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In EEG studies, one of the most common ways to detect a weak periodic signal in

the steady-state visual evoked potential (SSVEP) is spectral evaluation, a process that

detects peaks of power present at notable temporal frequencies. However, the presence

of noise decreases the signal-to-noise ratio (SNR), which in turn lowers the probability of

successful detection of these spectral peaks. In this paper, using a single EEG channel,

we compare the detection performance of four different metrics to analyse the SSVEP:

two metrics that use spectral power density, and two other metrics that use phase

coherency. We employ these metrics find weak signals with a known temporal frequency

hidden in the SSVEP, using both simulation and real data from a stereoscopic apparent

depth movement perception task. We demonstrate that out of these metrics, the phase

coherency analysis is the most sensitive way to find weak signals in the SSVEP, provided

that the phase information of the stimulus eliciting the SSVEP is preserved.

Keywords: EEG, frequency tagging, SSVEP, phase coherency, stereograms, disparity

1. INTRODUCTION

While acquiring an EEG signal is easy, the difficulty of recording decent quality signal cannot be
overstated: since the data acquisition equipment is working with very small voltages, it is very
susceptible to various external (electrical grid, smartphones, etc.) and internal (eye blinks, vascular
pulse, etc.) noise sources, which are often several times more powerful than the signal intended
to be measured. Unfortunately, various signal processing techniques can clean up an existing
recording only to a certain degree, which may not be sufficient in applications where the signals are
exceptionally weak. Despite these problems, EEG remains popular since it has excellent temporal
resolution and it is non-invasive: in the clinic it may be used to detect anomalous oscillations
in patients with epilepsy or migraine (Camfield et al., 1978; Adeli et al., 2003), it may be used
for characterizing a transient or steady-state response in the brain (Ciganek, 1961; Norcia et al.,
2015), or may be used in Brain-Computer Interface (BCI) applications (Bayliss and Ballard, 2000;
Nakanishi et al., 2018).

One of the oldest applications for EEG is to investigate the response of a brain when exposed to
a transient stimulus. In the 1960s, this was done with presenting flashes of light, and the EEG signal
was recorded by taking a photograph of the EEG trace displayed on an oscilloscope (Ciganek, 1961).

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.600543
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.600543&domain=pdf&date_stamp=2021-02-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zd8@nyu.edu
https://doi.org/10.3389/fnins.2021.600543
https://www.frontiersin.org/articles/10.3389/fnins.2021.600543/full


Derzsi Detecting Weak Signals With Coherency

Since the recorded signals were very noisy, the experiment was
repeated several dozen times, and the corresponding films were
overlaid on each other. After this operation, the magnitude of the
noise is reduced, and a clearer transient response, what we now
call a flash-evoked potential or Event-Related Potential (ERP)
is revealed. The modern-day equivalent of overlaying exposed
and developed films on top of each other is averaging the EEG
signal in the time domain: after capturing the response for a
flash is presented in each trial, it is possible align each trial’s
recording to the time of the flash, and averaging the signals to
reveal the ERP. This time-averaged signal then can be evaluated
against a comparison standard (signal absent, healthy controls,
etc.) later-on in the analysis.

Based on the same principle, it is possible to not only
investigate the transient response, but the steady-state response
of the brain as well: a more sophisticated example is the
“frequency tagging” technique, where instead of a single transient
stimulus, a continuous periodic stimulus is used. Using the
flash example above mentioned earlier, this would mean using
flickering light instead of presenting a single flash. Provided
that the light conditions are carefully chosen (Herrmann, 2001;
Norcia et al., 2015), and are kept constant throughout the trials,
the stimulus elicits a detectable neural response, and if there
are enough trials recorded, the amplitude of the frequency or
frequencies corresponding to the stimulus will elevated in the
spectrum of the SSVEP. The elevated frequencies may not always
be the same as the temporal frequency of the stimulus (Hébert-
Lalonde et al., 2014): it may be a harmonic (Norcia and Tyler,
1984) or if several temporal frequencies are used at the same time,
they may produce intermodulational products (Baitch and Levi,
1988): the sum and difference of these frequencies, or an arbitrary
combination of these. SSVEPs may be studied with techniques
other than EEG as well, such asMagnetoencephalography (MEG)
(Srinivasan et al., 1999) or functional Magnetic Resonance
Imaging (fMRI) (Boremanse et al., 2013) as well.

To analyse SSVEPs, the signal is converted between the
time and frequency domains with a time-frequency transform,
which is typically the Fourier transform (Norcia et al., 2015),
or alternatively, the continuous wavelet transform (Daubechies,
1990; Adeli et al., 2003; Wu and Yao, 2007) may be used. There is
a free and open-source software implementation of both of these,
and they are part of a larger package called EEGLAB (Delorme
and Makeig, 2004).

With the use of the Fourier transform, if Sk(t) is the EEG
trace recorded at a particular channel on the kth trial where the
stimulus was presented, we can define the Fourier component
Vk(f ) at the frequency f as:

Vk(f ) =
1

Tw

∫ Tw

0
e2π iftSk(t)dt (1)

where Tw is the temporal window which contains the SSVEP and
is being used for the Fourier-transform. It is worth noting that
Equation (1) is for analogue signals that are continuous in time.
In modern computer systems, the signals are sampled at a rate
that is at least twice more than the maximum intended temporal
frequency to be recorded. In EEG, this sampling frequency ranges

between 250 Hz and 1 kHz. On the sampled signal, which is
now discrete in time, it is still possible to execute the Fourier
transform, which is typically done by the Fast Fourier Transform
(FFT) algorithm (Cooley and Turkey, 1965). The FFT produces
a number of components (or “bins”), that are corresponding to
discrete temporal frequencies. They contain the spectral power
and phase of a small band of these frequencies determined by
the ratio of the sampling frequency and the number of samples
in the FFT window. To find which component corresponds
to a particular temporal frequency in the analogue signal, the
following equation may be used:

nc =
fx

[

(fs/2)/(nw/2)
] + 1; where nC ∈ N (2)

fx is the temporal frequency in question, fs is the frequency the
EEG signal was sampled at, nw is the FFT window size, which is
the number of samples the FFT algorithm worked with. The +1
term is there to add the offset for the component corresponding
to the temporal frequency of 0 Hz, which is also called the “Direct
Current” (DC) component. As the result of the FFT is discrete in
frequency, nc can only be a natural number and the equation’s
result should be rounded to the nearest integer. Once the correct
Fourier component is identified using this equation, we can use
the same signal processing steps as we would for an analogue
signal. The Fourier-component is a complex number, and has an
amplitude and phase component.

We assume that the SSVEP in the EEG recording in the
presence of a periodic stimulus is a linear combination of
the “signal” that we want to measure (the neural response to
the periodic stimulus), and the “noise” which represents the
measurement of every other source contained in the EEG trace.
If both the signal and the noise are small enough to not cause
non-linear distortion, we can express them as:

Vk =
[

(A0 + αk)exp(iφ0 + iζk)
]

+
[

(N0 + βk)exp(iξk)
]

(3)

where the first term represents the Fourier component of the
signal which is the response to the periodic stimulus; and the
second term is the response due to the noise in the EEG trace.
A0 andN0 are the mean values of the signal and noise amplitudes,
respectively across k trials. αk and βk are trial-dependent. φ0 is the
phase of the signal that is elicited by the periodic stimulus at the
frequency f . Without loss of generality, we have defined the mean
phase in the noise as being zero: < ζk >=< ξk >= 0, where <>

denotes the average over the k trials. For clarity we have dropped
the (f ) throughout, but both terms in this equation depend on
the frequency f . It is applicable for both analog signals by using
f directly, and for digital signals by finding the corresponding
Fourier component using Equation (2). Note that the amplitude
noise components (αk; βk) and the phase noise components (ζk;
ξk) are orthogonal. Their effect on the signal Vk is illustrated
in Figure 1.

1.1. Different Methods for Estimating the
SNR
From Equation (3), we have seen that even a single Fourier-
component is a consist of several noise terms, and unfortunately
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we do not have access to the particular values of these noise
terms following a time-frequency transform. Since the definition
of noise is very broad and effectively covers any signal or
phenomena that is unwanted, different estimation methods exist
in the literature. Provided that we have an understanding of the
neural mechanism we are investigating, we can select a smaller
band in the spectrum. For example, in a study where we have a
good understanding of the neural mechanism tested, it is possible
to anticipate which temporal frequencies will be present in the
SSVEP. In studies where FFT is used to analyse the spectrum
of the SSVEP, an acceptable approach is to take the neighboring
10–20 Fourier components surrounding the temporal frequency
of interest, and calculate its average value. Then, the SNR may
be estimated by calculating the ratio of the values of the of the
Fourier component of interest, and the noise level. This was done
in several studies (Srinivasan et al., 1999; Cottereau et al., 2011;
Alonso-Prieto et al., 2013; Boremanse et al., 2013), and with this
method, it is impossible to detect signals that are below the noise.

This method works best if the spectrum used for calculating
the noise levels are clear enough, and we know precisely which
temporal frequency we are expecting the signal to be present in
the SSVEP. Unfortunately, in some cases we may not have such
luxury: the noise may not be pure white or pink noise, or perhaps
other oscillations may be present in the SSVEP that may not be
related to the stimulus at all. In these cases, this SNR estimation
method may not be reliable.

Perhaps a better approach is to go back to the original
definition: noise is every signal we don’t want in our recording.
The signal we are investigating is weak, and is buried in the
EEG trace in the time domain. If the signal was strong, we
would be able to find it just by looking at the EEG signal itself
in the time domain. In the time domain, the SNR can simply
be calculated by the taking the ratio of the peak levels, in a
similar way how the A0 and N0 terms play a role in Equation
(3). Since the SSVEPs are usually invisible in a single trial, we
can assume that they are several times below the noise level. A
few example representations of SNRs in the time domain are
shown in Figure 2. Every subsequent signal processing step, such
as filtering or averaging across trials is considered to be part of
the detection process. Estimating in the SNR in the frequency
domain is not as straightforward as in the time domain, since the
noise power depends on the spectral bandwidth, and if discrete
time signals are used, the values of the Fourier components will
additionally depend on the ratio of the FFT window length and
sampling frequency as well.

1.2. Detecting Weak Signals in the SSVEP
It is possible to express various metrics that can be used to
evaluate the SSVEP and detect the signal.

The spectrum is calculated by taking the scalar means of
the amplitudes of the Fourier components for each temporal
frequency, across all presentations of the stimulus. Formula A
is used in Table 1 to calculate this metric. Since calculating the
spectrum ignores the phase angles altogether, only the amplitude
terms A0 and αk, N0 and βk play a role in Equation (3). This
is visually represented in the left plot of Figure 3: our signal is
successfully found, when the 95% of k vectors are within the
shaded annulus. The width of the annulus is proportional to the

FIGURE 1 | If we take a complex Fourier component Vk (f ) from a trial, it can

be represented as a vector. As this is an EEG signal, it will be naturally noisy.

The noise is a vectorial sum of two orthogonal components: the amplitude

noise which only affects the length of the vector, and phase noise, which

changes the phase angle of the vector, without affecting its amplitude.

trial-dependent terms αk and βk in Equation (3). This formula
represents the oldest and most straightforward approach. It is
used in many studies, such as Norcia et al. (2015), Hébert-
Lalonde et al. (2014), Scherbaum et al. (2011), Gruss et al. (2012),
Kamphuisen et al. (2008), Kamphuisen et al. (2008), Skrandies
and Jedynak (1999), Baitch and Levi (1988), Alonso-Prieto et al.
(2013), Panicker et al. (2011), Rossion et al. (2012), Wu and Yao
(2007), Mun et al. (2012), Gruss et al. (2012), and Rideaux et al.
(2020). The spectrum can also be used as a control measure or
comparison standard, to demonstrate some other technique. A
few examples are: Hakvoort (2001) and Lin et al. (2006), where
they used spectrum to demonstrate the superiority of multi-
channel correlation analysis; and Nakanishi et al. (2018), where
they used spectrum to demonstrate the effectiveness of extracting
the task-related independent components of the EEG signal.

An other possibility is to take the vector average to calculate
the complex spectrum, i.e., to average the complex Fourier
components and then calculate the magnitude at the last step to
get the result. This is done with formula B in Table 1. Assuming
each trial consists of an integer number of stimulus cycles, this is
equivalent to joining all the trials together in the time domain and
computing the Fourier amplitude of the result. This metric takes
both the amplitude and the phase (A0 and N0; φ0 in Equation
3, respectively) into account. In the middle plot of Figure 3,
the complex spectrum is represented as a partial annulus: not
only the 95% of the k vectors have to have a certain length to
detect our signal, but they have to be grouped around a certain
phase angle φ0. Similarly to the spectrum, the width of the
partial annulus is dependent on the amplitude components, but
additionally the angle of the partial annulus is proportional to the
trial-dependent variations (ζk and ξk terms in Equation 3) of the
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FIGURE 2 | A demonstration of noisy signals in the time domain. From the top to the bottom, the signal is faded a hundred times.

phase components. With additional filtering in the time domain,
formula B was used in the spectral analysis part of Norcia and
Tyler (1984). While, Boremanse et al. (2013) used formula A in
their study, they averaged the signal in the time domain first,
thus effectively used formula B. Except for the missing final step,
Cottereau et al. (2011) used formula B, but they kept the final
result in vectorial form. Johansson and Jakobsson (2000) purely
used formula B.

The third and fourth metrics are the two interpretations of
the inter-trial phase coherency (ITC, or simply “Coherency”),
and both formula C and D in Table 1 can be used to calculate
it. The coherency metric gets rid of the amplitude component

along with its per-trial variations by normalizing the length of
the Vk vectors in Equation (3) to unity across trials, and only
the phase information is preserved. From Equation (3), only the
trial-dependent phase angle terms ζk and ξk play a role in this
metric. As the φ0 term represents signal propagation time which
is treated as a constant, this term is ignored. Thismetric is visually
represented in the right plot of Figure 3: as all the vectors are now
the same length, successful detection of the signal only occurs
when 95% of the k trials are within the highlighted part of the
circle. The subtle difference between formula C and formula D
is when the averaging was done: in formula C, the averaging was
done as the first step for the vector mean and the second step for
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the scalar mean. This formula is used by Norcia and Tyler (1984),
and they derived it from first principles. Formula D, on the other
hand, executes the averaging at the very last step. This formula
is used in EEGLAB (Delorme and Makeig, 2004), in Mitra and
Pesaran (1999), Kamphuisen et al. (2008), and Derzsi (2017) as
well. The coherency can also be calculated from the variances

of the phases across trials: 1 −
ζk
ξk
, but this is often impractical

because it is computationally more intensive to get the phase
angle variances of Vk when compared to formula C and D.

We are not aware of any studies which compares the
performance of different metrics that can be used for analysing
SSVEPs. Norcia and Tyler argue that the vector mean amplitude
(B) is preferable to the scalar mean (A), “since noise voltage is
proportional to the square root of the bandwidth in Hz” and
so “the resulting improvement in signal-to-noise is equal to
sqrt(n)” (Norcia and Tyler, 1984). One can see from Equation (3)
that if the phase of the original response were entirely random,
i.e., ζk were uniformly distributed between [0◦360◦], the first
complex component would tend to average to zero across many
repetitions, and this metric would asymptote to A0, the mean
amplitude of the signal. However, in general, which metric is best
must depend on the properties of the signal as well as of the noise
and thus is hard to derive a priori. In this paper, we find out which
of these four metrics provide the most reliable results with the
least number of trials to detect weak signals such as the ones used
in frequency tagging studies. We compare the performance of the
four metrics shown in Table 1 using a simulation and the SSVEPs
from a frequency tagging experiment where human subjects
viewed temporally modulated stereoscopic disparity (Norcia and
Tyler, 1984; Derzsi, 2017).

2. METHODS

We created two simulations in Matlab to evaluate our four
metrics in Table 1, and we also replicated Norcia and Tyler’s
single-carrier frequency tagging study (Norcia and Tyler, 1984).

2.1. Simulations
We created two simulations: In the first simulation, we created
two different SNR conditions, for the purpose of finding out how
many trials are required for our fourmetrics to successfully detect
the signal. The second simulation, we approximated how many
trials are needed to reliably detect the signal as a function of
the SNR.

The distributions in both simulations are built up from
three components: white noise (1); an interfering “birdie” signal
(2), which is an 8 Hz sine wave. This signal is unstable, its
frequency and its phase angle are both randomized across trials.
The purpose of the birdie signal is to imitate an independent
separate oscillation in the EEG signal, similarly to alpha waves
for example. In both simulations, we use the four metrics to
find the frequency tagged carrier (3), which is a weak 13 Hz
sine wave, and is always in the same phase across the trials. The
detection criterion is always the same: the Fourier component
belonging to the frequency tagged signal has to be above the noise
threshold, which is the 95th percentile of the distribution created

TABLE 1 | Some metrics that can be extracted from an SSVEP.

Name Formula Used in studies

Spectrum A(f ) = 1
n

∑n
k=1 |Vk (f )| Norcia et al. (2015), Hébert-Lalonde

et al. (2014), Scherbaum et al. (2011),

Gruss et al. (2012), Kamphuisen et al.

(2008), Skrandies and Jedynak (1999),

Baitch and Levi (1988), Hakvoort (2001)

as a control; Lin et al. (2006) as control;

Alonso-Prieto et al. (2013), Panicker

et al. (2011), Rossion et al. (2012), Wu

and Yao (2007), Nakanishi et al. (2018)

as control; Mun et al. (2012), Gruss

et al. (2012), Rideaux et al. (2020), and

many many more...

Complex

spectrum

B(f ) = 1
n

∣

∣

∑n
k=1 Vk (f )

∣

∣ Norcia and Tyler (1984) with additional

filtering in the time-domain; Cottereau

et al. (2011) and they kept the values in

a vectorial form; Boremanse et al.

(2013) used formula A, but they

averaged in the time domain first;

Johansson and Jakobsson (2000)

Coherency 1 C(f ) =
∣

∣

∣

∑n
k=1 Vk (f )

∑n
k=1 |Vk (f )|

∣

∣

∣
Norcia and Tyler (1984)

Coherency 2 D(f ) = 1
n

∣

∣

∣

∑n
k=1

Vk (f )
|Vk (f )|

∣

∣

∣
Mitra and Pesaran (1999), Kamphuisen

et al. (2008), Derzsi (2017), and the

experiment in this paper

Vk (f ) is the input Fourier component recorded by a particular channel at frequency f, in

the kth trial across n trials.

from the birdie signal and the white noise in the frequency
band of 0.1–30 Hz.

2.1.1. First Stimulation: Performance of Metrics for a

Fixed SNR
In the first simulation, the noise had a peak value of 1, the
birdie had the peak value of 8. In the “Strong” condition had
the peak value of the frequency-tagged signal was 0.042, which
corresponds to an SNR of 0.047. The “Weak” condition had a
much smaller frequency-tagged signal, with the peak value of
0.003, which corresponds to an SNR of 0.0003. In each iteration,
the simulation code creates a new data set with an increasing
number of trials, and calculates the probability of the signal
being part of the noise distribution. The signal is deemed to be
successfully detected for each metric when this probability is less
than or below 0.05.

2.1.2. Second Simulation: Number of Trials Required

as a Function of SNR
The second simulation, the noise had a peak value of 0.825,
the birdie had a peak value of 0.175, and the SNR was varied
between 0.1 and 0.00063 in 10 logarithmic steps. The signal
was reliably detected with a metric, when the probability of the
signal’s Fourier component was above the noise distribution, with
a probability of being part of the noise distribution (consisting of
the white noise and the birdie) being<0.05. Since this simulation
involves working with random numbers, the simulation is
executed 20 times and the resulting trial numbers were averaged.
To shorten the execution time, a maximum trial limit of 3,000
was set. If the number of trials exceeded this number without
detecting the signal for a metric, no valid results was returned.
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FIGURE 3 | A visual illustration of how each metric operates, for a single frequency, in a vectorial form. In the left plot, the spectrum (formula A in Table 1) only detects

the signal, when more than 95% of the samples are inside the shaded annulus, implying that this Fourier component’s spectral power is significantly elevated. The

complex spectrum (formula B in Table 1, and in the middle plot) is similar to formula A, but with an added phase criterion: the signal is only detected if 95% of the

samples are inside the partial annulus; the Fourier component not only has to be significantly elevated, but also needs to be in a particular phase angle range as well.

With coherency (right plot, formula C and D in Table 1), the signal only gets detected when 95% of the normalized vector samples are forming a small enough

distribution with respect to the entire circle (orange line with respect to the gray dashed line). It doesn’t matter where they actually are on the circle, as long as their

spread is sufficiently low.

FIGURE 4 | One cheerful participant wearing our 128-channel EGI electrode

cap, sitting in front of the 3D display. The mirror assembly of the Wheatstone

stereoscope is just behind her head.

The Matlab code used to create the simulation results are
included as Supplementary Material to this paper.

2.2. EEG Experiment
2.2.1. Participants and Ethics
As part of a PhD project (Derzsi, 2017), we measured the spatio-
temporal limits of depth perception. As a secondary experiment
in the project which is essentially a replication of Norcia
and Tyler’s study, we collected 537 good trials from the EEG
recordings of 4 participants (adults, 2 males, 2 females, age 23.5
± 3.5 years). The project was approved by the Ethics Committee
of the Faculty of Medical Sciences of Newcastle University.

FIGURE 5 | The stimulus used in our experiment and in Norcia and Tyler’s

experiment: a correlated random-dot stereogram plane that bounced in and

out of the screen plane with positive and negative binocular disparity. Norcia

and Tyler used a modified television set to create anaglyph stereograms, our

experiment used two CRT monitors in a Wheatstone stereoscope arrangement

(Norcia and Tyler, 1984). Copyright 1984, with permission from Elsevier.

2.2.2. Stimulus and Trials
We used two calibrated Dell P992 CRTmonitors in aWheatstone
stereoscope configuration to create our stereoscopic stimulus.
The participant’s head was placed on a chin rest in front of the
mirror, and the displays covered 40 × 40◦ visual angle. The
refresh rate of the monitors was 100 Hz. A photo of the set-up
is shown in Figure 4.

We wrote a stimulus using Psychtoolbox (Pelli, 1997; Kleiner
et al., 2007) which displayed a dynamic random-dot stereogram
(Julesz, 1971), consisting of an equal number of black and white
dots, presented on a 50% gray background. The mean luminance
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of the stimulus was 57.5 cd/m2, and the dot density was 0.06%.
The locations of the dots were updated at every frame (10 ms).

The trials were executed by the participants, and they were
short, between 6 and 8 s. Each trial featured a “dot onset”
preamble of between 1 and 1.5 s where the dots were displayed
with zero disparity. Then once this time had elapsed, the
applied binocular disparity (“disparity onset”) alternated between
±0.05◦, at a rate of 2.1 Hz, or 48 frames, as depicted in Figure 5.
This alternation continued for a random time between 5 and
6 s. The EEG traces were then temporally aligned such that
the onset of the disparity alternation occurred at t = 0 as per
Figure 6 corresponded.

2.2.3. EEG Recordings and Preprocessing
We used Electrical Geodesics’ (“EGI,” Eugene, Oregon, USA)
128 channel HydroCel Geodesic Sensor Net (GSN) system to
record our EEG data. The electrode cap is connected to the
participant using silver chloride electrodes, with sponges soaked
in an electrolyte, which is made of saline solution with baby
shampoo mixed in. For each channel, the impedances were kept
below 50 k�. The signal was sampled at 1 kHz, and the “disparity
onset” event was presented as a TTL signal that was directly
coupled from the CRT monitor using a photodiode and a peak
detector circuit.

In Net Station (EGI’s proprietary EEG software) we filtered
the continuous recordings between 0.1 and 70 Hz, and a narrow
band-stop (notch) filter was also in place to reduce the effect of
the 50Hzmains hum. The recordings then were segmented to the
“disparity onset” event within the trials, and further processing
was done in Matlab. Trials containing cardiovascular artifacts, or
eye blinks and other muscle movements were rejected. If a trial
hadmore than 10% noisy channels that showed signs of electrode
detachment, or the drying of electrolyte for example in the EEG
signal, it was also rejected. For further analysis, we only used a
single channel (no. 72 of the GSN), which was located just above
the inion.

2.2.4. Analysis
We analyzed the trials using our own code in Matlab, and
some analysis was done using EEGLAB (Delorme and Makeig,
2004). We analyzed the simulation results and the EEG data the
same way, with the exception that we investigated only the first
harmonic of tagged frequency in the simulation.

In the spectral analysis, the neural response to the stimulus
is detected by identifying a peak at the known temporal
frequency of the stimulus, or a harmonic. In both spectral
metrics (formula A and B in Table 1), we compared the sample’s
Fourier component value at these signal harmonics to every other
frequency (i.e., the noise) in the analysis. We counted successful
signal detection as occurring when the value at the harmonic is
larger than the 95th percentile of the noise. The probability of
false detection is calculated by the ratio of how many other peaks
in the noise are above the 95th percentile, and how many Fourier

components are included at distinct temporal frequencies in the
analysis:

p =





fmax
∑

f=fmin

Ssignal(f ) > [95th percentile(Nnoise(f ))]





/
(

∑

(fmax − fmin)
)

(4)

where S(f ) is the value of the signal sample, Nnoise noise
distribution at the frequency f .

Ssignal(f ) is always a single component in the simulation. In the
experimental data analysis, we used the first six harmonics of the
temporal frequency of the periodic stimulus.

2.2.5. Analysis and Statistics on our EEG Data
In the trials, we looked at the (1/

√

f )-compensated spectrum and
the calculated coherency of the SSVEPs of one single channel at
the central occipital area. Since the waveform of the temporal
modulation of the stereogram’s depth plane is a symmetrical
square wave which only contains odd harmonics, and we know
that the neural mechanism triggered is sensitive to changes in
disparity, we expect the first derivative of this signal to be present
in our EEG recordings. Therefore, we only consider the presence
of the even harmonics to be linked to processing, and the odd
harmonics to be the original signal passing through the human
visual system.

The coherency values are compared against a large number
(1,000) synthesized, phase-scrambled noise data sets. Unlike the
bootstrapping operation, where the data would be re-sampled at
a trial level, we generated our data sets with identical number
of trials to the real data we analyzed. This allows us to calculate
the 95th percentile of the noise distribution not just across the
spectrum, but across data sets, and create a reliable measure
of upper noise floor or “noise threshold.” If a coherency value
is above this noise threshold, we know immediately that it is
statistically significant. The exact probability can be worked out
using formula 4 as well.

3. RESULTS

3.1. Simulations
3.1.1. First Simulation: Performance of Metrics for a

Fixed SNR
In the high SNR (0.047) condition, the signals are shown in three
sets of plots in Figure 7. In this condition, the frequency-tagged
signal is so powerful that the coherency analysis (formula C and
D in Table 1) is capable of detecting it with only three trials.
This is shown in the top middle and top right plot. The complex
spectrum (formula B in Table 1) is on the edge of detecting
the signal too, but it’s p-value is slightly below the significance
threshold of 0.05. However, just by adding an extra trial in the
middle plot, it also successfully detects the frequency tagged
signal. While there is a distinct peak at the spectrum (formula
A in Table 1) at the tagged frequency of 13 Hz as well, it takes far
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FIGURE 6 | Anatomy of a trial: the preamble was displayed for a random time between 1 and 1.5 s, then the modulated bouncing disparity appeared on the screen,

for a random time between 5 and 6 s. The timing of the “disparity onset” event was recorded with millisecond precision.

more, 11 trials for the spectral analysis to detect it reliably. This is
shown in the bottom left plot.

For the low SNR (0.0003) condition, the performance of each
metric (see Figure 15) under the conditions set in the included
supplementary code show the probability of erroneous detection
(i.e., significance level, p-value) as a function of how many trials
are included in a data set. The coherency analysis (formula C and
D in Table 1) requires around 200 trials for a p-value of 0.05, with
formula C showing to be a little more sensitive than formula D.
The complex spectrum metric (formula B in Table 1) requires
about 800 trials to achieve the same significance level. For the
same signal and same conditions, the spectral analysis (formula A
in Table 1) does not provide meaningful results. For the purpose
of illustration, Figure 15’s scatter of p-values are fitted with a
simple exponential model (y = a × exp(bx)), with good quality
fitting r2 ≥ 0.85, with the exception of the spectral analysis, as
the p-values hover around 0.4–0.5.

In the low SNR condition, the signals are shown in the top
plots of Figure 6 at 350 trials, and in the top plots at 900 trials.
The spectral analysis shows in the far left plots how powerful
the birdie signal is with respect to the tagged carrier signal:
under these circumstances, detecting the tagged signal in the
spectrum is impossible. In top middle left plot, the complex
spectrum (formula B in Table 1) does show a peak at the tagged
frequency, but its p-value is too high to be deemed reliable. The
coherency analysis (formula C and D in Table 1, middle and
far right plots) show confidence levels below 0.05, implying that
the signal was reliably detected. Formula D’s coherency value is
lower (0.15) than Formula C’s (0.2), but -similarly to the complex
spectrum- formula C shows a false positive at the birdie signal’s
frequency of 8 Hz.

Adding more trials to the experiment shows two additional
benefits: from Figures 7, 8, the noise floor is noticeably lower,
particularly with the coherency analysis at the right plots; and
adding more trials to the data set allows the complex spectrum to
detect the frequency tagged signal as well. The effect of the birdie
is still visible in all metrics, but with formula D in the bottom far
right plot of Figure 7 it is considerably diminished.

3.1.2. Second Simulation: Number of Trials Required

as a Function of SNR
In Figure 14, the straight lines are estimations from information
theory. At high SNRs, up to about 0.06 and above, only a

single trial is enough to find the frequency tagged signal with
the spectrum and the complex spectrum techniques (formula
A and B in Table 1). Below these SNRs, the required trial
numbers increase rapidly, requiring about a hundred trials at
the SNR of 0.03. The traces split noticeably at around the
SNR of 0.02, where the spectrum requires about 4–5 times
more trials than the coherency (formula C and D in Table 1)
and the complex spectrum to detect the signal (B in Table 1).
By the time the SNR gets to as small as 0.01, more than
3,000 trials are needed to be detected with the spectrum, at
which point the simulation terminated. Going further to weaker
and weaker SNRs, the complex spectrum and the coherency
lines split: at around the SNR of 0.0035, approximately the
complex spectrum requires double the number of trials than the
coherency to detect the signal. This ratio diminishes somewhat
as the SNR approaches even smaller values. At the SNR of
0.002, more than 3,000 trials are required for the complex
spectrum to detect the signal, at which point the simulation
terminates. Interestingly, the required number of trials seem
to peak at the SNR of 0.002, and fewer trials are needed for
worse SNRs. At the SNR of 0.0005, the complex spectrum
required about 1,000 trials, whereas the coherency only needed
4–500.

3.2. EEG Experiment
Figures 9, 10 show the results of all four metrics (see Table 1),
for two participants. The plots were generated from 111
and 139 trials, respectively. In the two left (spectrum and
complex spectrum) plots, the blue lines are the 95th percentile
of the noise spectrum with the harmonics of the stimulus
signal excluded.

The spectrum (formula A in Table 1, far left plots), besides
a peak around the alpha (8–12 Hz) band with one participant,
is unremarkable. The near left plots show the results of the
complex spectrum calculated with formula B in Table 1, which
does seem to show peaks at the first harmonic of the temporal
modulation frequency with both participants, and the second
and fourth harmonics with one participant. There are other
peaks present above the 95th percentile in unrelated frequencies
between the first and the second harmonics in a similar fashion
to the response to the birdie signal presented in the simulation
results in Figures 8, 7, respectively.
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FIGURE 7 | In the high SNR (0.0047) condition tested by the simulation, only a handful of trials were enough to detect the hidden signal: in the top right plots, formula

C and D only required three trials to achieve reliable detection. In the middle plots, in the middle left, the complex spectrum detected the signal at 4 trials. For the

spectrum to do the same, 11 trials were necessary, as visible in the bottom plot. These plots are generated using the code in the Supplementary Material, using the

same signal. The frequency tagged signal is at 13 Hz, and the unstable birdie signal originating from an independent oscillation is at 8 ±0.8 Hz.
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FIGURE 8 | In the low SNR (0.0003) condition tested by the simulation, at 350 trials in the top plots, the hidden signal was detected successfully with the coherency

(formula C and D in Table 1) method. The complex spectrum (formula B in Table 1) provided reliable results only at the bottom at 900 trials. The spectrum failed to

detect the signal at all. These plots are generated using the code in the Supplementary Material, using the same signal. The frequency tagged signal is at 13 Hz,

and the birdie signal originating from an independent oscillation is at 8 ± 0.8 Hz. The birdie signal’s interference is visible in all plots except formula D’s in the far right of

the bottom plots.

The two right plots show the coherency of the signal
(formula C and D in Table 1), with the peaks on the red
traces highlighting the harmonics of the temporal modulation
frequency. The blue lines in the right plots are noise thresholds,
which is calculated as the mean 95th percentile of 1,000 phase-
scrambled noise data sets, with matching number of trials to
the EEG data. This “noise threshold” is used as an indicator
for significance: if a signal is above the noise threshold, it is
deemed to be significant, and thus the signal is detected. The
star above the peak indicates that the first, second, and fourth
harmonics are distinct from the noise, with a detection error
probability of <0.05. The exact probabilities are calculated with
formula 4. Furthermore, the coherency peaks are smaller with
formula D than formula C, but at the same time there are
fewer coherency peaks above the noise threshold at unrelated
temporal frequencies.

In Figure 11, we pooled together the trials of our four
participants, and plotted the results from all four metrics: the
spectrum (formula A in Table 1) is in the far plot, the complex
spectrum (formula B in Table 1), and the coherency (formula
D in Table 1) are in the right plots. The spectrum of the EEG
recordings show the alpha band of 10...12 Hz increased. Apart
from this, the spectrum’s plot is unremarkable, there are no
visible peaks at any of the harmonics of the depth alternation
frequency. The complex spectrum in the near right plot did
detect the second harmonics of the stimulus frequency, and there
are other distinct peaks at further harmonics, but below the
significance threshold.

However, the two left plot’s coherency analysis shows
distinct peaks at the second (4.2 Hz), fourth (8.4 Hz), and
sixth (12.6 Hz) harmonics, which are phase-locked to the
stimulus stereograms’s depth alternation. Additionally, formula
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FIGURE 9 | EEG data of participant AO. The spectrum (formula A in Table 1) does seem to show a peak above the 95th percentile at the fourth harmonic (8.4 Hz) of

the temporal modulation frequency. The complex spectrum shows more peaks harmonics of the 2.1 Hz temporal modulation frequency. The coherency analyses

(formula C and D in Table 1) in the right two plots do show significance at the second and fourth harmonics at the temporal modulation frequency. In the coherency

analysis, the signal was compared against a generated white noise comparison standard, with identical number of trials. The blue “noise threshold” line indicates the p

= 0.05 significance level, which is the 95th percentile of our phase-scrambled synthesized noise distribution sets.

C also detected the base harmonic (2.1 Hz) of the stimulus
as well.

4. DISCUSSION

4.1. EEG Experiment: Successful
Replication of Norcia and Tyler’s 1984
Study
While we aimed to replicate the original (Norcia and Tyler,
1984) study as closely as we could in our experiment, since
some hardware could not be obtained easily over 30 years after
the original study. We have implemented some changes: we
doubled the number of participants to 4 and they were naïve
to the subject, we rejected trials based on detected artifacts in
the EEG signal instead of letting the participants report bad
trials themselves, and a single temporal frequency was chosen
for the depth alternation which provided us with the strongest
neural response. Our display covered a larger visual angle and
did not require the wearing of anaglyph glasses. Unlike our study
with constant stimulus frequency, Norcia and Tyler used the
frequency sweeping technique for the depth alternation. Their
frequency response of a single participant is shown in the top plot
of Figure 12, with a peak at around 3.5Hz. The second harmonic
of our temporal modulation frequency was reasonably close to
this value, 4.2Hz.

Apart from the above, our dot density and the peak disparity
values were close to identical to the original study. Norcia and

Tyler concentrated only at analysing the second harmonic of the
depth alternation frequency, because they used discrete tunable
filters on the recorded EEG waveform and they calculated the
coherency value manually.

Our signal acquisition and processing was done using
computers, and so were the time-frequency transforms, which
allowed us to not only investigate coherency at the second
harmonic of the temporal modulation frequency, but to do
so over the entire spectrum until the 500 Hz Nyquist-limit.
However, we only analyzed and plotted a smaller sensible part
of this band, from 0.1 to 15 Hz. Perhaps a notable drawback of
using discrete time signals is when analysing short bursts of it: in
our case, only 5 s after the disparity onset event mean that the
window of the Fast Fourier Transform is rather small, which lead
to a relatively poor, but yet still acceptable frequency resolution of
0.2 Hz per Fourier component. Without increasing the sampling
frequency or using longer trials, this is unavoidable. We also
believe that this is one of the reasons why our coherency values
are smaller than what Norcia and Tyler reported. However, with
our statistics, the frequency tagged signal is reliably detected, and
thus we have successfully replicated Norcia and Tyler’s study.

4.2. Control Measures
The data presented here is a subset of a larger PhD project
(Derzsi, 2017), where we used this technique to characterize
depth perception in the human visual system: we have found
the corresponding coherency peaks for conditions with different
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FIGURE 10 | EEG data of participant SA. The spectrum (formula A in Table 1) in the far left plot shows elevated power in the Alpha band, but not at any harmonics of

the temporal modulation frequency of the stimulus. The complex spectrum shows one peak at the first harmonic the 2.1 Hz temporal modulation frequency. The

coherency analyses (formula C and D in Table 1) in the right two plots do show significance at the second and fourth harmonics at the temporal modulation

frequency. In the coherency analysis, the signal was compared against a generated white noise comparison standard, with identical number of trials. The blue “noise

threshold” line indicates the p = 0.05 significance level, which is the 95th percentile of our phase-scrambled synthesized noise distribution sets.

temporal and spatial frequencies, but for the purpose of this paper
that compares various metrics in a frequency tagging experiment,
only a small fraction of results are included here. In Figure 13,
we demonstrate that the coherency peak follows the temporal
modulation frequency, and that the signal is detectable with
fewer trials.

4.3. Can Pooling Across Participants Ever
Be a Sensible Choice?
A good practice in studies is to collect a number of trials from a
participant, generate a per-individual result, and then pool across
them to come up with the grand average that is used in the
final analysis.

Pooling across participants at a trial level when analysing the
spectrum does not produce meaningful results, because of the
risk of data being driven by a small number of powerful outliers,
which can lead to improper conclusions.

However, since the coherency analysis rejects the amplitude
component of the EEG data by principle, the risk described
above is eliminated. As each participant will have a different
signal propagation time in their brains, the phase angles of the
frequency-tagged signals will be different as well.

Pooling across participants at a trial level will result in a
reduced coherency value because of the increased spread of the
phase angle distribution of the signal (different φ0 and different
ζk in Equation 3 for each participant). Since in the coherency
analysis, we are evaluating the coherency data against synthesized

phase-scrambled control data sets, the actual coherency value
itself does not matter: as long as it’s significantly elevated from
the noise, it is detected successfully. In our case, this is shown
in Figures 9–11: the coherency value for a single participant
at 4.2 Hz is 0.33, which reduces to 0.28 after pooling four
participants together. However, the noise level is 0.18 in the single
participant’s data reduces to around 0.08 in Figure 11, which
means that our chances of detecting the signal has increased
despite the overall reduction of the coherency values, making
pooling across participants at a trial level a worthwhile trade-
off for low temporal frequencies. Provided that the variance of
signal propagation times of individuals is less than half a period
of the temporal frequency of the stimulus, the overall reduction
of coherency values will not be considerable, and this minimizes
the risk of losing the signal.

4.4. Noise Model Choice
In nature, the electrical noise is fundamentally pink noise: the
noise power follows a 1/f pattern in the spectrum, and the EEG
signals are no exception. Since the EEG equipment measures
voltage and not power, the noise follows a 1/

√

f pattern. This
has to be compensated for when evaluating the spectrum and
the complex spectrum (formula A and B in Table 1). However,
irrespective of what type of “noise” we are dealing with—
whether external electrical noise or the electrical signal of some
unrelated biological function—the noise will not be phase-
locked to the temporal modulation frequency of the stimulus.
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FIGURE 11 | In this figure EEG data from our four participants is pooled together at a trial level creating a single data set with 537 trials. We can see that the spectrum

(formula A in Table 1, far left plot) does not show any significant peaks at any of the harmonics of the stimulus frequency. However, it shows elevated spectral power

in the Alpha (8–12 Hz) band. The complex spectrum (formula B in Table 1, middle left plot) does detect the second harmonic (4.2 Hz) of the stimulus frequency, and

possibly the fourth (8.4 Hz) harmonic as well, but it’s just below the 95th percentile threshold line. In contrast, the coherency analysis (formula C and D in Table 1, right

plots) detects the first six harmonics of the stimulus, with formula C in the middle right plot additionally detecting the first harmonic as well. When compared with the

same plots of Figures 9, 10, the coherency values only slightly reduced while the noise threshold lowered considerably. This implies that the trial-level data pooling

may be a worthy trade-off to improve sensitivity with the coherency analysis.

Thus, following a Fourier transform, the distribution of the
arguments of the vectorial representations of the complex Fourier
components are completely stochastic within the interval of 0
and 360◦. Additionally, since in a frequency tagging experiment
we consider every irrelevant signal component as noise, it is
difficult to create a model that accurately imitates the signals
created by the brain. In the simulation, the presence of white
noise and the birdie signal was an attempt to replicate this,
but it is fundamentally insufficient. In reality, there may be a
large number of birdies present, mixed with transients and other
artifacts from various sources. For instance, at 111 (see Figure 9)
and at 139 trials (see Figure 10), we should see some relevant
peaks at the spectrum, even if they are below the significance
threshold. The lack of peaks in the spectra of real data show that
the noisemodel used in the spectrum simulations is too forgiving,
and this leads to a rather optimistic prediction of the performance
of the spectrum in the simulations. This, however, only applies to
the spectrum, and not for the coherency analysis.

Since the coherency analysis effectively removes the amplitude
component along with its noise component of the signal
completely, the resulting phase noise distribution will always
be a uniform distribution, irrespective of what type of noise
the acquired signal contained. This property enables it to
be compared against artificially generated controls with very
good accuracy.

When comparing the coherency plot of the EEG signal in
Figure 11 in between harmonics (for example 10 and 12Hz, or 15
Hz and above in Derzsi (2017) with the coherency plots on either
Figure 7 or Figure 6, we can see that the coherency values are
indeed uniformly distributed with respect to temporal frequency.

We could have implemented any other noise types in the
simulation, but for the sake of simplicity and to due to the fact
that the coherency analysis is insensitive by principle to the type
of noise used, we decided to use only white noise.

4.5. Comparing the Performance of
Spectrum and Coherency With Weak
Signals
The metric that performs the worst is the spectrum (formula
A in Table 1). At very low SNRs the signal is undetectable
with conventional spectral analysis. Findings from information
theory (Proakis, 2000; Proakis and Salehi, 2008; Derzsi, 2017)
suggest that techniques using or exclusively relying on the phase
information performmore reliably at low SNRs.We have verified
this with both our simulation results in Figure 15 and even
with real data in Figure 11. This further reinforces that spectral
evaluation in a weak-signal frequency-tagging study is one of the
worst things to do.

The best performer is the coherency analysis, formula C and D
in Table 1: since it effectively rejects the amplitude component of
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FIGURE 12 | The results of one of the two participants in Norcia and Tyler

(1984). (Top) The amplitude of the acquired EEG signal at the center occipital

area, showing a peak response between 2 and 4 Hz depth alternation

frequency. (Middle) Measured coherency (formula C in Table 1) value.

(Bottom) The phase angle plotted of the signal, implying that there is a

constant or near-constant propagation delay between the depth alternation

and the recorded EEG signal at the second harmonic of the depth alternation

frequency. Copyright 1984, with permission from Elsevier.

a vector along with its noise component, it increases the SNR, and
this property makes it less prone to external interfering signals.
Since the coherency is a measure of how consistent the phase
angles are across the trials, the actual phase angles themselves
are not being taken into account. Rather, their distribution
with respect to the whole circle is the property that carries
information (see Figure 3, middle and right plots), and this
makes the coherency analysis is far more resistant against noise
than any other approach presented in this paper. The only extra
information required in the stimulus is the annotation of the
phase as well as the frequency: without it, the coherency analysis
is useless.

Based on findings from information theory, we can derive
the error performance (Proakis and Salehi, 2008) of various
information enclosure (modulation) methods as a function of the
SNR. This way, we can approximate howmany trials are required
as a minimum for successfully detecting a frequency-tagged
signal (Derzsi, 2017) that has the phase information annotated
with the error probability of p = 0.05. These are:

Lspectrum =
[erfc−1(2× 0.05)]2]

SNR
(5)

Lcoherency ≈
1
4 × [erfc−1(2× 0.05)]2]

SNR
(6)

where L is the number of trials required, erfc is the
complementary error function, and SNR is the signal-to-noise
ratio. It is worth noting that these functions provide a strictly
monotonically decreasing number of trials as a function of the
SNR. These estimated performances are plotted in Figure 14,
and provide similar results to the simulated performance in
Figure 15: for example, at the SNR of 10−3, about 400 trials
are required for coherency analysis and about 1,100 trials are
required for the spectral analysis to provide meaningful results.
When comparing this theoretical finding with the simulation
results, it shows that these estimations show in Equations (5) and
(6) are pessimistic at low SNRs, and optimistic at high SNRs.
With a similar SNR in the simulation code that is included as
Supplementary Material in this paper, these are about 4–500 and
more than 3,000 trials, respectively.

Based on this information, provided that there are no external
interfering signals and that the phase of the stimulus was known,
we can improve a frequency tagged signal’s detection probability
by at least a factor of 4, just by analysing its coherency and not
its spectrum. Of course, with real-world data this improvement
is not as marked, but still considerable.

These equations that estimate the performance do not make
a difference between the spectrum formula A and B and the
coherency formula C and D. Spectral analysis either fails to
detect a weak signal completely, or requires an unrealistically
large number of trials to provide acceptable results. The spectral
analysis method also is prone to show external interfering
signals as false positive results. The coherency analysis, in all
cases is a more sensitive approach for weak signals, with the
capability of either greatly diminish or completely reject external
interfering signals.

4.6. What SNR Is Reasonable in Real Data?
The actual observed SNR depends on the modality and the
conditions of the stimulus. Bright flashes produce a very strong
response, and relatively few trials are required to produce
meaningful results. For example, Hébert-Lalonde et al. (2014)
were able to find spatial visual deficits with a blinking spot on
the screen from about just a minute of EEG recording. Binocular
vision, on the other hand, produces a more subtle response: In
Baitch and Levi (1988), over 100 trials were required to detect
the lack of binocular visual processing in stereoblind participants.
Binocular disparity processing produces even weaker signals: in
the EEG study presented in this paper, more than 100 trials were
required to detect the disparity-defined visual stimulus with the
coherency analysis. Not even 500 trials were enough to detect
the signal in the spectrum. Increasing the binocular disparity
does not necessarily increase the strength of the neural response:
too large, or too quickly changing disparities can not be fused
properly. If the visual system does not have enough time to
solve the stereo correspondence problem (Ip et al., 2014) or the
participant is no longer able to follow it in depth (Alvarez et al.,
2005), the depth perception from binocular disparity falls apart.
This has been verified experimentally with psychophysics (Kane
et al., 2014), and with frequency tagging (Derzsi, 2017) as well.
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FIGURE 13 | Coherency values at different uniform plane (0 cycles-per-degree grating) conditions in Derzsi (2017): the gray line is the temporal modulation frequency

of the grating, and the colored (red, blue, magenta) lines are the (second, fourth, and sixth, respectively) harmonics. As the temporal modulation frequency increases,

the second harmonics’ coherency value follows. The “generated noise coherency” is used as the comparison standard to detect the presence of the signal.

FIGURE 14 | As the SNR gets worse and worse, more and more trials are needed to detect the signal. The estimations are from Equations (5) and (6), they are

approximated from information theory. The simulated performance is shown for each formula. For SNR 0.06 and above, only 2 trials are enough to detect the

frequency tagged signal for the coherency analysis and a single trial for the spectral analysis. Where the lines are incomplete, more than 3,000 trials were not enough

to detect the signal, at which point the simulation was terminated. Having the simulation executed 20 times, we see that the coherency analysis requires the least

number of trials to reliably detect the signal.
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FIGURE 15 | For the low SNR (0.0003) condition the p-values of the statistical analysis of the simulation is plotted against the number of trials used. Zero p-values are

not shown due to the logarithmic axis. With the tagged signal being much weaker than the noise, the coherency analysis (formula C and D in Table 1) detects it with

around 300 trials. For the same confidence level, about 800 trials are required for the complex spectrum (formula B in Table 1). At these low SNRs, the conventional

spectral analysis (formula A in Table 1) completely fails to detect the tagged signal. The lines are fitted with a simple exponential model (y = a× exp(bx)), except for

the spectrum, which hovers around 0.5.

For spectral analysis, Equation (5) may be modified to provide
an approximation of SNR from the number of trials used:

SNR ≈
[erfc−1(2× 0.05)]2]

Lspectrum
(7)

This equation is approximate in nature, because many studies
collect more data than what is absolutely minimally required for
statistical significance. A visualization of this equation is shown
with the dark blue straight line in Figure 14. In practice, this
means that the estimation is somewhat pessimistic, so the SNRs
reported by this formula are somewhat lower than in reality.

From the examples with flashing stimuli above, we estimate
that the time-domain SNR are varying between 0.04 and 0.003:
for 30 trials used in Hébert-Lalonde et al. (2014)’s flashing spot
study is 0.04; for 100 trials used in Baitch and Levi (1988)’s
binocular flash study is 0.02; 480 trials used in the control part of
Nakanishi et al. (2018)’s flashing of characters is 0.003; 192 trials
used in Gruss et al. (2012)’s flashing faces study is 0.015.

For the random-dot stereogram examples from above the SNR
is worse, varying from approximately 0.01 to <0.002: for 100
trials used in Cottereau et al. (2012)’s disparity-defined annulus
study is 0.015, but with the aid of fMRI; for 384 trials in Rideaux
et al. (2020)’s moving circle defined by random-dot stereograms,
it is 0.0025; in the study presented in this paper 537 trials were
not enough to detect the frequency-tagged signal, therefore the
SNR is estimated to be <0.004.

Therefore, the added sensitivity for the coherency analysis
may be beneficial in these low SNR conditions, as it decreases
the probability of erroneous detection. Additionally, since the
coherency analysis is capable of detecting the signals in even
lower SNRs, it will be an ideal analysis candidate for future or

unpublished studies, where conventional analysis methods have
failed provide convincing results.

4.7. Simulations
Both simulations demonstrate that the coherency analysis is the
most sensitive method for detecting a weak signal in the SSVEP.
In the first stimulation, where we used two conditions to imitate
the presence of a strong (see Figure 7) and a weak (see Figure 6)
signal, and in both cases, the coherency analysis required the
lowest number of trials to detect the signal. This is further
reinforced by the plot of performance in the low SNR condition
in Figure 15, where the coherency analysis detected the signal
at around 200 trials, the complex spectrum analysis detected the
signal at around 800 trials, and the spectral analysis did not gain
any confidence after 2,000 trials.

In the second simulation, where the required number of trials
to achieve p = 0.05 significance are plotted against the SNR (see
Figure 14), we see a similar picture: as the signal gets weaker and
weaker, the sensitivity of the coherency analysis is more andmore
apparent. However, we must note that when the tagged signal
is strong, and only a single trial is enough to detect it with the
spectral analysis, it is pointless to do the coherency analysis, as it
requires at least two trials to provide meaningful results.

From Equations (5) and (6), we know that the number of
trials required is strictly monotonically increasing as the SNR
decreases, but interestingly the behavior of the simulation results
do not clearly show this. For example, prior to losing formula
A’s performance at the SNR of 0.01, it required only a fraction of
trials to detect the signal than in the iteration before. The same
is observed with the with the coherency results below the SNR of
0.002. We believe that this phenomenon is an artifact, due to the
limit of double precision numbers, and the fact that we are rapidly
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approaching Shannon’s theoretical limit of information capacity
(Shannon, 2001) in these conditions. Realistically, considering
that it is very difficult to collect more than 2–300 trials in a
frequency tagging experiment from a single participant without
fatigue, the practical limit of SNR at which the coherency analysis
performs best is around x ∗ 10−3. For the spectrum, this is
considerably higher, x ∗ 10−2. Therefore, the best use of the
coherency analysis is when the signals are very weak, and could
not be detected with any other method.

4.8. Does the Interfering Birdie Signal
Matter at All in Coherency Analysis?
In a frequency-tagging study where the mechanism tested is
well isolated, the straightforward approach to rely on the tagged
frequencies themselves. Human stereopsis is a great example for
such a mechanism, as it can do both intermodulation (Baitch and
Levi, 1988) and frequencymultiplication (Norcia and Tyler, 1984;
Norcia et al., 2015) very cleanly, so the temporal frequencies in
the analysis can be calculated easily. In these cases, a powerful
unrelated signal can safely be ignored, and the more sensitive
formula C may be used to find even the weakest signals.

However, when the operation of the mechanism studied is
not so straightforward, such as the case with muscle movements
(Nazarpour et al., 2012) or face perception (Boremanse et al.,
2013), the experimenter may not have the luxury of ignoring
any signal by labeling it as a birdie. In these cases, where
finding and eliminating birdies is vital to avoid erroneous
conclusions, formula D is the safer option as it’s the most robust
against external interference. We also suggest the use of a time-
frequency analysis method in addition to the coherency analysis
in such cases.

5. CONCLUSION

When employing the EEG frequency tagging technique in an
experiment and analysing the SSVEP, spectrum may be the
obvious choice at first glance. Due to its simplicity, it is easy to
write reliable analysis software. The apparent ease of use, however
comes at a price: as it preserves both the amplitude and phase
noise components, spectral analysis is a very insensitive analysis
method. Provided that the frequency and the phase information
of the stimulus is known either by starting the stimulus in the
same phase or recording the phase angle of it in each trial, it is
possible to analyse the inter-trial coherency of the recordings,
which can detect signals that are too weak to be seen in the
spectrum. An added benefit is that the coherency may reliably be
compared against artificially generated controls. Therefore, based
on our simulation results and experimental verification, we found
that the coherency analysis offers the detection of weaker signals,
or requires fewer trials in an experiment.

Based on our analysis, we suggest the annotation of the phase
angle of the stimulus and the use of coherency analysis instead of
spectral analysis in future frequency tagging studies.
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