers is encouraged; however, in low-grade
EC with low and intermediate risk, the POLE mutation analysis may be omitted [5].

The Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) has been
developed as an alternative using immunohistochemical markers instead of sequencing.
More research is still needed, as an alternative marker for all TCGA molecular groups has
not yet been found [4]. It highlights the heterogeneity of this tumor, which may pose a chal-
lenge in endometrial cancer research [7]. Despite the constant discovery of new diagnostic
methods and potential therapies, many of the mechanisms involved in cancer initiation
and progression remain unclear. Epigenomics, genomics, transcriptomics, proteomics, and
metabolomics are the subject of numerous studies as they provide information on gene and
protein expression and the mechanisms involved in their regulation. They may allow a
better understanding of the phenomena in the course of cancer, the molecular structure of
the tumor microenvironment, and the selection of new markers and therapeutic targets [8].
Individual omics have significantly contributed to the identification of epigenetic changes
or cancer-specific mutations, but they are somewhat limited as they focus on a single
field [9]. Multidimensional analysis can reveal disturbances in several biological systems,
giving a broader picture of what happens during tumor initiation and progression [10]. For
this reason, multiomics approaches are gaining popularity.

In this paper, we will present the latest findings on the multiomics approaches in
endometrial cancer.

2. Multiomics Strategies

Studies using multiomics approaches are very valuable, as their results can provide
a comprehensive picture of changes taking place in tumors. Multiomics data include
genome, transcriptome, proteome, metabolome, and epigenome data. They are generated
by methods allowing the determination of gene expression, detection of proteins and their
levels [11], studies of DNA and protein interactions [12], assessment of cell proliferation,
viability, and migration of even a single cell [13].

The genome is the complete set of DNA of a given organism, knowledge of which can
be crucial in disease diagnosis or designing a therapy. The development and application of
next-generation sequencing (NGS), including whole genome sequencing (WGS), helps in
the comprehensive analysis of genetic material that may reveal important genomic alter-
ations [14]. It is especially important in the case of rare cancers [15], their precise diagnosis
and personalized therapy [16], predicting the effectiveness of the therapy [17]. Transcrip-
tome profiling is a widely used approach to analyze the regulation of the expression,
function, and structure of genes.

The transcriptome is a set of transcripts present at a specific point in time in a cell,
group of cells, or tissue, providing information about both physiological and pathological
processes in a specific organism [18]. The study of the transcriptome finds great appli-
cation in studies aimed at searching for new molecular markers and therapeutic targets.
They involve numerous human diseases, including neurological disorders such as chronic
pain [19], multiple sclerosis [20], diabetes [21], cardiovascular disease [22], cancers, and
their response to treatment [23]. Microarrays and high-throughput RNA sequencing are of
great importance, as they rapidly provide a huge amount of data on the processes or organ-
isms under study [24]. Along with the development of new technologies and increasing
their availability, the number of studies and new discoveries is growing. Recently, potential
biomarkers of colon cancer [25], ovarian cancer [26], hepatocellular carcinoma [27], and
endometrial cancer [28] have been selected. Similarly, in the case of the proteome, its analy-
sis reveals detailed information on the activity of individual proteins or protein families,
which is valuable in the diagnosis of various diseases, including cancer. The identified
proteins can act as diagnostic and prognostic markers [29]. Moreover, the observed changes
in protein levels may be the target of therapy [30].
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Changes in the degree of DNA methylation, chromatin structure, and post-translational
modifications of histones may lead to the development of pathologies, including cancer.
Genome-wide epigenomic profiling allows the identification of epigenetic changes in the
studied material, which may then become a molecular marker [31]. DNA methylation is
one of the most frequently analyzed epigenetic modifications. Changes in its pattern are
also important for the development of new treatment strategies, their effectiveness, and the
prediction of the end result [32].

Therefore, multiomics approaches generate a great deal of specific data types, such as
expression level or nucleotide sequence. To obtain a more complete picture of biological
processes and to fully understand observed changes, it is necessary to integrate and analyze
these data. For example, deep learning can be used, which will result in improvement in
the determination of disease risk, its prevention, or prediction, as well as the development
of a personalized treatment strategy [33].

2.1. Repositories and Integration Methods

In addition to generating multiomics data, it is also possible to use the available
public datasets. Table 1 list the repositories where data from cancer patients, including
endometrial cancer, can be found.

Table 1. Publicly available repositories of multiomics cancer data, including endometrial cancer data.

Repository Name Web Link Data Available

The Cancer Genome Atlas (TCGA) [34] https://cancergenome.nih.gov (accessed on 1
December 2021)

RNA-Seq, DNA-Seq, miRNA-Seq, DNA
methylation, SNV, CNV, RPPA

Clinical Proteomic Tumor Analysis
Consortium (CPTAC) [35]

https://cptac-data-portal.georgetown.edu
(accessed on 1 December 2021)

proteomics data corresponding to the
TCGA samples

Cancer Cell Line Encyclopedia (CCLE) [36] https://portals.broadinstitute.org/ccle
(accessed on 1 December 2021)

gene expression, drug sensitivity data, WGS,
histone profiling, RNA-Seq, DNA methylation,
miRNA profiling, metabolite profiling, RPPA

SNV, single-nucleotide variant; CNV, copy number variation; RPPA, reverse phase protein array.

The Cancer Genome Atlas is one of the largest genome datasets. It provides informa-
tion on 33 different types of cancer, including endometrial cancer, for over 20,000 samples.
The generated data include high-throughput RNA-Seq, DNA-Seq, miRNA-Seq, DNA
methylation, single-nucleotide variant, copy number variation, and reverse phase protein
array data. As a result, the database contains information about RNA, DNA, protein
profiles, and epigenetic changes along with histopathological and clinical data, which, if
properly processed and analyzed, can reveal the mechanisms underlying cancer initiation
and progression [34]. Interestingly, the Clinical Proteomic Tumor Analysis Consortium
contains datasets generated from the mass spectrometry of cancer samples previously
analyzed by TCGA [35].

The Cancer Cell Line Encyclopedia contains datasets generated for nearly 1000 cancer
cell lines, including endometrial cancer. Currently, the obtained data concern gene expres-
sion, drug sensitivity, whole genome sequencing, RNA-Seq, DNA methylation, reverse
phase protein array data, profiling of histones, miRNAs, and metabolites. Therefore, they
can be used to identify new molecular markers and understand the response to anti-cancer
treatment [36].

In addition to the above-mentioned repositories, there is also the Omics Discovery
Index (https://www.omicsdi.org) (accessed on 1 December 2021), which is a collection
of datasets from other repositories [37], or TARGET (https://ocg.cancer.gov/programs/
target) (accessed on 1 December 2021) for pediatric cancer data [38].

The conducted analyses provide many datasets for individual omics, which indicates
the need for their integration in order to obtain a complete picture of the changes occur-
ring in the course of cancer. Interestingly, many studies, although obtaining information
on several molecular layers, carry out separate analyses instead of developing a unified
model [39]. There are models that treat each layer as a separate entity and include mul-
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tivariate regression and multi-objective optimization [40]. They are part of multi-layer
simultaneous integration, which is also known as meta-dimensional data integration. Car-
rying out such an analysis requires the prior fusion of data from the examined omics. This
method of integration is used in analyses aimed at identifying molecular markers, signaling
disruption, or distinguishing cancer subtypes. There is also sequential integration, which is
mainly used in the analysis of the influence of one omic on another. As a result, it is possible
to better understand the interactions between different levels of gene activity regulation
and their importance in oncogenesis [41].

Therefore, the selection of the appropriate data integration and analysis depends on
the data type and study objectives. The applied approaches, and thus the methods and
algorithms, can also be divided depending on whether they are network or Bayesian. Net-
work approaches are based on known or predicted relationships between variables. They
can be determined on the basis of correlation analysis, used, for example, in the Similarity
Network Fusion (SNF) method, which allows the identification of the disease subtype
and the prediction of its phenotype. Bayesian approaches involve the use of a statistical
model in which, using Bayes’ theorem, a posteriori data probability distribution can be
computed. An example is the Pathway Recognition Algorithm using Data Integration on
Genomic Models (PARADIGM), based on the use of Bayesian factor graphs, which provides
information on the degree of signaling pathway activity disruption in patients [40].

2.2. Challenges in Multiomics Approaches

As previously mentioned, multiomics approaches generate and analyze large amounts
of data. For this reason, there is a risk of making a mistake that may affect the final
result. One of the first decisions to be made in multiomics analysis is the selection of
the appropriate layers. It is necessary to consider what relationships are important in
our study, as well as which omics they relate to, in order to optimally use the obtained
data [42]. It is also important for all the analyzed layers to come from a given sample
per replicate. Otherwise, it is necessary to use methods that perform calculations based
on the aggregation of data [43]. From a technical point of view, the problem may be the
preparation and even distribution of material for each omic analysis. In the case of cell
culture, an adequate number of cells should be available. On the other hand, if the studied
material consists of tissues, attention should be paid to their initial processing, as it will
depend on the omic layer [42].

The obtained datasets may also contain measurement errors or noise resulting, for
example, from different time scales in the omics layers, as well as the lack of unified data
analysis protocols after processing [44]. Moreover, the individual layers contain different
types of data and also differ in their number. Such discrepancies can be a problem later in
data integration, especially when using machine learning models. It may be necessary to
decrease the number of variables to reduce noise and dimensionality, thereby improving
performance and computing speed. It is possible by filtering data by applying statistical
analysis or removing recursive data. It may also be beneficial to transform the input
variables into a new set of variables, which is an accumulation of input features using the
Principal Component Analysis (PCA) method. An interesting solution is also to combine
all data into one matrix, but it requires earlier reduction of its variables. After such early
data integration, deep learning is largely used [45]. A common multiomics approach is also
the analysis of single omics, which is followed by data integration. Such a strategy is not
difficult and allows the use of easily available tools. The results of each omic analysis can
be aggregated into one final result. However, it is worth noting that interactions between
omics may be ignored, and in the case of machine learning, individual models do not
communicate with each other and thus do not share information [46].

Multiomics approaches also require an infrastructure that will provide adequate
computing power as well as the ability to store and share data. Moreover, some omics
are much better tested than others, which, apart from technical requirements and costs, is
an obstacle to the use of multiomics in routine diagnostics [44]. Large sets of generated
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data, discrepancies in their number and type, non-paired samples, require taking actions
to reduce their complexity. Therefore, it is important to select an appropriate integration
method to facilitate data analysis and interpretation.

3. Multiomics Approaches in Endometrial Cancer

Multiomics data generated from the same set of samples can provide useful infor-
mation on the flow of genetic information at multiple levels and thus help unravel the
mechanisms underlying the biological state of interest. In the case of endometrial cancer,
conducting literature searches on PubMed (https://pubmed.ncbi.nlm.nih.gov) (accessed
on 1 December 2021) and Scopus (https://www.scopus.com) (accessed on 3 December
2021) using the following keywords: “endometrial cancer” AND multi-omics, “endometrial
cancer” AND multiomics revealed that in the last 5 years, there were several studies on
multiomics approaches in this cancer. Original articles in English with human studies and
full-text available were taken into account. Studies in which bioinformatics analyses using
data from repositories were supplemented with experimental studies were selected for the
review. Table 2 summarizes the methods and omics described in the recent endometrial
cancer studies. Key findings from these works are also included.

Table 2. Analysis methods and omics in endometrial cancer studies, including key findings.

Reference Methods Omics Key Findings

Gao et al. [47]
bioinformatics,

immunohistochemistry,
cell-based assay, Western blot

genomics, transcriptomics,
epigenomics, proteomics

TMEFF2 as target for early
diagnosis and EC treatment

Geng et al. [48] bioinformatics, cell-based
assay, qPCR, Western blot

genomics, transcriptomics,
proteomics

RNF183 as prognostic and early
diagnostic indicator for EC

Geng et al. [49] bioinformatics, cell-based
assay, qPCR

genomics, transcriptomics,
epigenomics proteomics

ZBTB7A as prognostic
biomarker for EC

Li et al. [50] bioinformatics, cell-based
assay, qRT-PCR, Western blot

genomics, transcriptomics,
epigenomics proteomics

BTG1 as prognostic biomarker
for EC

Wan et al. [51]
bioinformatics,

immunohistochemistry,
cell-based assay, qPCR

genomics, transcriptomics,
proteomics

HOXB9 is correlated with EC
cell migration and promotes

its progression

Zhang et al. [52]
immunohistochemistry,

cell-based assay, qRT-PCR,
Western blot

genomics, transcriptomics,
proteomics TTK as therapeutic target for EC

Zhang et al. [53]
bioinformatics,

immunohistochemistry,
cell-based assay, qPCR

genomics, transcriptomics,
proteomics

ARF/ARL family genes as
prognostic biomarkers for EC

Zou et al. [54] bioinformatics,
immunohistochemistry

genomics, transcriptomics,
proteomics

LGR5, SST, ZNF558, and
PTGDS participate in the

development of EC; PTGDS as
biomarker and therapeutic

target for EC

TMEFF2, tomoregulin-2; RNF183, ring finger protein 183; ZBTB7A, zinc finger and BTB domain-containing
protein 7A; BTG1, BTG anti-proliferation factor 1; HOXB9, homeobox B9; TTK, TTK protein kinase; ARF/ARL,
ADP-ribosylation factor/ARF-like protein; LGR5, leucine-rich repeat-containing G-protein coupled receptor 5;
SST, somatostatin; ZNF558, zinc finger protein 558; PTGDS, prostaglandin D2 synthase.

Most of the conducted studies included analysis of the genome, transcriptome, pro-
teome, and also epigenome. An important stage of the analysis was also the use of portals
allowing the analysis of multiomics data and their visualization.

3.1. Multiomics Data Analysis and Visualization Portals
3.1.1. Oncomine Database

The Oncomine database (http://www.oncomine.org) (accessed on 1 December 2021)
is one of the largest microarray datasets, collecting information on over 18,000 microarray
experiments. Interestingly, cancer microarray data that are included in the Gene Expression
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Omnibus (GEO) and Stanford Microarray Database (SMD) are automatically transferred to
the Oncomine database, thanks to which the database is constantly expanding. Such data
are standardized by researchers involved in this project and can be used to identify genes
or signaling pathways that are deregulated in a given cancer or its subtype [55]. Recently,
several analyses were carried out using the Oncomine database, which, supplemented with
additional studies, allowed the selection of new biomarkers for endometrial cancer.

Gao et al. evaluated the expression of tomoregulin-2 (TMEFF2) to assess its role in
endometrial cancer and determine its diagnostic and therapeutic potential. For this purpose,
they used TCGA endometrium data, which included 338 blood samples, 354 endometrial
cancer tissue samples, and 25 normal endometrial tissues. Their results showed that
compared to the control, TMEFF2 DNA copy number was greater in endometrioid EC,
serous EC, and mixed EC [47]. The observed overexpression has not been previously
described for endometrial cancer but is consistent with the already published results for
ovarian cancer, where it is promoted via the mitogen-activated protein kinase (MAPK) and
phosphoinositide 3-kinase (PI3K)/protein kinase b (AKT) pathways [56].

Similarly, Geng et al. used the Oncomine database to assess the expression of Zinc
finger and BTB domain-containing protein 7A (ZBTB7A). Significant reduction in mRNA
expression and DNA copy number variation of ZBTB7A was noted in endometrial cancer
compared to the control [49]. This is a valuable observation, as ZBTB7A is considered an
oncogene that may constitute a potential therapeutic target. It has already been reported
for breast cancer [57], prostate cancer [58], hepatocellular carcinoma [59], and non-small
cell lung cancer [60].

In turn, Zou et al. investigated the expression of leucine-rich repeat-containing G-
protein coupled receptor 5 (LGR5), somatostatin (SST), prostaglandin D2 synthase (PTGDS),
and zinc finger protein 558 (ZNF558). They observed LGR5 overexpression in endometrioid
EC and serous EC, as well as SST overexpression in endometrioid EC, serous EC, and
mixed EC compared to normal endometrium. However, they did not notice any significant
changes in the PTGDS and ZNF558 level [54].

3.1.2. UALCAN Database

The UALCAN database (http://ualcan.path.uab.edu) (accessed on 1 December 2021)
uses publicly available TCGA level 3 (processed and ready for high-level analyses) RNA-
seq and clinical data from 31 cancer types. It allows the analysis of gene expression in
neoplastic and normal tissues as well as in cancer subgroups selected based on the cancer
stage, tumor grade, body weight, race, or other features. It is also possible to assess the
correlation between the studied expression and patient survival, which may be helpful in
identifying new molecular markers [61].

In a recent endometrial cancer study, 581 TCGA tissue samples, including 546 EC
samples and 35 normal endometrial samples, were used during analysis. Expression
of TMEFF2 [47] and BTG anti-proliferation factor 1 (BTG1) [50] was lower in primary
endometrial cancer compared to the healthy endometrium, while significant overexpression
was noted for ring finger protein 183 (RNF183) [48]. In turn, the ZBTB7A expression was low
in endometrial cancer tissues grouped according to cancer stage, age, and race compared to
the control group [49].

Considering the different histological subtypes, the TMEFF2 level was higher in serous
EC and mixed EC compared to the control, while the differences observed for endometrioid
EC were statistically insignificant [47]. Interestingly, the expression of RNF183 and BTG1
was higher in endometrioid EC compared to the non-endometrioid subtypes. In addition,
analyses using the Oncomine database also allowed observing a high expression of RNF183
and BTG1 in TP53-Non-Mutant EC compared to TP53-Mutant EC [48,50].

3.1.3. GEPIA Database

The Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.
cn) (accessed on 1 December 2021) database is an online tool that uses RNA-Seq data from
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the TCGA and GTEx projects. Apart from the differential expression analysis of the studied
genes, it is also possible to assess the patient’s survival [62].

In the case of RNF183, its high level was noted in endometrial cancer compared to
the normal endometrium, which was also confirmed by the analysis using the previously
mentioned UALCAN database [48]. This is not the first report regarding endometrial
cancer, as Colas et al. have already described the existence of a correlation between RNF183
expression in primary EC and its level in uterine fluid samples [63]. However, this indicates
an important role of RNF183 in the course of endometrial cancer and its diagnostic potential,
but it would be beneficial to conduct more detailed analyses, similar to studies on colorectal
cancer, where it was found that this protein activates the NF-κB–IL-8 axis, which leads to
increased proliferation and metastasis [64].

The reduced ZBTB7A level in endometrial cancer was observed in analyses using
the UALCAN and Oncomine databases and was validated with the GEPIA database [49].
In addition, the overexpression of LGR5 and SST in endometrial cancer reported with
the Oncomine database was also confirmed with GEPIA. Interestingly, the expression of
ZNF558 and PTGDS was significantly decreased in endometrial cancer in this analysis [54].
An analysis was also performed for homeobox B9 (HOXB9), and an increase in its expression
in endometrial cancer samples compared to normal endometrium was observed, suggesting
that HOXB9 may be a prognostic marker for EC [51]. Similar conclusions were drawn
in non-small cell lung cancer [65], breast cancer [66], gastric cancer [67], and laryngeal
squamous cell carcinoma [68].

3.1.4. Kaplan–Meier Plotter Database

The Kaplan–Meier (KM) Plotter (http://kmplot.com/analysis) (accessed on 1 Decem-
ber 2021) is a tool that allows researchers to perform a survival analysis and determine the
prognostic value based on the expression of the studied gene [69].

Endometrial cancer was divided into groups with low and high gene expression. One
analysis showed that a high positive expression of TMEFF2 was associated with a shortened
overall survival (OS). It should be noted that the study included 75 endometrial cancer
patients, 20 of whom died and four were lost to follow-up. In addition, age, FIGO stage,
depth of myometrial invasion, lymph node metastasis, ER status, and PR status were all
correlated with poor prognosis [47].

On the other hand, Zou et al. revealed that the mean OS was significantly lower in the
group with low PTGDS expression. In total, 36 patients died and 13 were lost to follow-
up of 87 patients with endometrial cancer. A multivariate Cox analysis was performed,
which indicated the following independent risk factors affecting the prognosis: low PTGDS
expression, advanced cancer stage, and deeper myometrial invasion [54].

Another study based on RNA-seq data reported that 542 patients had high RNF183
expression, which was associated with favorable overall survival and progression-free
survival [48]. It was similar in the study by Li et al., where higher OS was noted in patients
with high BTG1 expression [50]. In turn, high expression of HOXB9 and E2F3 correlated
with a shorter survival time [51].

In the case of the ADP-ribosylation factor (ARF)/ARF-like protein (ARL) family, it
was observed that a high expression of ARL4D, ARL1, ARF1, and SAR1B in endometrial
cancer is associated with better prognosis, while a high expression of ARL4C, ARL2, ARL10,
ARL16, and ARL14 promotes worse survival. Interestingly, the combination of ARL4C
with CDK6 or MYC allowed noticing that high expression of the studied genes is associated
with shorter survival times. This indicates that the use of a combination of two genes, in
this case ARL4C and CDK6 or MYC, enhances survival predictions [55].

3.1.5. TIMER Database

Tumor Immune Estimation Resource (TIMER, http://cistrome.shinyapps.io/timer)
(accessed on 1 December 2021) is a tool that allows the analysis of the tumor-infiltrating
immune cells (TIIC), including B cells, CD4 T cells, CD8 T cells, macrophages, neutrophils,

http://kmplot.com/analysis
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and dendritic cells, in studied cancers. It is based on data from over 10,000 samples for
32 types of TCGA cancers [70].

In the case of RNF183, the analysis showed its high level in endometrial cancer
compared to normal endometrium, which is consistent with the previously used tools.
Further analysis showed that there is a negative correlation between RNF183 expression
and tumor purity, infiltrating levels of CD4+ T cells, neutrophils, and dendritic cells. In
endometrial cancer, infiltrating levels of CD8+ T cells, macrophages, and dendritic cells
have also been reported to be affected by the RNF183 copy number variation [48].

Similarly, analysis of the ZBTB7A gene showed its reduced expression, which was pre-
viously determined with other databases. The observed low ZBTB7A expression resulted in
unfavorable overall survival and disease-free survival (DFS) in patients with endometrial
cancer. Moreover, a correlation was also noted between ZBTB7A expression and infiltrating
levels of CD8+ T cells, neutrophils, and dendritic cells [51].

TIMER database analysis also showed a positive correlation between PTGDS expres-
sion and infiltration levels of B cells, CD4+ T cells, and macrophages. In contrast, the
PTGDS copy number variation correlated with infiltration levels of B cells, CD8+ T cells,
macrophages, and dendritic cells. Further analysis revealed that poor prognosis favors low
B cell and CD8+ T cell infiltration [54].

TIMER database can also be used to evaluate the differential expression between
endometrial cancer and normal endometrium. It was observed that ARFRP1, ARL1, ARL10,
ARL13B, ARL15, ARL2, ARL3, ARL4A, ARL4D, ARL5A, ARL5C, ARL8B, and TRIM23
showed low expression in endometrial cancer compared to the control, while ARF1, ARF3,
ARF4, ARF5, ARF6, ARL11, ARL14, ARL16, ARL4C, ARL5B, ARL8A, ARL9, and SAR1B
were overexpressed [53].

3.1.6. LinkedOmics Database

The LinkedOmics database (http://www.linkedomics.org) (accessed on 1 December
2021) uses datasets of over 11,000 patients and 32 cancer types from the TCGA project.
For breast cancer, colorectal cancer, and ovarian cancer, the database also includes mass
spectrometry-based proteomics data generated by the Clinical Proteomic Tumor Analysis
Consortium. The database module allows the identification of genes related to the studied
gene based on Pearson correlation coefficient analysis, visualization of results as heat map,
volcano plot, or scatter plot. Moreover, through the gene set enrichment analysis (GSEA), it
is possible to analyze gene ontology (GO) categories and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways [71].

The analysis using the LinkedOmics database was carried out for 176 patients with
endometrial cancer. Based on the volcano plot, it has been observed that 2307 genes are
correlated with TMEFF2, most of which are positively correlated. The statistical scatter
plots revealed positive correlations between the expression of TMEFF2 and LIM homeobox
8 (LHX8), paired box gene 3 (PAX3), ASXL transcriptional regulator 3 (ASXL3). Then, in
order to identify the targets of TMEFF2 in endometrial cancer, GSEA was performed. This
analysis revealed kinase, miRNA, and transcription factor target networks that are posi-
tively correlated with TMEFF2. Targets included polo-like kinase 2 (PLK2), protein kinase
X-linked (PRKX), protein kinase cAMP-activated catalytic subunits gamma (PRKACG) and
beta (PRKACB), cyclin-dependent kinase 5 (CDK5), miR-200b, miR-200c, miR-429, miR-190,
miR-448, miR-141, miR-200a, and miR-9 [47].

The analysis performed for the BTG1 gene revealed strong correlations between the
expression of BTG1 and SH3 domain-binding glutamic acid-rich-like protein 3 (SH3BGRL),
protein-L-isoaspartate O-methyltransferase domain-containing protein 1 (PCMTD1), and
tetmethylcytosine dioxygenase 2 (TET2). Moreover, taking into account the top 50 gene
sets related to BTG1, their functions include the regulation of cell cycle, apoptosis, and
carcinogenesis [50].

In the case of RNF183, the number of genes correlated with its expression was much
greater and amounted to almost 20,000. GSEA and GO term analysis showed that differ-
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entially expressed genes correlated with RNF183 are associated with stimulus response
as well as metabolic and biological regulation. In addition, the KEGG pathway analysis
revealed enrichment in, among others, IL-17 and PPAR signaling pathways, fatty acid
degradation, or drug metabolism [48].

Similarly for ZBTB7A, approximately 20,000 genes correlated with its expression.
The implementation of GSEA allowed selecting the following targets of ZBTB7A: polo-
like kinase 1 (PLK1), cyclin-dependent kinase 1 (CDK1) and 2 (CDK2), Aurora kinase B
(AURKB), tumor-associated macrophages (ATM), miR-212, miR-132, miR-499, miR-202,
miR-485-3P, miR-522, and E2F family [49].

Wan et al. performed GO and KEGG enrichment analysis that showed a wide range
of processes and signaling pathways associated with HOXB9, which included regulation
of cell cycle, metabolism, or P53 and p38 MAPK pathways [51]. In a study of ARF/ARL
family members, KEGG enrichment analysis showed that ARL4C overexpression may be
associated with cell adhesion and cell cycle signaling pathways. Interestingly, the regulation
of cell adhesion was positively correlated with high ARL4C expression. Similarly, cell cycle
regulation was enriched in the ARL4C highly expressing group [53].

Almost 20,000 genes were correlated with PTGDS expression in endometrial cancer,
and according to GSEA and GO term analysis, they were mainly associated with immuno-
logical processes, including regulation of the inflammatory response, leukocyte activation,
or adaptive immune response. On the other hand, processes related to the activity of the
cell cycle, e.g., mRNA processing and phase transition, were inhibited. KEGG pathway
analysis showed that genes positively correlated with PTGDS expression are associated
with chemokine signaling pathways, adhesion molecules, as well as cytokine-cytokine
receptor interactions [54].

3.1.7. miRNA Analysis

Given the significant role of miRNAs in the regulation of gene expression, the analysis
of miRNAs can provide a lot of valuable information in the search for new molecular
markers or therapeutic targets [72].

In recent endometrial cancer research, the LinkedOmics database has been used to find
networks of miRNA targets, as was already described in detail [47,48]. In addition, Li et al.
used the miRDB database (http://mirdb.org) (accessed on 1 December 2021) in their study,
as it allows the prediction of miRNA targets and functional annotation [50,73]. The aim
of the study was to select miRNAs that can bind to BTG1. Analysis in miRDB showed
that there are 58 such miRNAs. Among them, the highest target scores were obtained
by miR-513a-5p, miR-548t-5p, miR-302a-3p, miR-302c-3p, miR-580-3p, miR-302d-3p, and
miR-302b-3p.

3.2. Validation of Bioinformatics Analysis

Bioinformatics analysis provides a lot of information on the expression of the studied
genes and potential interactions between genes and proteins, and it helps identify signaling
pathways associated with particular genes, as well as target miRNAs. However, these
results refer to existing datasets, mainly of TCGA cancers, that are used by the databases;
therefore, many researchers validate them by performing experiments using tissue samples
and/or cell cultures.

3.2.1. Immunohistochemistry

The assessment of TMEFF2 protein level was performed with the immunohistochem-
ical streptavidin-peroxidase method. The analysis was conducted on 135 endometrial
samples, including 36 cases of normal endometrium, 24 cases of atypical endometrial hy-
perplasia, and 75 cases of endometrial cancer. The staining showed that TMEFF2-positive
expression rates were higher in EC and atypical endometrial hyperplasia compared to
normal endometrium. In addition, the positive expression rates of TMEFF2 were signifi-
cantly higher in EC compared to the atypical hyperplasia group. In further analysis, it was
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observed that as the degree of cancer differentiation decreased, the high expression rate of
TMEFF2 gradually increased [47].

Expression at the protein level was also determined for HOXB9 in 15 normal endome-
trial samples, 21 atypical endometrial hyperplasia, and 88 EC samples. The HOXB9 protein
level correlated with histological grade as well as lymph node metastasis [51]. In the case
of the TTK protein, its expression was determined in 33 samples of normal endometrium,
16 endometrial hyperplasia without atypia, 21 endometrial atypical hyperplasia, and 63 EC.
Staining showed that TTK is overexpressed in endometrial cancer. There was no corre-
lation between the TTK level and the histological grade, myometrium, and lymph node
invasion. Positive correlation occurred between TTK expression and the ascending FIGO
stage [62]. PTGDS protein concentration was assessed in 116 samples, including 12 normal
endometrial tissue samples, 17 atypical endometrial hyperplasia, and 87 EC samples. The
positive and highly positive expression rates of PTGDS were lower compared to the atypical
hyperplasia group and normal endometrium [54].

Human tissue microarrays were used to assess ARL4C protein levels in endometrial
cancer. The analysis was performed for 34 EC samples and 26 samples of normal en-
dometrium. Staining showed that ARL4C expression is higher in EC compared to normal
endometrium. Interestingly, the ARL4C level did not correlate with the histological grade
and FIGO stage [53].

3.2.2. Cell Cultures

Cell-based assays were conducted in seven out of the eight studies included in this
review. The following cell lines were used: Ishikawa, HEC-1A, HEC-1B, RL95-2, AN3CA,
and KLE. Depending on the purpose of the study, cells were transfected with siRNA, as
well as cell proliferation, wound healing, and Transwell assays were performed. Detection
of the expression of individual genes was performed by Western blot, qRT-PCR, or qPCR.

In the case of TMEFF2, Western blot revealed that the level of this protein was higher
in the Ishikawa cell line compared to HEC-1A and HEC-1B. It was also observed that the
expression of this protein in Ishikawa cells was inhibited by RNA interference. Further
analyses showed that the mentioned inhibition of TMEFF2 expression resulted in a de-
crease in proliferation capacity, migration, and invasion by Ishikawa cells. The levels of
EMT-related proteins, including E-cadherin, vimentin, matrix metalloproteinase-2 (MMP2),
and matrix metalloproteinase-9 (MMP9) were also assessed by Western blot and immuno-
histochemistry in this study. It was found that the inhibition of TMEFF2 expression led to
an increase in E-cadherin and a decrease in vimentin, MMP2, and MMP9 [47].

In the study of RNF183, it was revealed that it positively correlates with ESR1 ex-
pression. Silencing of RNF183 with siRNA in an ERα-positive Ishikawa cell line allowed
observing a decreased level of ESR1 with qRT-PCR. Interestingly, ERα knockdown had
little effect on the level of RNF183 [48]. In turn, high levels of ZBTB7A in Ishikawa cells
inhibit their proliferation and migration as well as repress E2F4 level [49].

Studies have also shown that BTG1 overexpression can inhibit the proliferation and
invasion of Ishikawa and HEC-1A cells as well as promote apoptosis. On the other hand,
ARL4C knockdown in Ishikawa and HEC-1A cells resulted in a decreased ability to migrate
and invade. The effect of BTG1 expression on EMT was assessed by determining the
expression of E-cadherin, vimentin, and N-cadherin with Western blot. A high level of
E-cadherin and decreased N-cadherin and vimentin levels were associated with BTG1
overexpression [50].

In the case of HOXB9, its silencing in the Ishikawa cell line had no effect on cell
proliferation and colony number decrease. However, HOXB9 knockdown affected the
migration ability of Ishikawa and RL95-2 cells. Interestingly, a wound-healing assay showed
that HOXB9 overexpression accelerated Ishikawa cell migration. The study also revealed
that HOXB9 knockdown resulted in a reduction of E2F3 protein levels. Additionally, the
silencing of E2F3 reduced the migration of Ishikawa cells [51].
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The expression of TTK was determined by qRT-PCR in the AN3CA, HEC-1-A, HEC-
1-B, RL95-2, and KLE cell lines. TKK was overexpressed in all five endometrial cancer
cell lines, which was fully confirmed by Western blot. Further analyses showed that the
silencing of TTK in AN3CA and HEC-1-B cells by siRNA decreased cell proliferation and
induced apoptosis [52].

4. Concluding Remarks

Multiomics studies provide extremely important and detailed information on topics
related to the molecular basis of cancer, potential molecular markers, and therapeutic
targets. The volume of available data may seem overwhelming, but there are many tools
to handle it in an accessible way. Bioinformatics databases are constantly updated, which
expands our research capabilities. Easy access to databases and the ability to validate the
results with the use of independent tools encourage more advanced analyses. A single
omic strategy provides useful knowledge, but techniques that allow the simultaneous
analysis of multiple omics seem to be promising. The observation that the expression of a
given gene changes seems to be insufficient when we take into account the complexity of
the mechanisms accompanying cancer development. The use of bioinformatics databases
can allow understanding the correlation and interactions between genes and/or proteins,
identify signaling pathways in which they participate, or select targets for miRNAs.

The large number of diagnosed endometrial cancers emphasizes the need for further
investigation of the mechanisms involved in the initiation and progression of this cancer.
Analyses based on the multiomics strategy can help identify markers for the early detection
of endometrial cancer or potential therapeutic targets. The works analyzed in this review
provided some important findings.

It was observed that TMEFF2 expression was increased in endometrial cancer, and its
silencing inhibited EMT and the activation of MAPK and PI3K pathways, which suggest
that TMEFF2 can help diagnose and treat endometrial cancer [47]. Similarly for RNF183,
its association with ERαmay be a marker in ERα-positive endometrial cancer [48]. In the
case of ZBTB7A, its reduced expression in endometrial cancer is associated with unfavor-
able overall survival and disease-free survival. In addition, ZBTB7A participates in the
regulation of tumor immunity, making it a promising EC biomarker [49].

BTG1 could be another potential endometrial cancer biomarker. It is considered a
suppressor gene and inhibits proliferation, migration, as well as the EMT process in the
EC [50]. Recent studies have also shown the overexpression of HOXB9 in endometrial
cancer, which could potentially be a prognostic marker and a therapeutic target [51]. TTK,
acting as an oncogene, can promote cell proliferation and therefore can be used as a
therapeutic target for EC [52].

It has also been demonstrated that ARL4C belonging to the ARF/ARL family can
induce the proliferation, migration, and invasion of endometrial cancer. This is possible by
regulating cell adhesion and the cell cycle; therefore, ARL4C is considered to be a promising
target in the treatment of endometrial cancer [53]. Moreover, it has also been reported that
LGR5, SST, ZNF558, and PTGDS may be involved in the development and progression of
endometrial cancer. Interestingly, it is suggested that PTGDS can act as a suppressor gene.
It is associated with immunological processes and thus can be a therapeutic target for EC
or its biomarker [54].

Endometrial cancer studies carried out in recent years with the use of multiomics
strategies allowed for the selection of a number of molecular markers and therapeutic tar-
gets, thus enriching the current knowledge about endometrial cancer and the mechanisms
related to its development.
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