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ABSTRACT

The Roadmap Epigenomics Consortium has pub-
lished whole-genome functional annotation maps in
127 human cell types by integrating data from stud-
ies of multiple epigenetic marks. These maps have
been widely used for studying gene regulation in
cell type-specific contexts and predicting the func-
tional impact of DNA mutations on disease. Here, we
present a new map of functional elements produced
by applying a method called IDEAS on the same data.
The method has several unique advantages and out-
performs existing methods, including that used by
the Roadmap Epigenomics Consortium. Using five
categories of independent experimental datasets, we
compared the IDEAS and Roadmap Epigenomics
maps. While the overall concordance between the
two maps is high, the maps differ substantially in the
prediction details and in their consistency of anno-
tation of a given genomic position across cell types.
The annotation from IDEAS is uniformly more accu-
rate than the Roadmap Epigenomics annotation and
the improvement is substantial based on several cri-
teria. We further introduce a pipeline that improves
the reproducibility of functional annotation maps.
Thus, we provide a high-quality map of candidate
functional regions across 127 human cell types and
compare the quality of different annotation methods
in order to facilitate biomedical research in epige-
nomics.

INTRODUCTION

Thousands of epigenetics datasets have been released in
hundreds of human cell types (1–3); this constitutes a rich
source of information for studying epigenetic events and
improving our understanding of human gene regulation.
However, interpretation of the raw data generated by high-
throughput sequencing technologies to infer function is dif-
ficult, not only because the signals are noisy, but also be-

cause different epigenetic marks may represent distinct reg-
ulatory functions in a combinatorial fashion. To facilitate
the discovery and interpretation of functional elements in
human genomes, computational algorithms such as genome
segmentation (4,5) have been used to annotate the genome
based on multiple epigenetic datasets. The principle is to
identify de novo combinatorial patterns of multiple epige-
netic marks, which are called epigenetic states, within in-
tervals across the genome. The epigenetic states inferred
by genome segmentation methods have been shown exper-
imentally to correspond to unique functional elements and
have impacts on phenotypes (6). The inferred epigenetic
states are a low-dimensional, de-noised representation of
the high-dimensional raw data, which are convenient for vi-
sualization, interpretation and testing in downstream anal-
yses.

The Roadmap Epigenomics project has published a set
of genome segmentation results on 127 human cell types
including 16 cell lines from the encyclopedia of DNA el-
ements (ENCODE) project (2). These results have been
used to facilitate new biological insights, such as priori-
tizing and interpreting non-coding genetic variants in hu-
man complex diseases (7–12). The Roadmap Epigenomics
segmentations were produced by a widely used algorithm
called ChromHMM (4), which employs a hidden Markov
model (HMM) with binary emission probability to identify
epigenetic states. The algorithm works by first converting
the raw signals in 200-bp windows to binary values based
on a significance cut off in each dataset and then linearly
concatenating the epigenomes of all cell types together for
joint segmentation. The advantages of this approach in-
clude computational speed and simplified interpretation of
results, as the method deals with binary outcomes and only
models one-dimensional (1D) data dependence across the
genome. However, the method has significant limitations.
First, because quantitative values are converted to binary,
the magnitude of the raw signals is lost and the results
are sensitive to threshold choices. Second, the number of
epigenetic states must be predetermined, which can easily
miss important epigenetic states that are not evident when
globally comparing with known biological functions. Third,
ChromHMM does not account for the fact that all cell types
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share the same underlying DNA sequences and hence loses
the position-dependent information. Thus, ChromHMM is
a ‘1D’ genome segmentation method that is not optimized
for jointly segmenting multiple epigenomes.

We recently introduced a new genome segmentation al-
gorithm called IDEAS (13) (for ‘integrative and discrimi-
native epigenome annotation system’) to tackle the above
issues. The IDEAS method works on continuous quanti-
tative data, such that epigenetic signatures of similar pat-
terns but at different scales can be distinguished. IDEAS
employs Bayesian non-parametric techniques to automati-
cally choose the number of states from the data instead of
requiring user input. This is done by treating the number
of epigenetic states in the model as a variable, which is then
updated from the data and regularized via Bayesian priors.
The underlying principle is to explore different numbers of
states and determine the simplest model that can sufficiently
explain the variability in the data. If preferred, however, the
user can still fix the number of states. Importantly, IDEAS
is a ‘2D’ genome segmentation method that, in addition to
modeling data dependence along the genome, further ac-
counts for position-wise dependence of regulatory events
across cell types. Computationally, the time complexity of
inference using the IDEAS model is linear with respect to
the genome size and the number of cell types involved. The
method is thus computationally efficient even for analyz-
ing hundreds of cell types simultaneously. Finally, because
all segmentation methods are sensitive to reduced repro-
ducibility because of the impact of initial values for model
parameters, we introduce a novel pipeline that greatly im-
proves reproducibility of the epigenetic states produced.

In light of the advantages of IDEAS over existing genome
segmentation tools, we used IDEAS to generate a new map
of regulatory elements in the 127 Roadmap Epigenomics
cell types. The map can be accessed via the hub link (REF-
ERENCE for track hubs?) for the University of Califor-
nia, Santa Cruz (UCSC) genome browser (http://bx.psu.
edu/~yuzhang/Roadmap ideas/ideas hub.txt). We used the
same five histone marks employed by ChromHMM to pro-
duce the map, as they are available in all cell types. We
then comprehensively evaluated the ability of the segmenta-
tion results produced by IDEAS and ChromHMM to pre-
dict or correlate with distinct aspects of genomic function.
Our hypothesis is that the epigenetic states are predictive
of regulatory function and thus more accurate or less noisy
segmentations should match or correlate better with mea-
sures of or proxies for genome function. We chose five in-
dependent categories of experimental datasets, specifically
RNA-seq data in 56 cell types from the Roadmap Epige-
nomics project, expression quantitative trait loci (eQTL)
detected in 44 tissues by the Genotype-Tissue Expression
(GTEx) project (14), enhancer usage data generated in 808
human cap-analysis gene expression (CAGE) libraries from
the Functional Annotation of the Mammalian Genome 5
(FANTOM5) project (15), four sequence-based scores for
functional impact of DNA mutations (16–19) and promoter
capture Hi-C data in 17 blood cell types in the International
Human Epigenome Consortium (IHEC) project (20). Each
category illuminates a different aspect of genome function
and all of them are independent of the data we used for
generating the functional maps. Thus, correlation between

genome segmentation results and these experimental results
can be used to assess the relative prediction accuracy of epi-
genetic states between IDEAS and ChromHMM.

MATERIALS AND METHODS

Roadmap Epigenomics datasets

We downloaded the negative log10 of the Poisson P-
value tracks of a core set of five chromatin marks
(H3K4me3, H3K4me1, H3K36me3, H3K27me3 and
H3K9me3) assayed in all of the 127 epigenomes from
http://egg2.wustl.edu/roadmap/data/byFileType/signal/
consolidated/macs2signal/pval/. We processed the sig-
nal tracks of each mark by taking the mean per
200-bp window across the genome in hg19. We re-
moved regions associated with repeats and blacklisted
regions as given in (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDukeMapabilityRegionsExcludable.
bed.gz) and (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDacMapabilityConsensusExcludable.bed.gz).
The processed dataset contained 635 genome-wide tracks
over 13.8 million windows, constituting 8.8 billion observa-
tions in total. We took log2(x + 0.1) transformation of the
data as input to IDEAS. Here, x denotes the negative log10
P-values that were provided by the Roadmap Epigenomics
project. We additionally applied log2 transformation of
values plus the constant 0.1 to reduce data skewness.

IDEAS model

We previously developed IDEAS (13) to perform joint
segmentation of multiple epigenomes simultaneously. This
method is motivated by the observation that epigenetic
marks and the regulatory functions they represent are cor-
related both across the genome and among cell types. The
latter correlation is due to the same underlying DNA se-
quences shared by all cell types. Most existing genome
segmentation methods only account for data dependence
along the genome, but not across cell types. Their meth-
ods are therefore ‘1D’. To produce segmentations in multi-
ple epigenomes, existing methods use either concatenation
or stacking techniques in order to fit multiple epigenomes
through 1D models, which is suboptimal. In contrast,
IDEAS explicitly models both directions of data depen-
dence along the genome and across cell types, and hence
it is a ‘2D’ method that produces 2D segmentations with
improved power. Direct modeling of high-dimensional data
dependence is technically and computationally challenging,
because the dependence structure among cell types is un-
known. More critically, cell-type-dependence varies along
the genome depending on the regulatory functions coded
by the underlying DNA sequences.

The IDEAS method tackles these issues and achieves
both power and computational scalability by using a novel
Bayesian non-parametric hierarchical latent class model.
There are two unique components in the IDEAS model.
First, it utilizes Bayesian non-parametric hierarchical clus-
tering to identify locally related cell types based on epi-
genetic similarity. The assumption is that cell types with
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similar epigenetic landscapes in a local region should have
similar functions. Neither the number of cell type clusters
nor how and where they vary along the genome is known.
We therefore used infinite-state hidden Markov chains to
learn all unknown variables from the data, with one Markov
chain per cell type. The state in each Markov chain denotes
the cluster membership of cell types at each genomic posi-
tion and cell types in the same cluster at each position have
the same distribution of regulatory functions. The emission
distributions in these Markov chains are position-specific
and are modeled by Dirichlet processes to account for ge-
nomic background variation. Second, the method classi-
fies genome positions into categories. Each category cor-
responds to a distinct functional profile for the underly-
ing DNA sequences, which is unobserved and agnostic of
cell types. We assume that the positions in the same cate-
gory have a distinct prior distribution of regulatory func-
tions in all cell types. Examples include positions poten-
tially encoding transcription factor binding sites, enhancers
or inactive regions. Because the number of possible cate-
gories in the genome and the prior distribution of regula-
tory functions associated with each category are unknown,
all unknown variables are learned from the data using an-
other Bayesian non-parametric HMM, where the states in
the Markov chain denote the categories of genome posi-
tions and each state emits a prior distribution of regula-
tory functions at each position. Taken together, these two
components in the IDEAS model provide us with a lin-
ear time solution (with respect to the number of cell types
and the genome size) to account for the two directions of
data dependence in multiple epigenomes. More details of
the IDEAS model can be found in the original paper (13).

Improved reproducibility

Independent runs of genome segmentation may produce
different results depending on the initial values of model
parameters. We developed a simple but effective approach
to substantially improve the reproducibility of genome seg-
mentations between independent runs. First, we randomly
selected K regions of 20 Mb each in the genome and ran
IDEAS in each region independently. Second, we collected
the inferred epigenetic states from the K runs and hierarchi-
cally clustered the states based on the means of epigenetic
marks in each state. Third, we identified a largest number G
and cut the hierarchical tree of the epigenetic states into G
or more sub-trees, such that exactly G sub-trees contained
epigenetic states from at least x% of the K runs. Finally, we
generated G consolidated epigenetic states by averaging the
state parameters in each of the G sub-trees. This approach
can be intuitively understood as follows. To identify an un-
known number (G) of states and their parameters from mul-
tiple independent training of IDEAS, if we merged all states
produced by the K runs together by cutting the tree at the
root, we would obtain perfect reproducibility of states be-
tween runs, but with no power; on the other hand, if we
treated each state from all runs as a distinct state by cut-
ting the tree at the leaves, we would have poor reproducibil-
ity between runs and obtain too many states. As we move
down the tree from the root to the leaves, the number of sub-
trees will increase, so that we can find a maximum number

of sub-trees, in G of which we have states clustered together
by their similarity (and hence reproducibility) from at least
x% of the K runs. As we move further down the tree toward
the leaves, the number of sub-trees satisfying this criterion
will decrease, as the total number of sub-trees will increase
and there will be fewer states clustered within each sub-tree.
Using this approach, we can find a maximum number of
states that satisfies the criterion and the states identified by
this procedure are reproducible in the sense that they appear
in at least x% of the K runs.

To further improve the robustness of this procedure, we
determined the number of states (G) using a leave-one-out
experiment, i.e. by leaving the states from each of the K runs
out, respectively. Based on this, we calculated an average
number of G, which is robust to outliers. Given G, we fi-
nally used the full tree on all states from the K runs to obtain
a final set of consolidated states. We note that the full tree
may have more than G sub-trees satisfying the criterion, for
which we simply obtained the results from the first feasible
solution nearest to the root of the tree.

Our approach for generating reproducible states only re-
quires the user to specify one parameter, x% reproducibil-
ity. If x is too small, a large number of less reproducible
epigenetic states may be obtained. If x is too large, a small
number of highly reproducible states may be obtained but
some important states may be missing from this set. Here,
we chose x = 90, i.e. 90% reproducibility. Another parame-
ter that may be determined by the user is K, the number of
independent trainings. Our results showed that this proce-
dure is not sensitive to the choice of K for K ≥ 10 and hence
we used K = 15.

Finally, given the reproducible states identified by the
above procedure, we ran IDEAS to segment the whole
genome of 127 Roadmap Epigenomics cell types using those
state parameters as priors. To improve computational effi-
ciency, we implemented parallelization. For both training
and whole genome segmentation, we ran IDEAS in 20 iter-
ations. We tested a run of IDEAS in 100 iterations as well,
but the results were not substantially better than using 20 it-
erations. That is, our training pipeline not only improved re-
producibility but also enabled shorter runs of IDEAS with-
out sacrificing accuracy.

ChromHMM result

We downloaded the 15-state model by ChromHMM
from the Roadmap Epigenomics project website (http:
//egg2.wustl.edu/roadmap/web portal/chr state learning.
html#core 15state). We mapped the ChromHMM states
to the same set of windows used by IDEAS.

Evaluation method

We performed genome-wide evaluation of the IDEAS pre-
dicted epigenetic states and compared them with the map
published by the Roadmap Epigenomics project calculated
on the same data. The evaluation was based on indepen-
dently generated experimental data on different biologi-
cal features in the genome. These data included data on
gene expression in 56 Roadmap Epigenomics cell types; en-
hancer usage in 808 tissues and cell types; eQTLs in 44 tis-
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sues; sequence scores capturing various functional poten-
tials of the genome; and chromatin interaction in 17 blood
cell types. A common hypothesis underlying our evaluation
was that if the predicted epigenetic states are more accu-
rate, they should better correlate with the various signals in
these independent experimental datasets, because we expect
that the true epigenetic states are indicative of the genomic
features being tested. We measured accuracy by adjusted
r2 using regression models, which measured linear corre-
lation between two datasets while accounting for the dif-
ferent numbers of epigenetic states. In several experimental
datasets, the tissues and cell types did not match with those
in the Roadmap Epigenomics project and in these cases, we
calculated the adjusted r2 for every pair of cell types be-
tween the two studies. Although mismatch in cell types is
less useful for evaluating accuracy, on average we still expect
that better annotation will lead to better prediction and vice
versa, as epigenetic states are highly correlated across cell
types.

RNA-seq data analysis

For each gene (Gencode.v10 (21)) and each cell type, we cal-
culated the proportions of epigenetic states in the regions
from 110 kb upstream (relative to the strand of the gene)
of the gene’s transcription start site (TSS) to 110 kb down-
stream of the transcription termination site (TTS). We used
weighted averages to calculate proportions of states, where
weights were defined by 36 B-splines using degree 5 at 30
knots evenly spread over a [0,1] interval. The position 110
kb upstream of TSS corresponds to 0, the position of 110
kb downstream of TTS corresponds to 1, and the TSS and
TTS positions correspond to 0.4 and 0.6 in the [0,1] inter-
val, respectively. The positions 10k upstream of TSS were
mapped evenly to the interval [0, 0.4) in log10 scale with re-
spect to k. Similarly, the positions 10k downstream of TTS
were mapped evenly to the interval (0.6,1] with respect to
k. Finally, the positions within a gene were mapped evenly
to the interval [0.4, 0.6] in their original scale. The weighted
state proportions were calculated by using each B-spline as
the weight separately, followed by log(x + 1e-5) transfor-
mation. This resulted in 36 sets of state proportions corre-
sponding to 36 B-splines. We note that each B-spline is a
unimode curve with its mass centered at a unique distance
to gene and the 36 B-splines together cover the entire ge-
nomic interval around the gene. This allows us to not only
evaluate an overall (additive) epigenetic effect on expression
without regard to the number and the heterogeneous loca-
tions of regulatory elements near the gene, but also enables
us to evaluate their distance effects. We downloaded RNA-
seq reads per kilobase per million mapped reads (RPKM)
data in 56 cell types (excluding E000) from the Roadmap
Epigenomics Project (http://www.roadmapproject.org/).

We performed two types of regression analyses: (i) predic-
tion of within-cell type gene expression at all genes; and (ii)
prediction of across-cell type differential expression at each
gene. In both analyses, RPKM values (Y) were used as the
response and the weighted state proportions (X) were used
as predictors. The regression model is in a general form of
Y∼α + βX+ ε. We calculated adjusted r2 by regression to
measure how much RPKM variability is explainable by epi-

genetic states. To predict within-cell type gene expression,
we regressed RPKM of all genes within each cell type on
the corresponding epigenetic states weighted by the 36 B-
splines to calculate the overall predictive power of epige-
netic states on expression. We note that although the state
proportions add up to 1, in log-scale the predictor matrix
is still in full rank in linear space and thus does not have
technical issues in regression. We next regressed RPKM of
all genes on the epigenetic states weighted by each B-spline
separately (20 predictors for IDEAS and 15 predictors for
ChromHMM) to evaluate the predictive power of epige-
netic states at a fixed distance to the gene. To further es-
timate the contribution of each epigenetic state to expres-
sion, we obtained partial r2 values by leaving out each epi-
genetic state one at a time and calculated the ratio between
the partial r2 of each state and the sum of partial r2s of
all states. To predict across-cell type differential gene ex-
pression, we regressed RPKM of each gene in 56 cell types
on the corresponding epigenetic states weighted by each
B-spline separately (20 predictors for IDEAS and 15 pre-
dictors for ChromHMM). The results from individual B-
splines were then combined to obtain an estimated power
curve for predicting differential gene expression as a func-
tion of distance to genes.

GTEx data analysis

We downloaded eQTLs in 44 tissues (v6p) from the GTEx
Portal (http://www.gtexportal.org/home/). Within each tis-
sue, we grouped together eQTLs with P-values < 1e-5 that
were within 50 kb of each other, where overlapping groups
of eQTLs were further merged. We then extended the inter-
val containing each group of eQTLs by 1 kb to each side.
Within each eQTL interval, we calculated a weighted state
proportion, where the weight is given by �i{–log(pi)exp(-
di)} at each position at distance di to the ith eQTL and pi
is the P-value of the ith eQTL. In this way, all epigenetic
states within the eQTL interval are combined, with more
weights given to positions closer to stronger eQTLs. Since
eQTLs are enriched in genic regions, instead of using ran-
dom genomic background, we used the same eQTL interval
as controls by calculating an inversely-weighted state pro-
portion. We finally took log(x + 1e-5) transformation of
the weighted state proportions. Using a logistic regression
model, with the response being a binary variable indicating
eQTL intervals and controls (IeQTL), and the predictor be-
ing the log-transformed state proportions (X) (20 predictors
for IDEAS and 15 predictors for ChromHMM), we evalu-
ated adjusted r2 for each pair of GTEx tissue and Roadmap
Epigenomics cell type, respectively. The logistic regression
model is given by logit(IeQTL) = α + βX+ ε.

FANTOM5 data analysis

We downloaded the CAGE-based enhancer data (phase
1 and 2 combined) from the FANTOM5 website (http://
fantom.gsc.riken.jp/5/data/). There are two types of data:
the tag counts of expression data normalized as tags per
million mapped reads (TPM) and the binary peaks re-
ported by the FANTOM5 project at a significance thresh-
old determined by contrasting with control data, both
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of which are available in 808 human CAGE libraries.
In the regression analysis, we used the log-transformed
state proportions in each enhancer region as the predic-
tors, where the enhancer region may or may not be ac-
tive in the specific CAGE library. We used the TPM val-
ues in each CAGE library as the response variable. To
estimate an overall proportion of epigenetic states in all
CAGE peaks, we calculated the state proportions within
each pair of CAGE library and Roadmap Epigenomics
cell type and averaged the proportions across all pairs.
Finally, we downloaded the pre-calculated enhancer–TSS
association data from http://enhancer.binf.ku.dk/presets/
enhancer tss associations.bed and calculated the state pro-
portions within each region of the enhancer–TSS pairs.

Sequence-based score analysis

We downloaded the Genomic Evolutionary Rate Profil-
ing (GERP) elements in hg19 from http://mendel.stanford.
edu/SidowLab/downloads/gerp/. We downloaded the com-
bined annotation dependent depletion (CADD) score pre-
calculated on 1000 Genome phase 3 variants from http://
cadd.gs.washington.edu/download/ and used the scaled ver-
sion (PHRED-like score). We downloaded the fitness conse-
quence of functional annotation (fitCons) score integrated
across the three ENCODE cell types from http://compgen.
cshl.edu/fitCons/0downloads/tracks/current/i6/scores/, and
we used the highly significant scores (P < 0.003) as de-
fined by the authors. We obtained the contextual analy-
sis of transcription factor occupancy (CATO) scores pre-
calculated at 13.4 million single nucleotide polymorphisms
(SNPs) overlapping with DNase Hypersensitivity Site from
http://www.uwencode.org/proj/CATO/.

We mapped all scores to the 200-bp windows used in
this study and obtained the maximum score (0 if not avail-
able) within each window. In the regression analysis, we
used log((x + 1e-4)/(1 − x + 1e-4)) transformed scores as
the response and we used the epigenetic states in the corre-
sponding windows as dummy predictors. We further shifted
the window positions (up to 5 kb) to evaluate the location
precision of epigenetic states. Except for FitCons, all other
scores were calculated without using cell-type-specific infor-
mation. We thus performed regression analysis in each of
the 127 Roadmap cell types separately. We further calcu-
lated the enrichment of epigenetic states relative to genome
average at genomic positions whose scores fall within an in-
terval and we defined the score intervals by partitioning the
scores into equal-sized bins (i.e. each bin has a fixed number
of instances of scores).

Promoter-capture HiC data analysis

We obtained the promoter-interacting regions (PIR)
(CHiCAGO interaction scores >5 by the authors) identi-
fied in 17 IHEC blood cell types from Data S1 in Javierre
et al. (20). In the regression analysis, we used log(x + 1)
transformed CHiCAGO interaction scores of all PIRs as
the response. We calculated the state proportion in both
bait and target regions in each PIR, followed by log(x +
1e-5) transformation, as the predictor. Let PIR denote the
log transformed CHiCAGO score, Xbait denote the log

transformed state proportions in bait (20 predictors for
IDEAS and 15 predictors for ChromHMM) and Xtarget
denote the log transformed state proportions in target. We
compared an additive regression model, PIR = α + β1Xbait
+ β2Xtarget + ε, with an interaction model, PIR = α +
β1Xbait + β2Xtarget + γ Xbait * Xtarget + ε. In the interaction
model, the state proportions between the bait and the
target regions were multiplied between all state pairs. The
regression analysis was done in each pair of IHEC blood
cell type and Roadmap Epigenomics cell type.

Blood cell type-specificity was calculated based on
RPKM values from the Roadmap Epigenomics RNA-
seq data. The Roadmap Epigenomics blood cell types
included E037 BLD.CD4.MPC, E038 BLD.CD4.NPC,
E047 BLD.CD8.NPC, E050 BLD.MOB.CD34.PC.F, E062
BLD.PER.MONUC.PC and E123 BLD.K562.CNCR. At
each gene, we calculated the mean and the variance of
RPKM in the blood cell types, as well as in non-blood cell
types, in log(x + 1) scale. The variance for each gene in each
cell type group (blood and non-blood) was calculated by
first applying a loess regression to fit the variance on the
mean. The variance for each gene was then taken as the
value on the loess curve or 0.25, whichever is greater, at
the mean RPKM of the gene, within blood and non-blood
cell types, respectively. We finally calculated a Z-score as the
two-sample t-statistic between the blood and non-blood cell
types for each gene.

Statistical significance

We used a paired t-test to evaluate the statistical signif-
icance of the adjusted r2 difference between IDEAS and
ChromHMM. We first calculated the difference in adjusted
r2 values between IDEAS and ChromHMM within each
Roadmap Epigenomics cell type. We then performed a one-
sample t-test on the difference to obtain a P-value. We used
a paired t-test because there are potential cell type-specific
effects on the predictions. We finally adjusted for multiple
testing by the Bonferroni method.

RESULTS

Joint segmentation in 127 epigenomes

We ran IDEAS on the uniformly processed P-value tracks
of five histone marks (H3K4me3, H3K4me1, H3K36me3,
H3K27me3 and H3K9me3) commonly available in the 127
epigenomes. The program automatically identified 20 epi-
genetic states from the quantitative signals. Comparing
the mean signals of epigenetic states between the 20-state
model from IDEAS and 15-state model from ChromHMM,
many chromatin states were commonly identified with sim-
ilar proportions in the genome, including active transcrip-
tion start sites (TssA), enhancers (Enh), bivalent TSS (Tss-
Biv) and bivalent enhancers (Enh Biv), heterochromatin
(Het), repressed polycomb (ReprPC) and quiescent regions
(Quies) (Figure 1A). We adopted the mnemonics used by
the Roadmap Epigenomics Consortium on the 15-state
model to assign labels to our states; a brief interpretation
of the mnemonics assignment is given in Supplementary Ta-
ble S1. In addition, IDEAS captured some novel patterns in
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Figure 1. Inferred chromatin states in 127 cell types. (A) Mean epigenetic signal in the IDEAS inferred states (red labeled) and the ChromHMM inferred
states (black labeled in brackets). Color key for each state is shown under the heatmap. Percentage of each state in the genome is shown in parenthesis.
IDEAS states that do not have a one-to-one mapping with ChromHMM’s states are marked by asterisk. (B) Reproducibility of segmentation by IDEAS be-
tween three independent runs using the original program (blue) and the proposed training pipeline (yellow). Each box shows the agreement of segmentation
between two runs, measured by adjusted rand index between the inferred chromatin states within matched cell types. Adjusted rand index is a standardized
statistics of similarity between two clustering results, which corrects for chance and accounts for different numbers of clusters. (C) Segmentation example
by IDEAS and ChromHMM in 127 cell types at genes CIITA and CLEC16A. Blowups highlight some differences between the two maps. Color keys of
chromatin states are defined in (A).
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the quantitative signals of chromatin marks and their com-
binations, as observed in several novel states demonstrating
a combination of signatures for enhancers, heterochromatin
and repressive marks.

While we do not know if these computationally predicted
de novo states denote unique biological functions, they
were consistently recaptured in different runs of IDEAS.
Here, we introduce a novel training pipeline of IDEAS
that guarantees the generation of reproducible chromatin
states. Briefly, we first performed mini-batch training of the
IDEAS model to generate a collection of states. We then
used these states to evaluate reproducibility and consolidate
the similar states into a set of reproducible states. This sim-
ple pipeline empirically generated highly reproducible re-
sults between independent runs (Figure 1B) and hence the
novel states we identified in this study are largely robust.

By visualizing our 20-state model in the UCSC genome
browser and comparing with the Roadmap Epigenomics
15-state model, we observed an overall agreement between
the two maps. As expected, we also observed some substan-
tial differences. For example, at genes CIITA and CLEC16A
(Figure 1C), our annotation is more consistent across cell
types, and at most positions, the state boundaries are bet-
ter aligned across cell types than those from ChromHMM.
On the other hand, there are notable differences in state
assignment between the two methods for enhancer, TSS
and transcription states. For instance, ChromHMM had
many more TSS states (red) assigned to positions away from
known TSS than did IDEAS. ChromHMM annotated tran-
scription states (green) in liver, pancreas, lung and spleen
both within gene CIITA and its upstream non-coding re-
gions. In contrast, IDEAS only annotated transcription
states and enhancer states with transcription marks in lung
and spleen within the CIITA, whereas liver and pancreas
only had transcription-related states assigned toward the
TTS of CIITA. This greater cell type-specificity in expres-
sion inferred by IDEAS was confirmed by examining inde-
pendent gene expression data from both Roadmap Epige-
nomics and GTEx, as both showed that CIITA is expressed
in lung and spleen but not in liver and pancreas.

Prediction of expression

We used RNA-seq data from Roadmap Epigenomics in 56
cell types to evaluate the accuracy of the predicted chro-
matin states by IDEAS. We hypothesize that better corre-
lation between the inferred chromatin states and the RNA-
seq data implies better accuracy. We used a functional re-
gression model (22) to include all chromatin states within
±110 kb of each gene as predictors, where we assumed
that the state’s effects on expression could be modeled as
a smooth curve with respect to their distances to genes.
Whereas the states obtained by both methods are highly
predictive of gene expression, IDEAS had consistently and
significantly greater power in all cell types (Bonferroni ad-
justed P-value 4.3e-6 by paired t-test) (Figure 2A). Fur-
ther investigation of the contribution of each state to ex-
pression, as a function of distance to genes, showed that
the main difference between the two methods for predict-
ing expression occurred near the TTSs of genes (Figure
2B). As expected, we observed predominant contributions

from promoter-like states (TssA, TssAFlnk) near the TSS of
genes and transcription states (Tx, TxWk) throughout (Fig-
ure 2B), to gene expression. We observed stronger contribu-
tions of several enhancer-related states inferred by IDEAS,
specifically genic enhancers (EnhG) within gene bodies and
other enhancer states (Enh, EnhBiv) before TSS and after
TTS. The state effects on expression were uniformly positive
or negative at all distances to genes for both methods, but
the effect sizes were different (Supplementary Figure S1).

Orthogonal to predicting within cell-type expression, we
also compared the two methods for predicting differential
expression across cell types. Within each group of genes
stratified by the levels of differential expression, IDEAS
consistently outperformed ChromHMM in this prediction
(Figure 2C). We observed three peaks of adjusted r2 values,
within genes near, 50 kb upstream and 50 kb downstream
of TTS. The strongest peak is near TSS, which is likely due
to promoters and enhancers near genes. The two peaks at a
distance of 50 kb from the genes are much smaller in mag-
nitudes, which could be either due to statistical artifacts, or
perhaps in part reflecting regulatory activities in neighbor-
ing genes.

Prediction of validated enhancers

We next used the inferred chromatin states to predict exper-
imentally validated enhancers. Although both IDEAS and
ChromHMM explicitly predicted enhancer states, the state
mnemonics were manually assigned and thus are subject to
assignment bias. Instead, we calculated the correlation be-
tween the chromatin states and the FANTOM5 enhancer
usage data by linear regression. The FANTOM5 project
used enhancer RNA data derived from 808 CAGE libraries
(normal tissues, cell types and cancer cell lines) to estimate
enhancer usage in each cell type. Since the CAGE libraries
do not match with the Roadmap Epigenomics cell types,
we calculated the correlation between every pair of CAGE
library and Roadmap Epigenomics cell type. As shown in
Figure 3A, IDEAS states are significantly better correlated
with the enhancer usage data than ChromHMM states. In
particular, IDEAS significantly outperforms ChromHMM
for predicting enhancers in 799 out of 808 CAGE libraries,
with an average increase in adjusted r2 by 25%. Further in-
vestigation of the relative predictive power of all pairs of
CAGE libraries and Roadmap Epigenomics cell types re-
vealed cell type-specific predictions (Figure 3B), including
blood-, brain- and epithelial-specific enhancers. These re-
sults confirmed that the inferred chromatin states are pre-
dictive of cell type-specific enhancers.

The state compositions within significant FANTOM5 en-
hancer peaks (averaged over 808 CAGE libraries and 127
Roadmap epigenomes) were notably different between the
two methods (Figure 3C). About 68% of enhancer peak re-
gions were annotated as either enhancer or promoter like
states by IDEAS, whereas this number drops to 54% when
using ChromHMM. Notably, a larger proportion of en-
hancer states with transcription marks (EnhG, EnhGA)
were annotated within enhancer peak regions by IDEAS
than by ChromHMM, whereas the latter method assigns
a larger proportion of weak transcription state (TxWk)
within enhancer peak regions. The Tx- states have a strong
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Figure 2. Evaluation by gene expression. (A) Within-cell type prediction of gene expression in 56 cell types. Each point shows one cell type, where color
keys for cell type lineages are adopted from the Roadmap Epigenomics consortium (Supplementary Data). (B) State contribution to gene expression as a
function of distance to genes. The panel on the top shows the overall predictive power of states on expression. The two barplots in the middle show the
individual state contribution to expression. Color keys of states are shown at the bottom. (C) Prediction of differential gene expression across 56 cell types.
Genes are stratified by their expression standard deviation across cell types. Each panel shows the adjusted r2 for predicting differential expression by states
as a function of distance to gene (x-axis, in the same scale as in (B) and the two vertical dashed lines in each panel show the transcription start site (TSS)
and transcription termination site (TTS) locations, respectively). Red: IDEAS; green: ChromHMM.

signal for H3K36me3, a mark associated with transcrip-
tional elongation after initiation. It is not expected that this
histone modification would mark short nascent transcripts,
such as the enhancer RNAs used by FANTOM5 to pre-
dict enhancers. Thus, the fact that IDEAS finds fewer Tx-
states in FANTOM5 enhancer regions is an indication of
improved performance. Further calculation of -fold enrich-
ments confirmed that the inferred enhancer states are sim-
ilarly enriched in the enhancer regions and the Tx- states
are not enriched, by both methods. Taken together, these
results suggest that IDEAS segmentation is more predictive
of FANTOM5 enhancers than ChromHMM.

In addition, the FANTOM5 consortium has reported
∼56 000 significant enhancer–TSS pairs showing correlated
regulatory activities across the CAGE libraries. We inves-
tigated whether the states and their pairing between the
enhancer–TSS regions are enriched. As shown in Figure 3D,
the states generated by both methods showed a substantial
enrichment of enhancer and TSS states in the enhancer–
TSS regions. However, IDEAS annotated more enhancer
states in the enhancer side of the paired regions and more

TSS states in the TSS side of the paired regions. By ac-
counting for the marginal enrichment of states within the
enhancer–TSS regions, we further identified several pair-
wise combinations of chromatin states that are either en-
riched or depleted between the enhancer–TSS regions (Sup-
plementary Figure S2). Consistent with our expectation, en-
hancer states were frequently paired with TSS states, re-
pressed states tended to pair with low or repressed states
and the enrichment pattern of state pairs depended on
gene expression (Supplementary Figure S3). These results
demonstrate that the pairing of the chromatin states be-
tween two remote regions is predictive of their potential
trans-regulatory activities.

Prediction of eQTLs

Several studies have shown that regulatory elements are sig-
nificantly enriched in eQTLs (23,24), and thus correlation
between the inferred chromatin states and eQTLs can be
used to assess accuracy. We analyzed the significant eQTLs
(nominal P-value < 1e-5) in 44 tissues from the GTEx
project. Due to linkage disequilibrium, most of the eQTLs
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Figure 3. Evaluation by FANTOM5 enhancers. (A) Correlation between states- and tissue-specific enhancers in 808 FANTOM5 cap-analysis gene expres-
sion (CAGE) libraries. Dark lines show the mean adjusted r2 over 127 cell types and the shaded areas show the 95% confidence intervals of mean. The
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are likely non-causal but linked to causal SNP. We therefore
clustered nearby eQTLs together to form an eQTL interval
and we calculated weighted state proportions within each
eQTL interval. The weights were positively correlated with
the significance of eQTLs and negatively correlated with the
distance to eQTLs in the interval. We also calculated in-
versely weighted state proportions within the same eQTL
intervals as controls. In this way, the genomic background
was the same between cases and controls. We used logistic
regression to predict eQTL intervals against controls in each
GTEx tissue by each Roadmap Epigenomics cell type. Our
assumption was that more accurately inferred chromatin
states can better separate eQTLs from controls. The states
by both methods were predictive of eQTLs, but IDEAS sig-
nificantly outperforms ChromHMM in all tissues (Bonfer-
roni adjusted P-values 2.7e-61 ∼ 1.1e-15 by paired t-test)
(Figure 4A). Enrichment analysis of chromatin states in
eQTL intervals showed that the Tss-related states are the
most strongly enriched states in eQTL intervals, followed by
transcription and enhancer-like states, whereas heterochro-
matin states and repressed polycomb states are the most de-
pleted states in eQTL intervals (Figure 4B).

Correlation with sequence-based scores

DNA sequences are predictive of regulatory functions and
several sequence-based scores for predicting the function
of nucleotides or SNPs have been computed in the hu-
man genome. This provides another way to evaluate the
accuracy of chromatin states; specifically, the regulatory
potential predicted by DNA sequences should be concor-
dant with that predicted by epigenetic markers. Since nei-
ther IDEAS nor ChromHMM used DNA sequences as in-
put, we expect that stronger correlation between sequence-
based scores and the inferred states will suggest better accu-
racy. We included four different scores in this study: (i) the
GERP score (16), which identifies functionally constrained
elements in multiple alignments; (ii) the CADD score (17),
which predicts deleterious effects of DNA mutations; (iii)
the fitness consequence of functional annotation (fitCons)
score (18), which integrates functional assays with selective
pressure to score the fraction of genomic positions evincing
a pattern of functional assays that are under selection and
(iv) the CATO score (19), which quantifies effects of point
mutations on transcription factor binding in vivo. Using
these pre-computed scores for genome-wide mutations, we
could assess how useful chromatin states would be for pre-
dicting and interpreting functional impacts of non-coding
variants. The scores could also be used to evaluate the posi-
tional precision of our predictions, as the scores are calcu-

lated at a higher resolution than our 200-bp windows. Using
linear regression on the log-transformed scores, the states
generated by IDEAS were significantly (P-value 3.9e-48 ∼
4.4e-82 by paired t-test) and substantially more predictive
of all scores than the ChromHMM states were (Figure 5A).
As we shifted the scores away from their original positions,
the predictive power of both methods dropped quickly. The
results thereby indicate that the IDEAS segmentation not
only is more powerful for predicting functional potential
of DNA sequences, but also has better positional precision
than ChromHMM.

The enrichment patterns of chromatin states with respect
to the scores are similar between the two methods (Sup-
plementary Figure S4) but are different for different scores
(Figure 5B). Overall, the active states such as enhancer-
, Tss- and transcription-like states are enriched in higher
scores, and the inactive states such as heterochromatin and
quiescent states are enriched in lower scores. Interestingly,
the repressed polycomb states (ReprPC, ReprPCWk) are
slightly but consistently enriched in higher scores. This is
likely due to the fact that we calculated state enrichment
using all cell types combined and the repressed polycomb
states co-occur with the bivalent TSS and enhancer states
(TssBiv, EnhBiv) at the same positions but in different cell
types.

Correlation with promoter-capture HiC

Chromatin looping is an important mechanism to enable
distal regulation. We thus hypothesized that chromatin
states were correlated with chromatin interaction and that
better correlation implies more accurate prediction of states.
We used the promoter-capture HiC data in 17 blood cell
types from the IHEC project (20) to evaluate the ability of
our states to predict chromatin interactions. We used the
inferred chromatin states within both bait and target re-
gions to predict the CHiCAGO (Capture HiC Analysis of
Genomic Organisation) interaction scores (25). As we have
shown in the FANTOM5 data, the state co-occurrence be-
tween two interacting regions was not random. This is also
true in the promoter-capture HiC data. Indeed, we observed
that using a pairwise interaction model between the states
in bait and target regions consistently outperformed an ad-
ditive model (Supplementary Figure S5). We thus used the
interaction model to predict CHiCAGO interaction scores
in each pair of IHEC blood cell type and Roadmap Epige-
nomics cell type. As shown in Figure 6A, IDEAS uniformly
better predicted the CHiCAGO scores and as expected, the
Roadmap Epigenomics blood cell types (e.g. Blood and T
cells, hematopoietic stem cells (HSC) and B cells) had the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
insert shows the paired t-test statistics for the mean difference of adjusted r2 between IDEAS and ChromHMM in 808 CAGE libraries, where the dashed
line marks the Bonferroni adjusted significance level of 0.05. (B) Z-scores of adjusted r2 for predicting enhancers in 808 CAGE libraries (rows) by each
Roadmap Epigenomics cell types (columns), calculated by removing row and column means and dividing an overall standard deviation. Library-specific
predictions (similar cell types between Roadmap and FANTOM5) are highlighted in boxes, such as blood cell types (the two boxes on the left), brain tissues
(the box in the middle) and epithelial cells (the box on the right). Color keys of the Roadmap Epigenomics cell types are the same as those defined in Figure
2A. Color keys for FANTOM5 libraries are manually assigned to match with those used by the Roadmap Epigenomics project. (C) State composition
and enrichment within significant FANTOM5 enhancer peaks, averaged over 127 cell types and 808 CAGE libraries. The fold enrichment measures the
frequency with which the specified segmentation state is found in the FANTOM5 enhancer peaks relative to the genome-wide state distribution. Color
keys of states are the same as those given in Figure 2B. (D) Distribution of enhancer and TSS-related states in the FANTOM5 significant enhancer–TSS
interacting regions.
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Figure 4. Evaluation by expression quantitative trait loci (eQTL). (A) Adjusted r2 for predicting eQTL intervals in each of the 44 Genotype-Tissue Ex-
pression (GTEx) tissues. Each box shows the adjusted r2 values by regressing eQTL intervals on the states in each of the 127 cell types individually. Paired
t-test statistics on the difference of adjusted r2 between IDEAS and ChromHMM in 44 GTEx tissues are shown at the upper right corner, where the dashed
line marks the threshold for Bonferroni adjusted significance of 0.05. (B) Enrichment of states in eQTL intervals relative to local controls by IDEAS and
ChromHMM. Each box shows the enrichment of states in 127 cell types. Color keys of states are the same as those given in Figure 2B.

best predictive power. In addition, within each IHEC blood
cell type, the states by IDEAS in the Blood and T cells and
HSC and B cells were significantly better correlated with
chromatin interaction than the states by ChromHMM (Fig-
ure 6B).

Finally, we used RNA-seq data to evaluate whether the
promoter-captured regions carry functional elements that
affect gene expression. The states calculated by both meth-
ods within individual promoter-captured regions were in
general correlated with the expression of the bait gene (Fig-
ure 6C), but the correlation was not strong. After adding
the states in all promoter-captured regions together for the
same bait, we observed a much stronger correlation with ex-
pression. In addition, the states of both methods at the bait
regions were also strongly correlated with the expression of
the bait gene. In all cases, the correlation was stronger for
genes up- or downregulated specifically in the blood cell

types. Comparing between the two methods, the IDEAS
states have an overall greater correlation with expression
than the ChromHMM states.

DISCUSSION

In this study, we present a new functional annotation map
produced using information from 127 human cell types by
our IDEAS approach. Using various independent experi-
mental results, we show that the epigenetic states inferred
by both IDEAS and ChromHMM are useful for predicting
functional and structural information of the genome. We
further demonstrate that the IDEAS map significantly and
uniformly improves on the ChromHMM map in its abil-
ity to be used for predicting regulatory events both within
and across cell types. At each genomic position, the IDEAS
map shows notable consistency in state assignment across
cell types. Simultaneously, it better captures epigenetic vari-
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Figure 5. Evaluation by sequence-based scores. (A) Correlation with sequence-based scores by IDEAS (red) and ChromHMM (green). The positions of
scores are shifted to show the position precision of annotations. (B) Cumulative enrichment of states by IDEAS within bins of scores, where the bins are
determined by the ranks of score such that there are equal number of scores within each bin. The enrichment is relative to genome-wide average. State
enrichment (positive values) and depletion (negative values) are stacked and shown in log2 scale. Color keys of states are the same as those given in Figure
2B.

ation across cell types as reflected by correlation with differ-
ential gene expression.

In this study, we tackled the important issue of state re-
producibility in genome segmentation. States inferred by
the same method under the same parameter settings must
agree between independent runs in order to be useful. This
is, however, a notoriously challenging problem, as no global
optimum is guaranteed. Our experience with running ex-
isting genome segmentation tools showed that the inferred
states can vary substantially between runs simply due to
chance. We therefore developed an intuitive, simple and

effective approach to substantially improve state repro-
ducibility in our maps. The new map presented here thus
offers the community an alternative, reliable and more ac-
curate annotation of functional elements in a wealth of hu-
man cell types.

There are some limitations in this study. First, we only
used five histone marks that are commonly available in the
127 cell types to produce the map. The marks are ideal
for detecting basic functional elements such as enhancers,
promoters and repressive states, but they do not provide
sufficient power to capture more specific regulatory ele-
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Figure 6. Evaluation by chromatin interaction. (A) Correlation between CHiCAGO interaction scores in 17 IHEC blood cell types and the inferred
chromatin states in each of the 127 cell types. Adjusted r2 is calculated from a regression model including interaction terms of states between bait and
target regions. Hollow bars show the mean adjusted r2 by ChromHMM states, averaged over 127 cell types and solid bars show the improvement in mean
adjusted r2 by IDEAS states. Color keys of cell types are the same as those given in Figure 2A, where green and dark green indicates Blood and T cells
and HSC and B cell types, respectively. (B) Detailed comparison in each IHEC blood cell type using the states of Blood and T cells and HSC and B cell
types. Bonferroni adjusted significance by paired t-test is indicated under each IHEC cell type. Red: IDEAS; green: ChromHMM. (C) Prediction of bait
gene expression by the states in bait and target regions as a function of expression specificity for blood cell types relative to other cell types in Roadmap
Epigenomics (Z-scores, x-axis). Dashed lines: mean adjusted r2 of bait gene expression explained by the states in individual target regions. Solid lines:
mean adjusted r2 of bait gene expression explained by the sum of states in all target regions captured by the same bait. Dotted lines: mean adjusted r2 of
bait gene expression explained by the states in the same bait regions. Shaded area shows the 95% confidence intervals of means.

ments, such as insulators or transcription factor occupancy.
The Roadmap Epigenomics project has released additional
functional maps using more chromatin marks either in a
subset of cell types or in all cell types after data imputa-
tion. We have yet to include those additional marks in this
study. Second, the models we used in this study to correlate
states with independent validation data are mostly linear.
While we could have used non-linear models, linear mod-
els offer simple interpretation of the results and do not suf-
fer as much from over-fitting the data. Third, interpreta-
tion of the inferred chromatin states, assignment of state
mnemonics and visualization of genome segmentation re-
main challenging problems, particularly when many states
are produced. Here, we adopted the mnemonics used in
the Roadmap Epigenomics project, which may be subject
to errors and bias. It will be desirable to further develop
automatic-learning algorithms for de novo interpretation
and visualization of the genome segmentation results.

Beyond generating functional maps, our 2D segmenta-
tion method enables new applications. Our method can be
extended to leverage information from existing annotations
in published cell types to detect functional elements in new

cell types and experimental conditions. Our modeling of
data dependence is unsupervised and local in the genome,
such that information from distant and closely related cell
types can both be integrated to make new predictions with-
out cell type matching. Our joint model can be further ex-
tended to accommodate missing chromatin marks. New cell
types with just one or two marks can still be annotated and
benefit from the full spectrum of information provided by
all chromatin marks that exist in the published results. This
strategy does not require data imputation and thus avoids
imputation bias and will save substantially on computing
time and data storage. Functional maps produced in the
genome of one species may also be applied to other species’
conserved DNA sequences. Datasets generated in different
species may be integrated and compared via our 2D mod-
eling. Toward this end, we have applied the map in the hu-
man genome to the mouse genome in mm10 (http://bx.psu.
edu/~yuzhang/Roadmap ideas/mm10 hub.txt). This will be
helpful in downstream analysis, because functional ele-
ments are largely conserved between human and mouse at
the conserved DNA sequences (26). Finally, our method
can in general be used to annotate any entities or subjects in

http://bx.psu.edu/~yuzhang/Roadmap_ideas/mm10_hub.txt
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the broader scope of gene regulation studies, such as differ-
ent cell types, experimental conditions, individuals, species
or timepoints.

AVAILABILITY

The IDEAS software used in this study is available at
http://stat.psu.edu/~yuzhang/IDEAS/, which includes the
pipeline for generating reproducible segmentation. The R
scripts used to produce the evaluation results in this study
and the color code of cell type lineages, are available as Sup-
plementary Data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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