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The heart is a highly structured organ consisting of different cell types, including

myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This

pluricellularity provides the opportunity of intercellular communication within the organ,

with subsequent optimization of its function. Intercellular cross-talk is indispensable

during cardiac development, but also plays a substantial modulatory role in the normal

and failing heart of adults. More specifically, factors secreted by cardiac microvascular

endothelial cells modulate cardiac performance and either positively or negatively affect

cardiac remodeling. The role of endothelium-derived small molecules and peptides—for

instance NO or endothelin-1—has been extensively studied and is relatively well defined.

However, endothelial cells also secrete numerous larger proteins. Information on the

role of these proteins in the heart is scattered throughout the literature. In this review,

we will link specific proteins that modulate cardiac contractility or cardiac remodeling to

their expression by cardiac microvascular endothelial cells. The following proteins will be

discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related

protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor,

LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these

proteins can serve as markers of cardiac remodeling and that the concept of endothelial

function and dysfunction might have to be redefined as we learn more about other factors

secreted by ECs besides NO.

Keywords: cardiac remodeling, endothelium, intercellular communication, proteins, heart failure

INTRODUCTION

The heart is a muscular pump consisting of myocytes, endothelial cells (ECs), fibroblasts, stem
cells, and inflammatory cells (Segers and Lee, 2008; Kamo et al., 2015). Cardiac tissue is a
highly organized structure of cells and extracellular matrix with an intricate multidirectional
communication between cells. All cells present in the myocardium secrete autocrine, juxtacrine,
and paracrine factors that modulate function of neighboring cells (Figure 1). Intercellular
communication plays crucial roles in cardiac development and normal cardiac function in the adult
organism, but also in the pathophysiology of cardiac remodeling and heart failure development.
In particular, factors secreted by cardiac microvascular ECs play a crucial role in normal cardiac
function and during cardiac remodeling.

The role of endothelium-derived small molecules and peptides has been extensively studied
and is relatively well defined. For instance, nitric oxide (NO) affects cardiac contractility by
inducing an earlier onset of relaxation resulting in a longer diastole and favoring diastolic filling
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FIGURE 1 | The heart as a pluricellular organ. (Upper) The heart is a highly

organized pluricellular tissue consisting of myocytes (red, striated), capillary

ECs (red, smaller elongated cells), and to a lesser extent fibroblasts (green

spindle shaped) and stem cells. (Middle) Fluorescent staining of myocardial

tissue with myocytes depicted in green and endothelial cells in red. Myocytes

and endothelial cells are in close contact with each other. (Lower) Cells

communicate through autocrine, juxtacrine and paracrine signals.

(Brutsaert, 2003; Balligand et al., 2009). Another example is
endothelin-1, which has positive inotropic effects (Moravec et al.,
1989) and induces a hypertrophic response in cardiomyocytes
(Drawnel et al., 2013). However, ECs do not only secrete small
molecules and peptides but also numerous proteins. Information
on the role of these proteins in normal cardiac biology and
cardiac remodeling is limited and scattered throughout the
literature.

Another issue is that the cardiotrophic effects of certain
secreted proteins are not always linked to the source of
the proteins, which is in a number of instances the cardiac
microvascular endothelium. In recent years, a number of
excellent papers have been published describing cardioprotective
effects of specific endogenous proteins (Oshima et al., 2008;
Shimano et al., 2011; Frangogiannis, 2012; Zhang et al., 2014),

without discussing their source. Moreover, signaling proteins in
the heart are sometimes referred to as “matricellular proteins”
(Frangogiannis, 2012), a term that ignores the origin of these
proteins and suggests that they are a static part of the extracellular
matrix. Cardiac microvascular ECs are the most abundant
cell type—not in total volume but in total number—in adult
myocardium (Pinto et al., 2015), are in direct contact with
adjacent cardiomyocytes and fibroblasts, and actively secrete
many proteins.

In this review, we will link specific proteins that modulate
cardiac contractility or cardiac remodeling to their expression
by cardiac microvascular ECs using publicly available expression
libraries. In physiology, there are numerous feed-back and feed-
forward mechanisms that are part of an intricate multidirectional
communication network. Similar feed-back and feed-forward
mechanisms are present in the communication between ECs,
cardiomyocytes, and fibroblasts in the heart. For example, when
ECs send a signal to cardiomyocytes, these will respond with a
signal that enhances or attenuates the original signal. To limit
the degree of complexity in this review, we will focus on signals
secreted by microvascular ECs present in the myocardium and
ignore signals from other cells. We will narrow the focus of this
review further by discussing endothelial-derived proteins; many
excellent reviews can be found on small molecules and peptides
secreted by cardiac ECs (Brutsaert, 2003; Chatzizisis et al., 2007;
Duncker and Bache, 2008; Kamo et al., 2015; Lim et al., 2015).
The overall aim of the present review is to provide new insights
in the role of microvascular endothelial cells in pathophysiology
of cardiac remodeling beyond secretion of NO. Furthermore,
we want to summarize evidence about either the protective or
the adverse effect of endothelium-derived proteins, regarding to
cardiac contractility, cardiac remodeling, and different cardiac
diseases.

METHODOLOGY

Inclusion of endothelial-derived proteins in this review was
based on publicly available micro-array datasets in Geo Datasets
(Table 1).Micro-array data were extracted fromGSE45820which
contained mRNA expression levels of CD31 positive cardiac ECs
isolated with flow cytometry cell sorting. These cardiac ECs were
derived from mice with or without thoracic aorta constriction
(TAC) (Moore-Morris et al., 2014). Relative gene expression
between cardiac ECs from TAC mice was compared to wild
type mice. We selected all genes encoding secreted proteins with
at least a two-fold upregulation in mRNA expression and with
a known function in adult cardiac physiology. The advantage
of this strategy is that proteins were selected in a non-biased
way. However, many secreted endothelial-derived proteins with
important functions in cardiac biology will be missed using this
strategy. For instance, neuregulin-1 upregulation in this micro-
array database was less than two-fold, but its important roles
in endothelial-cardiomyocyte communication have been well-
established (Lemmens et al., 2006). Furthermore, one has to
bear in mind that none of these proteins is produced exclusively
by ECs. Proteins secreted by one specific cell type are rare
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TABLE 1 | Data sets used in this manuscript.

Dataset Description Species References

GSE45820 Endothelial gene profiling following pressure overload Mice Moore-Morris et al., 2014

GDS1402 Various normal pure cell cultures Human

GDS2206 Dilated cardiomyopathy (human) Human Barth et al., 2006

GSE26887 Ischemic cardiomyopathy Human Greco et al., 2012

GDS3661 Hypertensive cardiomyopathy Rats Brooks et al., 2010

GDS1264 Hypertensive cardiomyopathy Rats Rysa et al., 2005

GDS3655 Ischemic cardiomyopathy Mice Lachtermacher et al.,

2010

GDS2145 7 days post myocardial infarction Rats Andersson et al., 2006

GDS2424 Pacing induced heart failure Dogs Ojaimi et al., 2007

GDS2154 Inflammatory cardiomyopathy (parvovirus induced) Human Wittchen et al., 2007

GDS3228 TAC in apelin-KO mice Mice Kuba et al., 2007

GDS2773 Acute and chronic EC response to TNF-α Mice Rajashekhar et al., 2007

GDS1543 EC response to TNF-α Human

GDS1968 EC response to hypoxia and reoxygenation Human

TABLE 2 | Relative expression of angiocrine proteins upon TNF-α or hypoxia in cell culture.

Gene Protein GDS2773 GDS2773 GDS1543 GDS1968 GDS1968 GDS1968 GDS1968 GDS1968

mouse EC mouse EC HMEC HUVEC HUVEC HUVEC HUVEC HUVEC

TNF acute TNF chronic TNF 1h hypox 3h reox 5h reox 12h reox 24h reox

Tnc Tenascin C 4.8 2.1 2.3

Thbs1 Thrombospondin 1 13.4 0.6 0.6

Fstl1 Follistatin-like 1 2.1

Ctgf Connective tissue growth factor 4.5 0.4 0.7

Ptgis Prostaglandin I2 synthase 0.6 0.5

Bmp2 Bone morphogenetic protein 2 0.7

Apln Apelin 0.6

Thbs2 Thrombospondin 2 4.7 3.9 4.7 3

Thbs3 Thrombospondin 3 1.6

Il1b Interleukin 1 beta 4.1

Pgf Placental growth factor 1.4

Lif leukemia inhibitory factor 3.2 1.5 2.5

Tnxb Tenascin XB 1.7

Wisp1 WNT1 inducible signaling pathway protein 1 0.6 0.5 0.5

Mdk Midkine 1.5

Relative expression of angiocrine proteins in ECs after acute or chronic stimulation with TNF-α, after 1 h ischemia, or after different time points of reoxygenation. All experiments are

based on in vitro EC culture and all values are compared to control samples (non-stimulated or non-ischemic). Only statistically significant differences are shown.

in mammalian biology. Nevertheless, an endothelial source is
an important physiological characteristic for a secreted protein,
allowing specific regulatory features of synthesis and secretion
and providing anatomical advantages for action. However, the
endothelium is a fragile organ, easily disturbed during aging
and environmental stimuli (Table 2). Therefore, an endothelial
origin of a pathway may reveal an enhanced vulnerability of this
pathway to certain (patho-)physiological conditions.

This review is based on comprehensive search of peer-
reviewed literature on PubMed. Inclusion of references was
based on relevance to the topic, quality of the manuscript

and consistency with the literature. Search terms included the
following: heart, cardiac, ECs, endothelium, cardiomyocytes,
fibroblasts, stem cell, hypertrophy, cardiac fibrosis, heart
failure, cardiomyopathy, lactate, oxygen, vasodilation,
mechanotransduction, adenosine, and vasopressin.

Furthermore, we checked expression of these proteins in
cardiac ECs and other ECs using other publically available
expression data sets. We confirmed the expression of all
proteins mentioned in this manuscript using publicly available
datasets of various normal pure human cells including cardiac
microvascular ECs and cardiac fibroblasts (GDS1402, Table 3).
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We also checked expression of these genes in samples
from human myocardial biopsies of patients with dilated
cardiomyopathy (GDS2206), samples from hypertrophic hearts
induced by exercise in rats (GDS654), and samples from
hypertrophic hearts from various induction models (GDS598).

CARDIAC MICROVASCULAR
ENDOTHELIAL CELLS

Cardiac muscle is a tissue with high metabolic needs and
therefore receives blood supply from a dense vascular and
capillary network. Capillary density in the myocardium is
around 3,000–4,000/mm2, which is substantially higher than in
skeletal muscle where it is around 500–2,000/mm2 (Duncker
and Bache, 2008). Microvascular ECs lining these capillaries
not only serve as a barrier between blood and the myocardial
tissue, but also communicate with adjacent cardiomyocytes by
exchanging small molecules, peptides, proteins, microvesicles,
and microRNAs (Figure 2) (Brutsaert, 2003). These secreted
angiocrine substances constitute the endothelial effector function
of the myocardium. Conceptually, one could discriminate
the effector functions based on the target cell type, but
alternatively one could also discriminate based on target
processes, e.g., hypertrophy or fibrosis. The effector function
of ECs has been first described almost 30 years ago, when
it was shown that vascular ECs produce NO which induces
relaxation of underlying smooth muscle cells (Palmer et al.,
1987). Subsequently it has been shown that NO produced
by endocardial endothelium also modulates contractility of
cardiomyocytes (Brutsaert, 2003). Later, it has been shown that
ECs communicate with cardiomyocytes by other signal molecules
including prostaglandins and short peptides like endothelin
(Brutsaert, 2003; Kamo et al., 2015). In recent years it has also
been shown that proteins can modulate cardiac contractility
(Lemmens et al., 2004) and have protective effects on cardiac
remodeling (Liu et al., 2006): the best characterized example is
neuregulin-1 (Vermeulen et al., 2016, 2017).

Besides this effector function, ECs also have a sensing function
to detect changes in hemodynamic, chemical, neurohormonal,
and mechanical stimuli (Figure 2). The best known example of
this sensing function is the secretion of vasodilatory substances
such as NO in response to changes in shear stress (Chatzizisis
et al., 2007; Duncker and Bache, 2008; Davies, 2009). However,
shear stress is only important in arteries and larger arterioles,
because flow rates in the microcirculation are much lower
(Boulpaep, 2009). Nevertheless, ECs in specific microcirculations
such as the heart or skeletal muscle are subjected to mechanical
stress such as cyclical stretching and compression, and load-
dependent strain. Furthermore, all ECs have receptors for
metabolites, neurohormonal factors, cytokines, and growth
factors; they harbor these receptors not only to regulate their own
cellular physiology, but also to transduce signals to neighboring
cells, for instance underlying cardiomyocytes. An interesting
example is the responsiveness of ECs to estrogens by secreting
more NO, a phenomenon that could explain some of the gender
differences in many cardiovascular diseases (Gavin et al., 2009).

CARDIAC ENDOTHELIAL CELLS SECRETE
SMALL MOLECULES THAT MODULATE
CARDIAC CONTRACTILITY AND CARDIAC
REMODELING

ECs have many effector functions that occur in different

organs such as regulation of coagulation or inflammatory cell

infiltration, but they have also effector functions that are specific

to certain tissues. ECs located in epicardial coronary arteries are a

small minority of all ECs in the heart, but their role inmodulating

vascular smooth muscle function is extensively studied (Duncker

and Bache, 2008). In this review we focus on the effector function

of the microvascular ECs in the heart.
The vast majority of ECs in the heart are located in the

microcirculation. These ECs produce paracrine factors, which
can modulate cardiomyocyte contractility, growth and survival
(Figure 3). Similar to ECs in coronary arteries, these paracrine
factors include NO, prostacyclin, Ang-II, and ET-1 (Brutsaert,
2003). Detailed discussion of the paracrine effects of NO is
outside the scope of this review (Brutsaert, 2003; Balligand et al.,
2009). In small concentrations, NO has positive inotropic effects,
whereas in higher concentrations it has negative inotropic effects
(Mohan et al., 1996; Brutsaert, 2003; Balligand et al., 2009).
The most reproducible effect of NO on cardiac contractility,
however, is an earlier onset of relaxation (positive lusitropy)
resulting in a longer diastole and favoring diastolic filling and
coronary perfusion (Brutsaert, 2003; Balligand et al., 2009).
In the long run, production of NO by endothelial NOS
has antihypertrophic effects in models of cardiac hypertrophy
(Palmer et al., 1987; Massion and Balligand, 2007). Paulus
et al. recently proposed a novel paradigm for pathophysiology
of heart failure with preserved ejection fraction (HFpEF). In
this paradigm, a co-morbidity-induced dysfunction of cardiac
microvascular endothelium plays a central role in development
of cardiomyocyte hypertrophy and stiffness (Paulus and Tschope,
2013). Microvascular endothelial dysfunction leads to decreased
NO production, decreased cGMP content and protein kinase
G (PKG) activity in adjacent cardiomyocytes which results
in development of hypertrophy and increased cardiomyocyte
stiffness (Paulus and Tschope, 2013).

The effects of prostacyclin on cardiac contractility range
from a positive to a negative inotropic effect (Brutsaert, 2003).
The main effect of prostacyclin on contractility is a delayed
onset of relaxation and this effect opposes the action of NO
(Brutsaert, 2003). The role of prostacyclin in cardiac remodeling
is less well defined, but there is evidence that prostacyclin
has anti-hypertrophic effects (Ritchie et al., 2004) and that the
hypertrophic response is exaggerated in prostacyclin-receptor
knockout mice (Hara et al., 2005; Harding and Murray, 2011).
For the effects of other prostaglandins on cardiac remodeling, we
refer the reader to ref (Harding and Murray, 2011). In the dataset
used in this manuscript to select endothelium-derived proteins,
prostaglandin I2 synthase mRNA is upregulated 7.4-fold in ECs
derived from left ventricle of mice after aortic banding (Table 3).

Locally produced Ang-II is important in normal cardiac
function with the most consistent effect being positive inotropy
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FIGURE 2 | Sensing and effector function of cardiac ECs. ECs sense different biochemical and mechanical stimuli and communicate with other cell types in the

myocardium.

(Freer et al., 1976; Baker and Singer, 1988) and delayed relaxation
(Meulemans et al., 1990; Brutsaert, 2003). The role of the renin-
angiotensin-aldosterone system in cardiac hypertrophy is well
characterized and led to the successful implementation of ACE

inhibitors and angiotensin receptors blockers in daily clinical
practice of heart failure (Weber and Brilla, 1991; Sadoshima
and Izumo, 1993; Paul et al., 2006). In the dataset used in this
manuscript to select proteins, Angiotensin converting enzyme
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FIGURE 3 | Both cardiomyocytes and microvascular ECs are responsive to acute and chronic changes in loading conditions. Autocrine and paracrine signaling leads

to acute changes in lusitropy and inotropy of cardiomyocytes and to chronic changes in cardiomyocyte growth and survival.

(ACE) mRNA is upregulated 3.2-fold in ECs after aortic banding
(Table 3).

The effects of Et-1 on cardiac contractility are diverse, but
the most reproducible response is a positive inotropic effect
(Moravec et al., 1989). Long term activation of the Et-1 pathway
induces a hypertrophic response in cardiomyocytes and has been
implicated in heart failure soon after its discovery (Drawnel
et al., 2013); circulating and tissue levels of Et-1 are increased
in patients with heart failure (Lerman et al., 1992; Loffler et al.,
1993). However, studies with Et-1 receptor blockers in patients
with heart failure have been disappointing (O’connor et al., 2003;
Anand et al., 2004). This could be partly explained by the essential
role of Et-1 for maintenance of normal cardiac contractility and
for the adaptive stress response of cardiac tissue (Hathaway et al.,
2015). Furthermore, Et-1 has been shown to have anti-apoptotic
properties on cardiomyocytes (Kakita et al., 2001; Ogata et al.,
2003; Drawnel et al., 2013). Interestingly, endothelium-specific
Et-1 knockout mice show an exaggerated hypertrophic response
to aortic banding (Heiden et al., 2014).

MICROVASCULAR ENDOTHELIAL CELLS
SECRETE PROTEINS THAT MODULATE
CARDIOMYOCYTE FUNCTION AND
CARDIAC REMODELING

ECs could be viewed as a single continuous organ of considerable

size throughout the organism, instead of an additional cell

type present in separate organs. They form an active secretory
organ that not only has a major influence on the proteome

in blood plasma but also on the proteome in the interstitial

space of the capillaries. The secretome of ECs plays an essential
role in development and normal physiology of all organs. In
the heart, ECs are essential for normal development of the

heart through various pathways including Notch and Wnt

signaling pathways. The endothelial secretome is crucial in adult
myocardium for maintenance of normal myocardial function
and adequate response to various hemodynamic stimuli (e.g.,
pressure overload).
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TABLE 4 | Expression of angiocrine proteins as determined by

mass-spectrometry.

Gene Protein A B

EA.hy926 EA.hy926

LPS statin

Thbs1 Thrombospondin 1 1.2 0.3

Fstl1 Follistatin-like 1 1.2

Ctgf Connective tissue growth factor 1.8 0.3

Thbs2 Thrombospondin 2 0.4

(A) Relative expression of angiocrine proteins in EA.hy926 ECs after stimulation with

endotoxin (LPS); LC-MS/MS data (Kwon et al., 2015). (B) Relative expression of angiocrine

proteins in EA.hy926 ECs after treatment with atorvastatin in vitro; LC-MS/MS data

(Brioschi et al., 2013).

Data from a recently performedmicro-array byMoore-Morris
et al. show a marked upregulation of various secreted proteins
by cardiac microvascular ECs upon chronic pressure overload
in mice (Moore-Morris et al., 2014). Upregulated angiocrine
proteins with a known cardiac function are shown in Table 3.
This list cannot be assumed to be complete, because the micro-
array is based on a single sample of sham and TAC operated mice
precluding statistical analysis. However, this list is remarkably
similar to a list that can be construed by comprehensive review
of the literature on the effects of various secreted proteins on
cardiac function, hypertrophy and remodeling. The fact that cells
were freshly isolated from intact hearts with flow cytometry has
two important advantages: the cells that were isolated are pure
ECs and gene expression is analyzed on cells in a condition
that matches their in vivo condition as closely as possible.
There are also some drawbacks in using this list of proteins.
For example, proteins that regulate cardiac contractility but not
cardiac remodeling are perhaps not represented, neither proteins
that are regulated by posttranslational modifications instead of
transcription. We will use this list of proteins with differential
expression between pressure-overloaded and normal hearts as an
index list of proteins for further review, but one should keep in
mind the advantages and drawbacks discussed.

We confirmed expression of these genes in cardiac
microvascular ECs based on publicly available microarray
data on various pure cell cultures (GEO Dataset: GDS1402).
This microarray experiment contains 16 primary EC cultures,
7 fibroblast cell cultures, and 26 vascular smooth muscle
cell cultures. We compared expression of different genes
between ECs and fibroblasts and between ECs and vascular
smooth muscle cells (Table 3). Table 3 only shows values for
expression levels that are significantly different; for a number
of proteins—e.g., TSP-4, IGF-1, or BMP-2—expression levels in
ECs are comparable to expression in fibroblasts and vascular
smooth muscle cells. Some proteins—e.g., IL-1β or prostacyclin
synthase—have a higher expression in vascular smooth muscle
cells and fibroblasts compared to ECs. Expression of TSP-1,
BMP-4, and PGF is markedly higher in ECs compared to
fibroblasts or vascular smooth muscle cells. These micro-arrays
have been performed on cultured cells and one has to be careful
with extrapolating these data to the in vivo situation because

expression levels may be altered by the artificial cell culture
environment and growth factors used in cell culture medium.

We evaluated expression of a panel of angiocrine proteins
in micro-array experiments of different heart failure models,
including biopsy samples of different forms of cardiomyopathy
in humans and different animal models of heart failure (Table 3).
Different forms of heart failure are included in this experiment:
hypertensive cardiomyopathy, ischemic cardiomyopathy,
dilated cardiomyopathy, myocarditis, and obesity induced
cardiomyopathy. Most of the angiocrine proteins are up- or
down-regulated in one or more of these heart failure models
(Table 3), but none of the proteins is significantly altered in all
of them. The large variety in underlying pathophysiology of
these heart failure models is the main reason for variability in
expression levels of angiocrine proteins. We included different
models of heart failure, because heart failure is a heterogeneous
disease, not only because of different causal factors, but also
because of differences in genetic susceptibility, comorbidities,
and even differences in a single patient when disease progresses
over time. Furthermore, in contrast to the experiment performed
by Moore-Morris et al. (first column of Table 3), all these
expression data are based on biopsies or tissue samples and
therefore are a mixture of different cell types. Although the
number of cardiomyocytes and ECs can be expected to remain
fairly constant, induction of heart failure will lead to changes
in relative abundances of different cell types in the heart and
therefore might affect expression levels. Relative changes in cell
numbers will be different between different models of heart
failure: e.g., fibroblast proliferation is more pronounced in
certain models. Another caveat when interpreting Table 3 is the
fact that not all genes are included in all micro-arrays, e.g., TSP-3
is only present in a minority of micro-array panels.

Abundance of angiocrine proteins is not only dependent on
transcriptional activity, but also on translation, posttranslational
modification and secretion. Therefore, we searched literature
for mass-spectrometry data on the secretome of ECs. Specific
data on cardiac microvascular ECs are not available, but mass
spectrometry data have been published on the secretome of
HUVECs (Tunica et al., 2009), endothelial progenitor cells
(Hemmen et al., 2011), and EA.hy926 ECs (HUVEC hybridoma
cell line) (Brioschi et al., 2013; Kwon et al., 2015).

A recent study investigated the in vitro response of endothelial
responses to endotoxins (Kwon et al., 2015). Although the
method used in this study simulates the pathophysiology of
sepsis rather than cardiac remodeling, many inflammatory
pathways are also activated in cardiac remodeling. Interestingly,
endotoxins upregulate secretion of some of the proteins present
in our index list; e.g., thrombospondin-1 secretion increases
1.2-fold, follistatin-related protein 1 secretion increases 1.2-fold,
and connective tissue growth factor increases 1.8-fold (Kwon
et al., 2015; Table 4). In a separate mass-spectrometry study
in the same EC line it was shown that atorvastatin decreases
protein secretion of thrombospondin-1, thrombospondin-2, and
connective tissue growth factor (Brioschi et al., 2013). HMG-
CoA reductase inhibitors have been said to have pleiotropic
effects on other organ systems besides their cholesterol lowering
effects (Mihos et al., 2014). Stimulation or inhibition of specific
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angiocrine proteins could be part of these pleiotropic effects of
statins.

Fibroblasts are generally considered to be the main source
of extracellular matrix proteins, but ECs themselves are an
important source of extracellular matrix proteins as well.
ECs increase production of extracellular matrix proteins in
response to pressure overload (Table 5) and therefore could
significantly contribute to formation of extracellular matrix
during fibrogenesis. Moreover, ECs also secrete numerous pro-
fibrotic factors in response to hemodynamic stress.

ENDOTHELIUM-DERIVED PROTEINS
MODULATING CARDIAC CONTRACTILITY
AND CARDIAC REMODELING

In this section, we will discuss endothelium-derived proteins
with known effects on cardiac function and/or remodeling. All
proteins showed an increased expression in endothelial cells
in response to pressure overload (Table 3), and they will be
discussed in order of magnitude of this response.

Interleukin-6
It is well established that inflammatory cytokines including
tumor necrosis factor-α, interleukin-1, and interleukin-6 (IL-6)
play important roles in early and later stages of cardiac
remodeling and heart failure (Paulus, 2000). In heart failure
patients, inflammatory cytokines are elevated in the myocardium
but also in plasma and have paracrine and endocrine functions
(Paulus, 2000). Inflammatory cytokines can be produced by
immune cells but also other cell types including ECs. Many
excellent reviews cover the role of IL-6 signaling pathways
in heart failure and cardiac remodeling (Fischer and Hilfiker-
Kleiner, 2007; Fontes J. A. et al., 2015).

The effects of IL-6 on cardiomyocyte contractility have been
well documented in vitro. IL-6 induces reversible negative
inotropic effects on isolated hamster papillary muscles (Finkel
et al., 1992), downregulation of SERCA2 in neonatal rat
ventricular myocytes (Villegas et al., 2000), reduced expression
of cardiac myosin heavy chain isoforms, and a loss of cardiac
actin in rat cardiac myocytes (Patten et al., 2001). The negative
inotropic effects of IL-6 in isolated cardiomyocytes can be
partially explained by stimulation of iNOS expression and NO
production (Yu et al., 2003). IL-6 increases NO production
through activation of the JAK2/STAT3 pathway (Yu et al., 2003).

Besides negative inotropic effects, IL-6 also has clear effects
on cardiac remodeling. Inhibition of IL-6 in a mouse model of
transplant rejection decreases cardiomyocyte hypertrophy and
cardiac fibrosis, indicating that IL-6 has pro-hypertrophic and
pro-fibrotic properties (Diaz et al., 2009). The pro-hypertrophic
effects of IL-6 have been recently confirmed in mice with
a genetic deletion of IL-6, which showed attenuation of the
hypertrophic response to pressure overload (Zhao et al., 2016)
and attenuation of the fibrotic response to Ang-II infusion
(González et al., 2015). Moreover, experiments with transgenic
mice overexpressing α-adrenergic receptors suggest that part of
the hypertrophic response of cardiomyocytes to catecholamines

TABLE 5 | Expression of extracellular matrix proteins by endothelial cells during

cardiac overload.

Gene Protein Fold

COLLAGEN

Col1a1 collagen, type I, alpha 1 44.7

Col1a2 collagen, type I, alpha 2 59.4

Col3a1 collagen, type III, alpha 1 38.4

Col4a4 collagen, type IV, alpha 4 5.6

Col5a1 collagen, type V, alpha 1 13.3

Col5a2 collagen, type V, alpha 2 20.6

Col6a1 collagen, type VI, alpha 1 16.0

Col6a2 collagen, type VI, alpha 2 7.7

Col6a3 collagen, type VI, alpha 3 16.5

Col8a1 collagen, type VIII, alpha 1 8.1

Col8a2 collagen, type VIII, alpha 2 7.1

Col11a1 collagen, type XI, alpha 1 10.0

Col12a1 collagen, type XII, alpha 1 24.6

Col14a1 collagen, type XIV, alpha 1 20.1

Col15a1 collagen, type XV, alpha 1 2.5

Col16a1 collagen, type XVI, alpha 1 4.6

Col18a1 collagen, type XVIII, alpha 1 7.1

Col27a1 collagen, type XXVII, alpha 1 4.6

BASEMENT MEMBRANE COMPONENTS

Lama2 laminin, alpha 2 6.3

Lamb1 laminin B1 2.3

MAJOR KNOWN EXTRACELLULAR MATRIX GLYCOPROTEINS

Efemp1 epidermal growth factor-containing fibulin-like

extracellular matrix protein 1

2.6

Eln Elastin 2.3

Emid2 EMI domain containing 2 5.3

Emilin1 elastin microfibril interfacer 1 3.3

Emilin2 elastin microfibril interfacer 2 3.5

Fbln1 fibulin 1 7.5

Fbln2 fibulin 2 2.5

Fbln5 fibulin 5 2.9

Fbn1 fibrillin 1 3.7

Fbn2 fibrillin 2 8.3

Fn1 fibronectin 1 3.4

Matn2 matrilin 2 5.4

Mfap4 microfibrillar-associated protein 4 45.0

Mfap5 microfibrillar associated protein 5 36.6

Postn periostin, osteoblast specific factor 46.7

PROTEOGLYCAN

Aspn Asporin 7.2

Bgn Biglycan 8.7

Dcn Decorin 7.3

Fmod Fibromodulin 14.0

Gpc6 glypican 6 3.5

Lum Lumican 21.3

Ogn Osteoglycin 23.2

Vcan Versican 40.6

MMP

Mmp14 matrix metallopeptidase 14 (membrane-inserted) 7.8

Mmp2 matrix metallopeptidase 2 26.6

Mmp23 matrix metallopeptidase 23 10.7

Timp1 tissue inhibitor of metalloproteinase 1 60.5

Timp2 tissue inhibitor of metalloproteinase 2 3.5

(Continued)
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TABLE 5 | Continued

Gene Protein Fold

EXTRACELLULAR MATRIX PROTEINS OF BONES, CARTILAGE,ANDTEETH

Dpt Dermatopontin 6.4

GROWTH-FACTOR-BINDING-PROTEINS

Igfbp4 insulin-like growth factor binding protein 4 3.3

Igfbp5 insulin-like growth factor binding protein 5 2.5

Kcp kielin/chordin-like protein 4.8

Ltbp2 latent transforming growth factor beta binding protein 2 36.3

CCN FAMILY PROTEINS

Wisp2 WNT1 inducible signaling pathway protein 2 7.6

ENZYMES

Expi extracellular proteinase inhibitor 3.0

Fuca2 fucosidase, alpha-L- 2, plasma 3.1

Hpse Heparanase 3.1

Lox lysyl oxidase 13.3

Loxl1 lysyl oxidase-like 1 24.5

Loxl2 lysyl oxidase-like 2 13.0

Loxl3 lysyl oxidase-like 3 6.8

OTHER POSSIBLE EXTRACELLULAR MATRIX PROTEINS

Aebp1 AE binding protein 1 3.3

Cilp cartilage intermediate layer protein, nucleotide

pyrophosphohydrolase

18.9

Comp cartilage oligomeric matrix protein 8.5

Crispld2 cysteine-rich secretory protein LCCL domain containing

2

5.3

Cthrc1 collagen triple helix repeat containing 1 23.0

Igsf10 Immunoglobulin superfamily, member 10 5.3

Lgi3 leucine-rich repeat LGI family, member 3 2.1

Pcolce procollagen C-endopeptidase enhancer protein 4.8

Pcolce2 procollagen C-endopeptidase enhancer 2 6.0

Smoc2 SPARC related modular calcium binding 2 8.7

Spon1 spondin 1, (f-spondin) extracellular matrix protein 2.1

Srpx2 sushi-repeat-containing protein, X-linked 2 21.2

Svep1 sushi, von Willebrand factor type A, EGF and pentraxin

domain containing 1

6.8

Tgfbi transforming growth factor, beta induced 4.5

Relative expression of different extracellular matrix proteins in cardiac microvascular ECs

of mice after thoracic aortic constriction compared to sham operated mice. Based

on microarray data of flow cytometry sorted cardiac microvascular ECs (GSE45820)

(Moore-Morris et al., 2014).

is mediated by endothelium-derived IL-6 (Papay et al., 2013;
Figure 4). Furthermore, endothelium-derived IL-6 has also been
implicated in the adaptive hypertrophic response to placental
growth factor, an endothelial growth factor (Accornero et al.,
2011). As discussed in a later section, placental growth factor
stimulates EC growth and release of growth factors—including
IL-6—from ECs (Accornero and Molkentin, 2011), and thus has
indirect trophic effects on myocytes.

Subcutaneous injection of high doses of recombinant IL-6 in
wild-type rats induces a dose-dependent dilatation of the left
ventricle leading to heart failure within 7 days (Janssen et al.,
2005), whereas continuous infusion of a lower doses of IL-6
in rats leads to ventricular hypertrophy and fibrosis (Meléndez
et al., 2010). Consistently, administration of an antibody against
the IL-6 receptor decreases cardiac remodeling after myocardial

infarction in mice (Kobara et al., 2010). These experiments
indicate that increased levels of IL-6 have detrimental effects on
cardiac remodeling. However, other experiments indicate that IL-
6 has protective effects on cardiac biology as well. For instance,
IL-6 KOmice show cardiac dilatation, increased accumulation of
interstitial collagen, and a decreased capillary density (Banerjee
et al., 2009).

Periostin
Periostin is a secreted protein of 90 kDa, which contains 4
repetitive fasciclin domains and is involved in cell adhesions
(Snider et al., 2009). Periostin is involved in normal fibrogenesis
but also pathological fibrosis and interacts directly with other
extracellular matrix proteins such as fibronectin, tenascin-C,
and collagen I/V (Snider et al., 2009). Periostin can serve
as a ligand for selected integrins, such as αvβ3, αvβ5, and
α4β6, where it can affect the ability of cells to migrate
or undergo a epithelial-mesenchymal transformation during
pathological disease progression (Conway and Molkentin, 2008).
In the adult heart periostin is induced following myocardial
infarction, pressure overload, or generalized cardiomyopathy
(Conway and Molkentin, 2008; Frangogiannis, 2012). The effects
of periostin on cardiomyocyte contractility are unknown, but
periostin does play a role in myocardial fibrosis and hypertrophy
(Frangogiannis, 2012). It has been shown that periostin knockout
mice have reduced fibrosis and hypertrophy following pressure
overload, whereas periostin overexpressing transgenic mice
spontaneously developed hypertrophy with aging (Oka et al.,
2007).

It has been suggested that recombinant periostin had
regenerative properties and can induce cardiomyocyte
proliferation after myocardial infarction (Kuhn et al., 2007), but
these results have been contested by other investigators (Conway
and Molkentin, 2008). Therefore, more studies are needed to
investigate that regenerative properties of periostin.

Tenascin-C
Tenascins (Tn) are a family of multimeric extracellular matrix
glycoproteins characterized by a N-terminal globular domain
and heptad repeats, which facilitate multimerization (Tucker
and Chiquet-Ehrismann, 2009). Tenascins play important roles
in cell adhesion and motility (Tucker and Chiquet-Ehrismann,
2009). Tn-C is the best characterized tenascin and is highly
expressed in tendons and embryonic extracellular matrix (Tucker
and Chiquet-Ehrismann, 2009). Tn-C has a wide range of
effects on cell adhesion, motility, differentiation, growth control,
and extracellular matrix organization via multiple cell surface
receptors (Tucker and Chiquet-Ehrismann, 2009). Tn-C is
expressed in various ECs including aortic ECs, pulmonary artery
ECs, and HUVECs (Golledge et al., 2011; Table 6). Tn-C is
secreted by ECs, but also has dynamic effects on ECs by inhibiting
cardiac EC spreading and enhancing migration in response
to angiogenic growth factors (Ballard et al., 2006). Tn-C has
both pro- and antiangiogenic properties (Tucker and Chiquet-
Ehrismann, 2009).

Tn-C is almost absent in normal adult myocardium, but
reappears during cardiac remodeling in response to pathologic
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FIGURE 4 | Endothelial cells can serve as paracrine intermediates. Placental growth factor (PGF) induces expression of periostin (Postn) and IL-6 in non-myocytes

including cardiac microvascular ECs. Periostin and IL-6 have been implicated to play a role in adaptive hypertrophy induced by PGF (Accornero et al., 2011).

Catecholamines induces cardiac hypertrophy partly by induction of endothelium-derived IL-6 (Papay et al., 2013). Transforming growth factor-β, fibroblast growth

factor-2 (Frangogiannis et al., 2005), and Ang-II (Fischer et al., 2001) induce TSP-1 expression in CMVECs.

insults, such as acute myocardial infarction, myocarditis,
ischemia-reperfusion injury, and hypertensive cardiac fibrosis
(Imanaka-Yoshida, 2012). Studies on direct effects of Tn-C on
cardiomyocyte hypertrophy are missing, but Tn-C plays an
important role during cardiac remodeling by loosening cell
adhesion, upregulating MMPs, and enhancing inflammatory
responses (Imanaka-Yoshida, 2012). These effects of Tn-C help
cell rearrangement and allowmyofibroblasts and capillary vessels
to spread into the restoring tissue, but these might also cause
tissue vulnerability, resulting in ventricular dilatation (Imanaka-
Yoshida, 2012). Consistently, deletion of TN-C significantly
reduces ventricular remodeling and improves cardiac function
after coronary artery ligation in mice (Nishioka et al., 2010).

Thrombospodins
Expression of thrombospondin-4 (TSP-4) has been documented
in human coronary artery ECs and smooth muscle cells (Stenina
et al., 2003). Pressure overload leads to an increase in TSP-1
and TSP-4 expression in cardiac tissue (Mustonen et al., 2008;
Xia et al., 2011), which confirms the micro-array dataset of
Table 3. More specifically, immunostaining localized TSP-4 to
ECs in hypertrophied hearts of spontaneously hypertensive rats
(Mustonen et al., 2008). Upregulation of TSP-4 expression by
increased loading conditions has also been shown in models of
vasopressin infusion or myocardial infarction (Dawson et al.,

2013). Therefore, it has been suggested that TSP-4 is an
endothelial specific marker of cardiac overload (Mustonen et al.,
2008). TSP-1 also shows load-dependent expression in ECs
(Dawson et al., 2013), but compared to TSP-4 also shows a more
widespread expression in different cell types (Frangogiannis
et al., 2005). Expression of TSP-1 in ECs is also regulated
by transforming growth factor-β, fibroblast growth factor-2
(Frangogiannis et al., 2005), and Ang-II (Chua et al., 1997;
Fischer et al., 2001) (Figure 4).

TSP-4 serves as an endothelium-derived mechano-signaling
molecule with a central role in adaptive contractile responses to
acute stress, and appears to play a crucial role in the transition
to chronic cardiac dilatation (Cingolani et al., 2011). Hearts
of TSP-4 KO mice failed to acutely augment contractility or
activate stretch-response pathways on exposure to acute pressure
overload (Cingolani et al., 2011). In these complete KO mice,
TSP-4 was deleted in all cells. Isolated cardiac trabeculae of
TSP-4 KO mice failed to enhance contractility and cellular
calcium increase after stretch, in contrast to wild-type trabeculae
(Cingolani et al., 2011). However, the contractility response could
be restored in TSP-4 KO cardiac trabeculae incubated with
recombinant TSP-4 (Cingolani et al., 2011). Interestingly, when
TSP-4 KO myocytes were isolated, they responded normally
to stretch, indicating that TSP-4 secreted by other cells—e.g.,
microvascular ECs—is crucial for a normal response to stretch.
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TSP-1 KO mice display an increased hypertrophic response
to pressure overload (Xia et al., 2011). Similarly, TSP-4 KO mice
also display an increased hypertrophic response (Frolova et al.,
2012; Palao et al., 2016). Little is known on the role of TSP-2
in cardiomyocyte hypertrophy, but TSP-2 has been shown to be
protective against doxorubicin induced cardiomyocyte toxicity
(van Almen et al., 2011). Furthermore, TSP-2 also protects
against age-related dilated cardiomyopathy in mice (Swinnen
et al., 2009). In summary, TSP-1,−2,−3, and−4 are upregulated
in ECs during pressure overload, but most data in the literature
focus on TSP-1 and−4, that both seem to serve as endothelium-
derived anti-hypertrophic factors.

Besides having anti-hypertrophic properties, TSP-1 is an
important activator of transforming growth factor-β signaling.
Latency-associated peptide is a peptide that forms a complex
with transforming growth factor-β and in this state inactivates
transforming growth factor-β. Binding of TSP-1 to latency-
associated peptide leads to a conformational change leading
to release and activation of transforming growth factor-β
(Frangogiannis, 2012). As stated before, TSP-1 expression is
increased by pressure overload and plays an important role in
the fibrotic response of myocardial tissue. TSP-1 null mice have
a low collagen content in the heart with increased infiltration
of dysfunctional fibroblasts (Xia et al., 2011). Hearts of TSP-
1 null mice are prone to chamber dilatation in response
to pressure overload because of loss of extracellular matrix
integrity. In contrast to TSP-1 KO mice, TSP-4 KO mice
display an increased deposition of extracellular matrix in
response to pressure overload (Frolova et al., 2012), indicating
that TSP-4 serves as an endothelium-derived suppressor of
exaggerated fibrosis. It has also been shown that TSP-2 has anti-
fibrotic effects in age-related cardiac dilatation (Swinnen et al.,
2009).

Follistatin-Like 1
Follistatin-like 1 (FSTL-1) is an extracellular glycoprotein
with limited homology to the follistatin family of proteins
(Ouchi et al., 2008). It has been reported that FSTL-
1 is secreted by skeletal myocytes (Ouchi et al., 2008),
myocardial tissue after myocardial infarction (Oshima et al.,
2008), and cardiomyocytes and nonmyocytes (Shimano et al.,
2011). Expression of FSTL-1 in ECs has been confirmed by
immunohistochemistry in synovial ECs (Li et al., 2011) and
cardiac microvascular ECs (Shimano et al., 2011). Numerous
studies indicate that FSTL-1 has cardioprotective properties
during cardiac remodeling. FSTL-1 has anti-apoptotic effects on
cardiomyocytes by stimulation of the AKT pathway (Oshima
et al., 2008). Furthermore, FSTL-1 shows anti-hypertrophic
properties in murine animal models (Shimano et al., 2011;
Tanaka et al., 2016). Data from small and large animal
models also indicate that FSTL-1 has protective effects on
ischemia/reperfusion injury (Ogura et al., 2012). Moreover,
data indicate that FSTL-1 is upregulated after myocardial
infarction and prevents cardiac rupture by activating cardiac
fibroblasts (Maruyama et al., 2016). Consistently, FSTL-1 also
has pro-fibrotic effects in models of lung fibrosis (Dong et al.,
2015).
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Frizzled-Related Protein 3
Frizzled-related protein 3 (FRP-3) is a member of the Wnt
signaling pathway and plays important roles during cardiac
embryogenesis. Expression of FRP-3 in ECs has also been
confirmed by immunohistological staining in reproductive
tissues (Partl et al., 2014). Currently, there are no known effects
of FRP-3 on cardiac contractility, but it has been shown that FRP-
3 expression is increased in failing human myocardium, with a
decline following LV assist device therapy (Askevold et al., 2014),
indicating that FRP-3 is related to heart failure progression, and
its secretion dependent on ventricular wall strain. It has also been
shown that FRP-3 mRNA levels are increased in left ventricles
of mice post-myocardial infarction (Askevold et al., 2014). Like
other members of the Wnt signaling pathway, evidence indicates
that FRP-3 plays a role in cardiac remodeling, but direct effects
on cardiomyocytes or fibroblasts have not been examined yet.

Insulin-Like Growth Factor-1
Insulin-like growth factor-1 (IGF-1) is a protein with
growth promoting actions on multiple tissues including the
myocardium. IGF-1 is part of the growth hormone /IGF-1
pathway and promotes cell survival via the phosphatidylinositol
3 kinase (PI3K)/Akt signaling pathway (Figure 4; Michele et al.,
2013). Expression of IGF-1 has also been confirmed in brain
microvascular ECs (Wang et al., 2013), endothelial progenitor
cells (Urbich et al., 2005), and adipose tissue microvascular ECs
(Kern et al., 1989).

It has been well-established that IGF-1 plays important roles
in physiological and pathological cardiac remodeling and heart
failure (Ellison et al., 2012). IGF-1 promotes cardiac growth and
improves cardiac contractility and ejection fraction (Ren et al.,
1999). IGF-1 also improves cardiac function after myocardial
infarction by promoting tissue remodeling (Ren et al., 1999). We
refer the reader to many excellent reviews on the role of IGF-1 in
cardiac remodeling (Ren et al., 1999; Opgaard and Wang, 2005;
Michele et al., 2013).

Connective Tissue Growth Factor
Connective tissue growth factor (CTGF) is a protein that plays
an essential role in skeletal development and extracellular matrix
production (Accornero et al., 2015). CTGF plays crucial roles
in fibrotic responses, for instance in models of bleomycin-
induced skin fibrosis (Liu et al., 2010). CTGF binds with various
proteoglycans and integrins, but a specific cell surface receptor
for CTGF has not been identified, so it is currently unclear how
CTGF modifies cellular responses to injury. Although CTGF
expression is strongly induced during cardiac remodeling, its
role in cardiac remodeling remains controversial. Recent studies
using transgenic mice suggest that CTGF is not involved in
cardiac remodeling, hypertrophy, or fibrosis at baseline, nor with
aging, after pressure overload, or with neuroendocrine agonist
stimulation (Accornero et al., 2015; Fontes M. S. et al., 2015).
However, in vitro data indicate that CTGF induces hypertrophy
in cardiomyocytes (Hayata et al., 2008).

Dickkopf-3 (DKK-3)
Dickkopf (DKK) proteins are secreted regulators of the Wnt
signaling pathway which include DDK-1 to DKK-4 (Krupnik

et al., 1999; Niehrs, 2006). DKK-3 plays a role in embryological
development of various organs including the heart, bone, the
neural epithelium, and limb buds (Niehrs, 2006). DKK-3 is also
expressed in various adult tissues and acts as a tumor suppressor
of different malignancies (Veeck and Dahl, 2012). Expression of
DKK-3 in tumor tissues is mostly located in microvascular ECs
(Untergasser et al., 2008; Fong et al., 2009). DKK-3 is expressed
in the adult heart (Krupnik et al., 1999), more specifically in
microvascular ECs (Fong et al., 2009; Tunica et al., 2009; Zhang
et al., 2014).

DKK-3 has been identified as a protein playing a role in
cardiac remodeling. Genomic studies have shown that DKK3
is negatively correlated with myocardial mass in rat models
of hypertrophy (Cerutti et al., 2006). Furthermore, it has been
shown that overexpression of DKK-3 protects against aortic
banding induced hypertrophy whereas knockout of DKK-3
aggravates the hypertrophic response (Zhang et al., 2014). It has
also been shown that DKK-3 has protective effects in models
of dilated cardiomyopathy (Lu et al., 2016) and myocardial
infarction (Bao et al., 2015).

Bone Morphogenetic Protein-2 and -4
Bone morphogenetic protein-2 (BMP-2) and bone
morphogenetic protein-4 (BMP-4) play important roles
during heart development in vertebrates and are members of
the transforming growth factor-β superfamily (Balligand et al.,
2009). The role of BMP-2 in regeneration of the adult heart is
incompletely defined, but BMP-2 is frequently used to stimulate
differentiation of stem cells for cardiac regeneration therapies
(DeGeorge et al., 2008; Kim et al., 2011; Wan et al., 2011).
Similarly, BMP-4 has been shown to induce differentiation of
embryonic stem cells (Hosseinkhani et al., 2007) and induced
pluripotent stem cells into cardiomyocytes (Ren et al., 2011).
However, BMP-4 has also been reported to have inhibiting
properties on cardiomyocyte differentiation (Taha et al., 2007).
It has been shown that cyclic stretch of ECs in vitro induces
expression of BMP-2 (Balligand et al., 2009) and that BMP-2 has
positive inotropic effects on isolated adult cardiomyocytes by
activation of PI3K (Ghosh-Choudhury et al., 2003).

Recent evidence indicates that BMP-4 as well as BMP-2 also
play key roles in cardiac remodeling. Whereas BMP-2 has anti-
hypertrophic effects on adult cardiomyocytes, BMP-4 has pro-
hypertrophic and pro-apoptotic effects on cardiomyocytes (Sun
et al., 2013; Lu et al., 2014).Moreover, BMP-4 also has pro-fibrotic
effects (Sun et al., 2013) whereas BMP-2 has anti-fibrotic effects
(Wang et al., 2012).

Moreover, BMP-2 promotes angiogenesis in various tumors
(Langenfeld and Langenfeld, 2004) and during osteogenesis
(Carano and Filvaroff, 2003). BMP-4 has also potent pro-
angiogenic properties and induces capillary sprouting (Zhou
et al., 2007).

Apelin
Apelin is the ligand for the previously orphaned G protein–
coupled receptor APJ (Japp et al., 2010). Apelin is expressed
throughout the organism with particularly high levels in vascular
endothelium (Chandrasekaran et al., 2008). APJ receptors
are present on many different cell types including ECs,
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cardiomyocytes, and vascular smooth muscle cells (Japp et al.,
2010). Apelin exerts major effects on both vascular tone and
cardiac contractility. Both in isolated rat hearts and in vivo, apelin
is a positive inotropic substance (Szokodi et al., 2002; Ashley et al.,
2005). Together with Et-1 and adrenomedullin, apelin is among
the most potent endogenous inotropic substances on a molar
base (Szokodi et al., 2002). Apelin exerts its inotropic action by
increasing the availability of intracellular calcium rather than
enhancing myofilament calcium sensitivity (Chandrasekaran
et al., 2008). In the failing heart, this increase in contractility is
even more pronounced (Chandrasekaran et al., 2008). Apelin not
only increases inotropy, but also decreases left ventricular pre-
and afterload by its pronounced vasodilatory effects (Ashley et al.,
2005). Therefore, apelin seems to be a beneficial endothelium-
derived protein that increases inotropy and decreases cardiac
loading when the myocardium is confronted with pressure
overload. Interestingly, unlikemost other inotropic agents, apelin
does not induce cardiomyocyte hypertrophy (Chandrasekaran
et al., 2008).

It has recently been shown that apelin also has anti-fibrotic
effects in models of pressure overload (Pchejetski et al., 2012;
Zhong et al., 2016) and myocardial infarction (Zhang et al., 2016)
with direct inhibitory effects on fibroblasts (Pchejetski et al., 2012;
Zhong et al., 2016).

Interleukin-1β
Interleukin-1β (IL-1β) is an inflammatory cytokine which
is expressed in multiple tissues and by multiple cell types
including ECs. In experimental models of pressure overload
and cardiac hypertrophy, IL-1β expression is upregulated
in the hypertrophied heart, predominantly localized in ECs
and interstitial macrophages (Bujak and Frangogiannis, 2009).
Similar to IL-6, IL-1β also has a negative inotropic effect
on cardiomyocytes (Bujak and Frangogiannis, 2009). This
negative inotropic effect is mediated through NO-dependent
andNO-independent pathways (Bujak and Frangogiannis, 2009).
Furthermore, IL-1β inhibits the β-adrenergic agonist-mediated
increase in cAMP and cardiomyocyte contractility and IL-1β is
an essential mediator in sepsis-induced contractile dysfunction
(Bujak and Frangogiannis, 2009).

Extensive evidence suggests that IL-1 has pro-hypertrophic
and pro-apoptotic effects on cardiomyocytes (Bujak and
Frangogiannis, 2009). IL-1β induces cardiomyocyte apoptosis by
activation of Bak and Bcl-xL through pathways involving NO
(Bujak and Frangogiannis, 2009). Furthermore, IL-1β induces
cardiomyocyte hypertrophy, upregulates atrial natriuretic factor
(ANF) and suppresses expression of calcium regulatory genes
(Bujak and Frangogiannis, 2009). Furthermore, IL-1β has well
known pro-inflammatory properties. In IL-1-receptor KO hearts,
collagen deposition was markedly decreased, in both the healing
scar and the peri-infarct area (Bujak and Frangogiannis, 2009).
IL-1β directly enhances fibrosis by upregulating expression of
Ang-II receptors on cardiac fibroblasts and by stimulating
fibroblast migration (Bujak and Frangogiannis, 2009). Beyond
its pro-inflammatory and fibrogenic properties, IL-1 also
promotes extracellular matrix remodeling by enhancing matrix
metalloproteinase expression (Bujak and Frangogiannis, 2009).

Placental Growth Factor
Placental growth factor (PGF) is secreted by cardiomyocytes
(Accornero and Molkentin, 2011) but also by cardiac
microvascular ECs in which expression is upregulated by
chronic pressure overload (Table 3) (Accornero and Molkentin,
2011; Moore-Morris et al., 2014). PGF is part of the vascular
endothelium growth factor superfamily and binds to the VEGF-1
receptor which is expressed by ECs (Accornero et al., 2011). PGF
has a limited role in normal cardiac homeostasis, but has been
shown to be crucial in adaptive angiogenic responses (Accornero
and Molkentin, 2011). Because CMVECs are at the same time
both secretor and receptor cells for PGF, PGF might be part of an
autocrine endothelial signaling system.

Deletion or overexpression of PGF does not alter cardiac
function or morphology at baseline, but PGF is an essential
component of the hypertrophic response to pathological stimuli
such as pressure overload (Accornero et al., 2011). In contrast to
wild-type mice, PGF KO mice do not form additional capillaries
in response to aortic banding and rapidly develop heart
failure (Accornero et al., 2011), whereas mice overexpressing
PGF show an increased angiogenic response. PGF expression
increases in response to hypertrophic stimuli (Accornero and
Molkentin, 2011) and stimulates EC growth but also secretion
of growth factors from ECs and fibroblasts, including IL-6
and periostin (Accornero and Molkentin, 2011). These growth
factors stimulate cardiomyocyte cell growth. Based on these
data, it has been suggested that PGF is a stress-response
factor that suppresses disease in the heart by maintaining
capillary/vessel density as well as providing protective trophic
effects to cardiomyocytes (Accornero and Molkentin, 2011).

Leukemia Inhibitory Factor
Leukemia inhibitory factor (LIF) is a member of the IL-6 family
of cytokines and induces hypertrophy in cardiomyocytes by
activation of the LIF receptor and gp130, which functions as a
co-receptor (Kodama et al., 1997). The hypertrophic effects of
LIF are mediated by the JAK-STAT signaling pathway (Kodama
et al., 1997). Most of these pro-hypertrophic effects have been
demonstrated in isolated cardiomyocytes, but little is known on
the role of LIF in pathophysiology of cardiac remodeling or heart
failure (Zouein et al., 2013). However, a large body of evidence
exists on the protective effects of the JAK-STAT pathway during
acute cardiac stress (Zouein et al., 2013) and it has been shown
that LIF protects against ischemia-reperfusion injury (Zouein
et al., 2013).

LIF may play a role in cardiac regeneration as it has
been shown to contribute to homing of bone marrow-derived
progenitors, as well as differentiation of resident cardiac stem
cells into ECs (Zouein et al., 2013). LIF not only protected against
cardiomyocyte death in a mouse myocardial infarction model,
but enhanced neovascularization, and induced homing of bone
marrow cells to the heart and their differentiation into cardiac
myocytes (Zouein et al., 2013).

Wnt1-Induced Secreted Protein-1 (WISP-1)
Wnt1-induced secreted protein-1 (WISP-1) is a member of the
cysteine-rich 61, CTGF, and nephroblastoma overexpressed
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(CCN) family of growth factors (Colston et al., 2007). WISP-
1 expression is upregulated during cardiac remodeling
and expression is stimulated by tumor necrosis factor
(Venkatachalam et al., 2009). It has been shown that WISP-1
induces cardiomyocyte hypertrophy in vitro by activation of Akt
(Colston et al., 2007) and protects against doxorubicin-induced
cardiomyocyte death (Venkatesan et al., 2010). It has also been
shown that WISP-1 expression is induced by Ang-II stimulation
and that WISP-1 is an important mediator of Ang-II induced
cardiomyocyte hypertrophy (Shanmugam et al., 2011). WISP-1
also has pro-fibrotic effects by inducing fibroblast proliferation
(Colston et al., 2007). Data on the role of WISP-1 are mostly
limited to in vitro experiments and the role of WISP-1 in cardiac
remodeling in vivo is largely unexplored.

Midkine
Midkine is an heparin-binding growth factor that binds
to different receptors forming a multireceptor complex
(Yamazaki et al., 1998). Midkine protects the heart from
ischemia/reperfusion injury and infarction via its anti-apoptotic
effects (Kadomatsu et al., 2014). Furthermore, midkine promotes
EC proliferation, leading to angiogenesis and it also enhances
inflammatory cell infiltration into lesions (Kadomatsu et al.,
2014). The pro-angiogenic effects of midkine have been

FIGURE 5 | Overview of endothelial function and dysfunction during cardiac

remodeling.

implicated to be the major reason why midkine protects against
cardiac remodeling after myocardial infarction (Takenaka
et al., 2009). The downside of midkine being a strong pro-
angiogenic protein is that it has growth stimulating effects on
different tumors. Although midkine has protective effects after
myocardial infarction, it has also been shown to increase cardiac
hypertrophy during pressure overload (Netsu et al., 2014).

Adrenomedullin
Adrenomedullin (ADM) is a 52-amino acid protein which
belongs to the calcitonin gene-related peptide family. ADM
is mainly produced by ECs and vascular smooth muscle cells
in different organs (Krzeminski, 2016). ADM is a potent
vasodilator that reduces systemic and pulmonary vascular
resistance, induces renal vasodilation, and increases glomerular
blood flow and filtration rate (Krzeminski, 2016). Research
indicates that ADM has positive inotropic effects which involve
the activation of adenylyl cyclase and cyclic AMP production in
cardiomyocytes (Szokodi et al., 1998; Ihara et al., 2000). It has
also been shown that ADM enhances cardiac contractility via
mechanisms involving facilitation of Ca2+ release (Krzeminski,
2016). However, the effect of ADM on myocardial contractility
is controversial because some authors claim it to have a negative
inotropic effect mediated by the NO-cGMP pathway or to have
no effect on myocardial contractility (Ikenouchi et al., 1997).
Another report shows that ADM has negative inotropic effects
on human isolated ventricular myocytes (Mukherjee et al., 2002).
These discrepancies could partly be explained by interspecies
variability in contractile responses.

ADM also has anti-hypertrophic effects and anti-fibrotic
effects, thus protects the heart during cardiac remodeling (Kato
and Kitamura, 2015). Moreover, ADM also has pro-angiogenic
effects in different tissues (Kato and Kitamura, 2015). Taken
together, current evidence indicates that ADM is beneficial in

TABLE 7 | Circulating endothelial-derived proteins as biomarkers for cardiac

disease.

HFrEF HFpEF AMI

Periostin Norum et al., 2017 Cheng et al., 2012

TSP-2 Hanatani et al., 2014 Kimura et al., 2016

IL-6 Roig et al.; Tsutamoto

et al., 1998

Wu et al., 2011 Miyao et al., 1993

IL-1β Hasdai et al., 1996

ADM Jougasaki et al., 1995;

Nishikimi et al., 1995

Yu et al., 2001 Kobayashi et al., 1996

Midkine Kitahara et al., 2010

Apelin Liu et al., 2015

PGF Nakamura et al., 2009 Bui et al., 2012

FSTL-1 Tanaka et al., 2016

CTGF Koitabashi et al., 2008 Wu et al., 2014

IGF-1 Al-Obaidi et al., 2001 Yamaguchi et al., 2008

Tenascin Terasaki et al., 2007 Sato et al., 2012

FRP-3 Askevold et al., 2014
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a number of cardiovascular diseases because it has protective
effects on cardiac remodeling.

ANGIOCRINE PROTEINS AS BIOMARKERS
FOR CARDIAC DISEASE

ECs are the only cells in themyocardium that are in direct contact
with circulating blood. Therefore, proteins secreted by cardiac
ECs are more likely to reach the circulation—and will do so in
higher concentrations—than proteins from other cell types in the
heart. Therefore, specific proteins secreted by ECs could serve as
biomarkers of heart failure or cardiac remodeling.

All the proteins discussed in the current paper have been
shown to be upregulated in an animal model of pressure overload
(Moore-Morris et al., 2014). Some of the proteins discussed in
this paper also have been shown to have increased circulation
plasma levels in patients with heart failure. For instance, a large
body of evidence indicates that circulating levels of IL-6 are
increased in patients with heart failure and provide important
prognostic information (Wollert and Drexler, 2001). Current
evidence on circulating proteins in different forms of heart
failure is presented in Table 7. Endothelium-derived proteins can
be up- or down-regulated in different forms of heart failure.
For instance circulating periostin levels are decreased after
myocardial infarction (Cheng et al., 2012), but are increased in
patients with dilated cardiomyopathy (Norum et al., 2017).

CONCLUSIONS

By listing currently known secreted endothelial-derived
proteins and summarizing their effects on cardiac function or
remodeling, an extended view on the (cardiac) endothelium as an
(intrinsic) modulatory component of cardiac function emerges.
It illustrates the diversity of paracrine pathways through which
the endothelium affects the multiple functions and adaptive
responses of the heart, which obviously is more complicated than
secretion of nitric oxide. Accordingly, there is little doubt that a
state of “endothelial activation” or “endothelial dysfunction” has
a larger impact on cardiac function and heart failure progression
than currently anticipated (and may diverge from the traditional
NO-derived views, too often related to the pathophysiology of
atherosclerosis; Figure 5).

Given the complexity of the cross-talk between ECs and
cardiomyocytes, one may wonder what is missing in our current
understanding: (1) For many proteins, stimuli of synthesis and
secretion from ECs are incompletely defined. Figure 2 gives a
non-exhaustive summary of known stimuli, but these might
differ between different proteins. (2) Also, the target cells of
endothelium-derived proteins are incompletely characterized. In
the current review, we focused on cardiomyocytes, but most
proteins have an effect on multiple cell types. (3) We described
the actions of different secreted proteins separately, but in reality
actions of different proteins are not isolated from one another
but enhance or oppose each other. Classically, cardiovascular
experiments study the effect of one actor (e.g., a secreted
protein) on one target response in a particular cell type (e.g.,
cardiomyocyte hypertrophy) at one level of complexity (e.g.,
cellular level). In these “one-dimensional” experiments, however,
a lot of information is lost because only a single response
is analyzed at a single level of complexity and—at the same
time—data on interactions between different pathways and at
different levels of complexity are not recorded. Amore integrated
approach will be necessary to study interdependency and
synergy of different pathways. Ultimately, unraveling of paracrine
signaling networks will be necessary to fully understand cardiac
biology. (4) Drugability of the different paracrine pathways is still
largely unexplored, with some notable exceptions such as NO,
inflammatory factors, or neuregulin-1. (Segers and Lee, 2010,
2011; De Keulenaer et al., 2017). (5) In the future, endothelial
function and dysfunction might have to be redefined as we
learn more about other factors secreted by ECs. Currently,
definition and evaluation of endothelial function is mostly based
on secretion of NO and vasodilatory responses.
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