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RNA methylation is considered a significant epigenetic modification, a process that does
not alter gene sequence but may play a necessary role in multiple biological processes,
such as gene expression, genome editing, and cellular differentiation. With advances in
RNA detection, various forms of RNA methylation can be found, including N6-
methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C).
Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety
of human diseases, particularly hepatocellular carcinoma. We will summarize essential
regulators of RNAmethylation and biological functions of thesemodifications in coding and
noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A,
m5C, and m1A associated with hepatocellular carcinoma and hope this review might
provide therapeutic potent of RNA methylation to clinical research.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a common global disease. It has a poor prognosis and has
become the third cause of cancer death (Couri and Pillai, 2019; Hua et al., 2019; Huang et al., 2021).
Although medical technology has significantly improved in recent years, 5-years survival rates of
patients remain low (8.5%) (Cai et al., 2019; Zhou et al., 2020). Mortality due to HCC remains high
for several reasons. On one hand, clinical symptoms in the early stage are generally displayed
uncharacteristic and the lack of effective diagnostic biomarkers, so many patients are easily
misdiagnosed. On the other hand, as a result of affluent blood supply in the liver, tumor cells
frequently proliferate at a growing rate and distant metastasis tends to appear in the early stage of
cancer. Therefore, HCC seriously threatens human health and well-being and is seen as a tough
challenge in clinical study. Emerging research is exploring the understanding of pathogenesis in
HCC to prevent the dilemma of poor prognosis. Previous reports have showed that the leading
pathogenic factor is chronic infection with virus, such as hepatitis B virus and hepatitis C virus
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(Koshiol et al., 2021; Teng et al., 2021). Nevertheless, other
molecular mechanisms involved in proliferation, invasion,
metastasis, and chemoresistance in HCC remain unknown.
Consequently, it is crucial to further investigate the complex
mechanisms of tumorigenesis and tumor progression to
discover novel makers and identify therapeutic targets.

RNA methylation is commonly regarded as
posttranscriptional modification with multiple forms (Chen
et al., 2019; Kagra et al., 2021). Although epigenetic
modification of RNA has been documented over several
decades (Cohn, 1960; Dubin and Taylor, 1975; Perry et al.,
1975), our understanding of its biological functions is still
limited. Recent research demonstrates that RNA modification
may impact RNA metabolism, splicing, stability, and translation
(Xue et al., 2020; Nombela et al., 2021), which distinctly influence
gene expression. Thus, the effect of RNAmethylation is gradually
attracting broad attention in a broad array of specialties. For
example, numerous investigations verified that m5C methylation
in the 3′-UTR of mRNA increases translation efficiency
(Schumann et al., 2020). Occurrence of RNA methylation
ordinarily requires the participation of a large number of
specific proteins called RNA-modifying proteins (RMPs),
containing “writers,” “erasers,” and “readers” (Frye et al., 2018;
Patil et al., 2018). “Writers” are a group of enzymes that catalyze
methylation. In contrast, “erasers” are able to remove the decorate
of methylation in RNA (Torres and Fujimori, 2015; Shi et al.,
2019). “Readers” are a variety of proteins that recognize
methylation sites catalyzed by “writers” and bind these sites to
form complexes to affect the functions of RNA (Pozner et al.,
2018; Grimanelli and Ingouff, 2020; Guo et al., 2020).

A prior survey revealed that abnormal regulation of these
RMPs would give rise to incidence of various malignant tumors
(Pan et al., 2018; Lan Q. et al., 2019; Zhuang et al., 2020; Li Y.
et al., 2021). For instance, catalysis of m6A modification is
mediated by methyltransferase-like 3 (METTL3), which is
expressed at a high level in colon cancer. Previous evidence
showed that METTL3 promoted miRNA-1246 upregulation
and induced metastasis in colon cancer (Peng et al., 2019). In
bladder cancer, YBX1 obviously emerged the appearance of
overexpression than normal tissue. YBX1 is an RMP “reader”
in m5A modification, and might advance the expression of the
multidrug resistance-1 (MDR-1) gene to decrease sensitivity to
chemotherapy drugs (Yamashita et al., 2017). Additionally,
downregulation of DKC1 was found in breast cancer and gave
rise to the impairment result of hTR stabilization (Montanaro
et al., 2006). Similarly, overexpression of ALKBH3, methylating
affluent m1Amodification, ordinarily predicts a dismal prognosis
in Hodgkin lymphoma (Yin et al., 2020). Other reports showed
that PTR can lengthen survival time during stage M1a of non-
small cell lung carcinoma (Li et al., 2019; Li H. et al., 2020), and
was expected to be incorporated into promising therapeutic
strategies for diagnosing patients with evolving ipsilateral
pleural dissemination. Various experiments were testified that
regulators of RNA methylation, like m6A, m5C, and m1A,
participated in essential biological process for diverse cancers
(Li C.-L. et al., 2020). However, discussions that effect of these
regulatory factors in RNA methylation related to pathogenesis of

HCC, are constricted in clinical study. Accordingly, in this review
we illustrate functional consequences of m6A, m5C, and m1A in
diverse RNAs. Cooperatively, we focus on targeting RMPs for
clinical treatment in HCC in anticipation of providing patients
with more promising overall survival and brighter futures.

RNA METHYLATION

Methylation refers to epigenetic transformations to influence
gene expression but does not alter gene sequence, which can
be mainly found in DNA, RNA, and protein (Wang X. et al., 2020;
Hop et al., 2020; Anton and Roberts, 2021). As approaches to
detect RNA modifications improve, RNA methylation began to
broadly draw public notice. Multiple functional effects of
modification of RNAs were further discussed, and the role of
RNA methylation correlative with a variety of cancers also
gradually become clearer. We briefly generalize these forms of
methylating modification as follows.

N6-Methyladenosine
m6A is methylated adenosine at the nitrogen-6 position and
was identified as a posttranscriptional modification in 1974
(Desrosiers et al., 1974). Previous survey has considered that
m6A modifications are one of the most extensive methods of
RNA methylation in mammals. It was estimated that m6A
methylation was approximately present on a quarter of
mRNAs (Meyer and Jaffrey, 2017; Chen et al., 2018). As
approaches of detecting m6A is distinctly preferred, the
utilization of ultraviolet crosslinking step realized the new
outcome, identifying m6A positions at single-nucleotide
resolution. Specific locations of m6A modification are
detected, such as 3′ untranslated regions (3′-UTRs)
(Dominguez et al., 2018), long internal exons, intergenic
regions, introns, and 5’ UTRs. METTL3 was first identified
in the occurrence of m6A modification. METTL3 functions as
the regulator mediating the export of mRNA by interacting
with Per2 and Arntl. In addition, METTL3 can recruit
eukaryotic translation initiation factor eIF3 to directly
regulate translation flexibly (Lin et al., 2016; Choe et al.,
2018). The other “writers” of m6A include METTL14,
Wilms tumor 1-associated protein (WTAP), and RNA-
binding motif protein 15 (RBM15) (Liu et al., 2014; Wen
et al., 2018). Accordingly, “readers” of m6A are primarily
proteins in the YT521-B homology (YTH) domain family
and include YTHDF1, YTHDF2, YTHDF3, YTHDC1, and
YTHDC2. Accumulating evidence demonstrates that
promotion of translation can positively modulate the effect
of YTHDF1. YTHDF3 accelerates protein synthesis by binding
YTHDF1 to mediate ribosomal proteins (Shi H. et al., 2017; Li
et al., 2017). In m6A methylation, fat mass and obesity-
associated protein (FTO) and alkB homologue 5 (ALKBH5)
are considered “erasers”. FTO binds to introns of nascent
mRNA molecules to modulate the biological process of
splicing in mRNA (Bartosovic et al., 2017). Similarly,
multiple reports also confirmed that ALKBH5 is a pivotal
factor to participate in mRNA splicing (Zheng et al., 2013).
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5-Methylcytosine
m5C is defined as the accession of methyl group on the fifth
carbon atom of cytosine (Motorin et al., 2010; Huang et al., 2019).
Abundant m5C occurs in a variety of RNAs, including mRNA,
tRNA, rRNA, viral RNA, vault RNA, and lncRNA. In humans,
m5C is introduced by NSUN family members and DNA
methyltransferase 2 (DNMT2). NSUN2 methylates primarily
tRNA and mRNA. The defined regions of tRNA are the
variable loop and leucine at the wobble position (Hussain
et al., 2013; Khoddami and Cairns, 2013). In mRNA, the
specific sites of catalysis by NSUN2 are the region near the
start codon and the noncoding 3 UTR. Distribution of
NSUN2 is unique, because of converting altogether with
different alteration of cell division cycle. NSUN2 can be found
at the nucleolus in G1 phase, whereas it is located in the region
between the nucleolus and nucleoplasm in S phrase. NSUN2
starts to gradually appear in the cytoplasm in G2 and M phase
(Motorin et al., 2010). It was reported that centrioles could be
detected abundant depositions of NSUN2 during M phrase.
Previous study declared that NSUN2 played an indispensable
role in phosphorylation, protein synthesis, cell cycle progression,
and epidermal differentiation and tumorigenesis. NSUN4 and
NSUN5 primarily catalyze methylation modification in 25s
rRNA. NSUN4 protein is frequently found in mitochondria,
but NSUN5 is distributed in the nucleolus. Overexpression of
NSUN5 promotes synthesis of survival protein to enhance the
response to oxidative stress (Schosserer et al., 2015). Most
NSUN1 factors are detected in the nucleolus, although a few
are detected in the cytoplasm. NSUN1 was found to participate in
malignant invasion, cell cycle progression, and formation of
chromatin (Sharma et al., 2013). NSUN3 and DNMT2
methylate tRNA and are distributed in mitochondria and
cytoplasm, respectively. Numerous experiments indicated that
DNMT2 has a critical influence in tumorigenesis, protein
synthesis, cell differentiation, and HIV-1 RNA replication
(Dev et al., 2017). The “erasers” of m5C methylation are
primarily TET family members. TET1 catalyzes the removal of
methylation in coding and non-coding RNAs. In addition, several
reports suggested ALYREF recognizes and binds the methyl
group catalyzed by NSUN2 in mRNA. ALYREF and NSUN2
together promote the transport of mRNA and increase the
efficiency of nuclear-cytoplasmic shuttling (Shi M. et al.,
2017). Upregulated YBX1 was observed in the cytoplasm and
exerted a positive effect on mRNA stabilization, embryogenesis,
and tumorigenesis (Yang et al., 2019).

N1-Methyladenosine
m1A ismethylation at theN1 position of adenosine and is capable of
altering RNA secondary structure. A previous study identified m1A
in tRNA, rRNA, mRNA, and mitochondrial RNA. Affluent m1A
modification is observed in tRNA and rRNA, while the level of m1A
remains low in mRNA. The occurrence of m1A methylation in
mRNA is represents a six-fold reduction compared to that of m6A
methylation (Dominissini et al., 2016); however, m1A can be found
in the coding sequence (CDS), 5′-UTR (Li et al., 2016), and 3′-
UTRof mRNA. Emerging survey suggested method of m1A
modification involving in protein synthesis, which improved the

efficiency of translation by inhibiting binding of the releasing factor.
In contrast, when m1A methylation occurs in the region of mRNA
CDS, translation is suppressed to some degree. TRMT10C and
TRMT61B serve as “writers” to participating in catalyzing m1A
at position 9 and 58 of tRNA (Chujo and Suzuki, 2012). ALKBH3
and ALKBH1 not only demethylate the reversible modification of
m6A, but are found to remove m1A (Liu F. et al., 2016). ALKBH3
can function as a repair enzyme to restore N-methylated bases.
Recent investigations clarified that demethylation by ALKBH3
might improve the efficiency of translation. Therefore, silencing
of ALKBH3 may have the effect of impeding protein synthesis by
enhancing the level of m1A in tRNA. Moreover, ALKBH3 was
regarded as prostate cancer antigen-1 (PCA-1) (Shimada et al., 2009;
Yamato et al., 2012). Upregulation of ALKBH3 was observed in a
variety of cancers, which stimulated angiogenesis and inhibited
apoptosis in prostate cancer and pancreatic cancer patients. The
present study suggested the function of m1A58 may result in
decreased translation initiation. When ALKBH1 demethylates
m1A, the elongation phase of translation might be impacted
through reduced tRNA usage in protein synthesis (Haag et al.,
2016; Kawarada et al., 2017).

FUNCTIONAL CONSEQUENCES OF RNA
METHYLATION

RNA methylation takes place in various RNAs, which give rise to
different outcomes to influence RNA function (Gilbert et al.,
2016). The detailed functional consequences associated with
modifications m6A, m5C, and m1A in RNAs are presented in
Table 1.

Role of m6A in RNA
The stability of mRNA is mainly regulated by modification m6A.
YTHDF2, an m6A “reader”, might recruit mRNA into processing
bodies and participate in the process of degradation to stabilize
mRNA (Wang et al., 2014; Huang et al., 2018). Numerous studies
reported that YTHDC1 is involved in triggering the SRSF3
pathway to mediate dynamic splicing of precursor mRNA
(Molinie et al., 2016). Furthermore, YTHDC1 promotes the
export of mRNA (Roundtree et al., 2017; Lesbirel et al., 2018),
recruits nuclear transport receptors, and interacts with TREX
mRNA adducts. In contrast, depletion of ALKBH5 accelerates
export of mRNA (Zheng et al., 2013). Nuclear export is
indispensable for translation of mRNA to protein. Several
reports corroborated that METTL3 and METTL14 catalyze the
modification m6A in the region of the 3′-UTR in p21 mRNA and
positively increase the efficiency of translation. The recruitment
of DCGR8 is mediated by METTL14 in pri-miRNA to encode
and regulate the level of miR-126a (Wang et al., 2014). METTL14
is also important for transcriptional elongation of chromatin,
which brings about the outcome of recruiting the microprocessor
complex (Nombela et al., 2021).

Role of m5C in RNA
In mRNA, modification m5C can have a significant impact on
metabolism. ALYREF was considered to enhance the efficiency of
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nuclear-cytoplasmic export by forming a complex with mRNA.
Previous experiments confirmed that NSUN2 meditates mRNA
transport, which facilitates ALYREF binding to mRNA (Yang
et al., 2017). Therefore, m5C affects protein synthesis to a degree.
For instance, modification m5C appears in CDS in mRNA, which
impairs translation and reduces its efficiency. On the contrary,
when m5C is located at the 3′-UTR, the productivity of protein
synthesis is distinctly improved. Diverse locations of m5C might
lead to different functional results. Moreover, the modification
m5C might maintain the stability of mRNA and facilitate plant
development. NSUN2 might mediate root-development–related
transcripts to suppress root decay. The present survey found that
NSUN2 and DNMT2 mediate m5C methylation and commonly
play an essential role in stabilizing tRNA. When cells were
exposed to hydrogen peroxide, NSUN2 generated survival
proteins to respond to the stress (Blanco et al., 2014; David
et al., 2017). DNMT maintains the stability of tRNA Asp-GTC
and tRNA Gly-GCC and increases the efficiency of polypeptide
synthesis (Tuorto et al., 2015). Several evidences suggest NSUN5
modulates rRNA stability under conditions of oxidative stress
(Schosserer et al., 2016). NSUN4 impacts regulation of the last
step of ribosomal biogenesis (Metodiev et al., 2014).

Role of m1A in RNA
Modification m1A is found predominantly in structured regions
of the 5′-UTR and near alternative start codons, indicating that
m1A is significantly involved in stabilizing mRNA structure. The
accomplishment of m1Amethylation also exerts an indispensable
effect on translation efficiency. For instance, m1A in the CDS
region of mRNA has been considered to block the productivity of
protein synthesis because it disrupts Watson-Crick base pairing.
The presence of m1A might be vital to regulate the structural
thermostability of tRNAs. It was reported that m1A together with
other post-transcriptional modifications is capable of enhancing
the melting temperature of tRNAs. ALKBH1 deficiency improves
the cellular level of tRNA-Met to maintain the functional effect of
m1A, stabilizing tRNA-Met (Liu F. et al., 2016). On the contrary,
deficiency of enzymes catalyzing the achievement of m1A, have
the possibility of induce thermosensitivity (Oerum et al., 2017).
Moreover, m1A in tRNA-Lys was found to play an important role
in reverse transcription fidelity and participate in the process of
HIV replication.

MECHANISM OF RNA METHYLATION
IN HCC

Recently emerging evidence has demonstrated that RNA
methylation plays a dramatic role in tumorigenesis, invasion,
and migration of HCC and elucidated complex mechanisms. We
present the evidence for regulators and the effect of m6A, m5C,
and m1A related to initiation and progression of HCC in Table 2.

m6A Links to HCC
Numerous studies have recently probed the relationships between
m6A methylation and HCC pathogenesis. Wang et al.
demonstrated that circ-KIAA1429 is expressed at a higher
level in HCC cells than in normal cells, and the patients
generally have shorter survival times (Wang M. et al., 2020).
In addition, upregulated circ-KIAA1429 can be found in node
metastasis status. These results indicate the fact is that KIAA1429
serves as an oncogene to further HCC invasion and migration by
altering the methylation of m6A in ID2 and GATA3mRNA (Lan
T. et al., 2019; Cheng et al., 2019). Previous evidence revealed that
Zeb1 was considered to be the downstream target of KIAA1429.
Meanwhile, YTHDF3 is able to increase the stability of Zeb1
mRNA, which participates in HCC tumorigenesis. The lifetime of
Zeb1 gain improved via the effect of m6Amodification (WangM.
et al., 2020). It was reported that circ-KIAA1429 contributed to
the growing of invasion and metastasis process in HCC together
with the mechanism of m6A-YTHDF3-Zeb1. Chen et al.
demonstrated that elevated expression of ALKBH5 can be seen
as a critical suppressor to impede proliferation and invasion of
HCC by regulating the downstream target LYPD1. In HCC,
LYPD1 is considered the oncogene that triggers the
physiological process. Silencing of LYPD1 impairs growth and
invasion of HCC. ALKBH5 is capable of modulating m6A
modification and is involved in the IGF2BP1-associated
pattern to regulate target LYPD1 (Chen et al., 2020).

Previous survey unraveled HBXIP and METTL3 maintained
high level in HCC patients. HBXIP could stimulate the
occurrence of HCC cell malignant behaviors through the
upregulation of METTL3 (Yang et al., 2021), catalyzing m6A
methylation. METTL3 boosts HCC progression via post-
transcriptional silencing of SOCS2 (Chen et al., 2018), whereas
METTL3 knockdown reversed these effects by reducing m6A

TABLE 1 | The modification results of m6A, m5C, and m1A methylation in various RNA.

RNA type Regulators Modification type Functional consequences PMID

mRNA YTHDF2 m6A Enhance stability 29,476,152
mRNA YTHDC1 m6A Promote export 30,218,090
mRNA ALKBH5 m6A Promote export 23,177,736
mRNA METTL3 m6A Elevate translational efficiency 27,117,702
mRNA METTL14 m6A Elevate translational efficiency 24,284,625
mRNA ALYREF m5C Promote export 28,418,038
mRNA NSUN2 m5C Promote transport and affect protein synthesis (promote, and inhibit) 25,063,673
tRNA NSUN2 m5C Enhance stability and promote survival proteins synthesis to repose stress 28,062,751
rRNA NSUN5 m5C Enhance stability 27,167,997
mRNA — m1A Enhance stability and affect translation efficiency (promote, and inhibit) 28,230,814
tRNA — m1A Promote HIV replication 29,908,293
tRNA ALKBH1 m1A Enhance stability 27,984,735
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methylation. In contrast, METTL14 has been found to block the
metastasis program of HCC, which decreases the stability of
EGFR mRNA via posttranscriptional modification of m6A in
Figure 1. EGFR was reported to play a critical role in the
pathogenesis of various malignant tumors, such as in breast,

pancreatic, prostate, colorectal, and liver cancer. In HCC, EGFR
has been confirmed to stimulate the PI3K-AKT signaling
pathway and foster the invasive and metastatic capacity of
cells. These evidences suggested that EGFR might have the
potential to become the promising target for treatment of

TABLE 2 | The association of m6A, m5C, and m1A methylation in HCC.

Modification
type

Regulators Expression Clinical characters Function in
HCC

Target PMID

m6A ALKBH5 Down Favorable prognosis Inhibit proliferation and invasion LYPD1 32,772,918
m6A METTL3 Up Poor prognosis Promote vascular invasion, and metastasis HBXIP 33,305,825
m6A YTHDF3 Up Poor prognosis promote invasion, migration, and EMT Zeb1 32,653,519
m6A METTL14 Down Favorable prognosis Inhibit invasion, migration, and EMT EGFR/

PI3K/Akt
33,380,825

m6A YTHDF1 Up Poor prognosis Promote proliferation, migration, and invasion PI3K/Akt/
mTOR

34,088,349

m6A FTO Up Poor prognosis Promote initiation, metastasis, and
chemoresistance

AMD1 33,783,988

m5C NSUN2 Up Poor prognosis and advanced TNM
stage

Promote metastasis H19 32,978,516

m5C NSUN4 Up Poor prognosis — — 32,269,723
m5C ALYREF Up Poor prognosis — — 32,944,246
m1A TRMT6 Up Poor prognosis — PI3K/Akt 32,934,298

FIGURE 1 | The molecular mechanism of METTL14 in HCC. METTL14, a “reader” of m6A methylation, can have a vital impact on inhibiting migration of HCC cells
and is regarded as regulator to reduce EGFR mRNA stability through the effect of modification of m6A.
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HCC. Consequently, upregulated METTL14 effectively prevents
migration of HCC cells, and is associated with positive prognostic
outcome in a majority of patients. The suppressive property of
METTL14 was revealed in a number of experiments (Shi Y. et al.,
2020). Li et al. displayed that YTHDF1, a “reader” of m6A
methylation, is upregulated in patients related to HCC and
ordinarily is associated with dismal prognosis. HIF-1α
interacts with YTHDF1 promoters, and upregulation of
YTHDF1 was observed in a HIF-1α dependent manner. HIF-
1α has been widely identified to trigger the transcriptional target
gene to respond to hypoxic stress. HIF-1α avoids enzymatic
degradation during hypoxic stress (Li Q. et al., 2021).
YTHDF1 expression, mediated by HIF-1α, supports that
hypoxic stress might lead to the alteration of cancer
epigenetics, such as the translation of m6A-modified
oncogenic mRNAs, to facilitate HCC malignancy. A recent
study corroborated that AMD1 expression is the independent
factor for overall survival (OS) and disease-free survival (DFS) in
HCC (Bian et al., 2021). Several investigations found high
expression of AMD1 in HCC tissue and showed that AMD1
regulates the expression of NANOG, SOX2, and KLF4, which are
involved in HCC initiation, metastasis, and chemoresistance.
Nevertheless, knockdown of AMD1 might increase the
sensitivity of HCC cells to sorafenib. Previous report

illustrated that FTO can promote the transcription of gene
through the effect of removing numerous m6A modifications
in the positions of 5′-UTR and CDs. Upregulated FTO could
restrain the effect of down-expressed AMD1.While FTO presents
the condition of silencing, the effect of AMD1 overexpression will
be reversed. As a result, FTO severe as the downstream target of
AMD1, and avails the therapeutic advancement for HCC.

m5C Related to HCC
A recent survey demonstrated that m5C modification has effects
on distribution in HCC tissues and normal tissues. Compared
with adjacent non-tumor tissue, high expression of m5C was
shown in HCC tissue, which indicated that m5C methylation is
closely associated with HCC pathogenesis (He et al., 2020a).
NSUN2, a methyltransferase mediating the modification m5C,
was confirmed to be upregulated in a variety of tumors in a
previous study. Sun et al. showed that NSUN2 is clearly
upregulated in HCC tissue have obvious upregulation of
NSUN2 than normal tissues, and NSUN2 is capable of
promoting the appearance of phenomenon about poor
differentiation in HCC. Consistently, NSUN2 knockdown
blocked the proliferation, invasion, and migration of HCC
cells. Furthermore, NSUN2 have the property of stabilizing
H19 by methylating H19 lncRNA. Overexpression of H19 is

FIGURE 2 | The role of NSUN2 in HCC. NSUN2 catalyzes m5Cmethylation in H19 lncRNA and enhances the malignant potential of HCC by promoting the binding
of G3BP1 and H19.
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similarly found in HCC tissue with poor prognosis, and H19 is
commonly seen as an important feature of poor differentiation in
malignancy. Depletion of NSUN2 might give rise to cell
inhibition in the G2 phase and prevent the increasing growth
of HepG2 cells. Accumulating evidence demonstrates that the
distribution of NSUN2 is variable during cell division; expression
level is highest in S phase and lowest in G1. These results
demonstrate that dynamic expression of NSUN2 has a
profound impact on modulating cell division. NSUN2
catalyzed m5C methylation of H19 lncRNA to significantly
affect malignant development of HCC. Consequently, H19 has
the possibility of becoming a novel target of NSUN2. It was
demonstrated that NSUN2 regulates m5C methylation of H19
lncRNA via interaction of Ras-GTPase–activating protein
SH3 domain-binding protein 1 (G3BP1). G3BP1, a known
oncoprotein that is generally expressed at a high level in
multiple cancers that participate in diverse carcinogenesis-
associated pathways containing Ras/MAPK (Liu S.-Y. et al.,
2016), Wnt/β-catenin, PI3K/AKT (Zhang et al., 2019), and
NF-κB/Her2 signaling pathways. These pathways could be
regulated by NSUN2 through involvement in G3BP1 binding
to H19 lncRNA (Sun et al., 2020), playing an essential role in
malignant progression of HCC. In addition, G3BP1 also binds
MYC mRNA to advance the effect of degradation (Tourrière
et al., 2001). H19 lncRNA promotes tumor proliferation by
binding G3BP1 and competing with MYC mRNA. When H19
lncRNA is poorly methylated, binding to G3BP1 will be further
attenuated. Interestingly, MYC was found to accelerate H19
lncRNA transcription (Barsyte-Lovejoy et al., 2006). Therefore,
the MYC-NSUN2-H19-G3BP1 axis was revealed to be associated
with malignant behaviors of HCC (Figure 2). Moreover, the
methylation modification could bring the decline number of
circRNA, resulting in lack of suppression from crucial proteins
and inducing the initiation of tumors (He et al., 2020b).

m1A Associated With HCC
As a burgeoning discussion hotspot, research on m1A
modification links to multiple cancers is also gradually
becoming the basis of extensive concern. The understanding of
m1A function related to HCC still requires further exploration.
Shi et al. illustrated that TP53 mutations were primarily
correlated with regulators mediating m1A methylation (Shi Q.
et al., 2020). TP53 is a suppressor of various malignancies.
However, the occurrence of TP53 mutations rapidly promotes
tumorigenesis; for example, TP53 mutations serve as prognostic
indicators of short survival time in HCC. Additionally, m1A-
associated regulators expression actively has the impact on
promoting progression of high TNM stage, including
expression of RMT6, TRMT61A, TRMT10C, and TRMT6. It
was reported YTHDF1 is valuable in predicting prognosis due to
improving TRMT6 expression. Mounting survey unravel that
m1A methylation might be regulated by the PI3K/Akt signaling
pathway in HCC. The PI3K/Akt pathway plays a key role in
proliferation and inhibition of apoptosis in HCC (Fu et al., 2019;

Zheng et al., 2019). Nevertheless, how the PI3K/Akt pathway is
involved in m1A and induces the development of HCC still needs
further study. These findings suggest m1A has the potential to
become a valuable biomarker in HCC.

CONCLUSION

RNA methylation has emerged as the post-transcriptional
modification to significantly affect a variety of genes
expression processes, which not only has a broad influence on
RNA metabolism but alters the function of various RNAs.
Numerous proteins regulate methylation, demethylation, and
specifically bind to diverse RNAs to promote or inhibit the
biological functions, and are referred to, respectively, as
“writers,” “erasers,” and “readers”. Prior research found
aberrant expression of these regulators might lead to
increasing disease. We summarize the distribution and
functional consequences of m6A, m5C, and m1A
modifications to further understand the role of RNA
methylation and corresponding physiological mechanisms in
HCC. For instance, overexpression of NSUN2 could promote
malignant behaviors of HCC. METTL14, the “writer” of m6A,
was proved to prevent metastasis of HCC. In this review, we
found that RNA methylation may potentially serve as a novel
marker and make valuable contributions to diagnosis and
treatment in HCC, providing a promising future for a great
many patients. Simultaneously, many studies are necessary to
further explore and testify for clinical application.
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