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Abstract

Evolutionary adaptation can be extremely fast, especially in response to high selection intensities. A prime example is the

surge of antibiotic resistance in bacteria. The genomic underpinnings of such rapid changes may provide information on

the genetic processes that enhance fast responses and the particular trait functions under selection. Here, we use experimentally

evolved Escherichia coli for a detailed dissection of the genomics of rapid antibiotic resistance evolution. Our new analyses

demonstrate that amplification of a sequence region containing several known antibiotic resistance genes represents a fast

genomic response mechanism under high antibiotic stress, here exerted by drug combination. In particular, higher dosage of

such antibiotic combinations coincided with higher copy number of the sequence region. The amplification appears to be

evolutionarily costly, because amplification levels rapidly dropped after removal of the drugs. Our results suggest that

amplification is a scalable process, as copy number rapidly changes in response to the selective pressure encountered.

Moreover, repeated patterns of convergent evolution were found across the experimentally evolved bacterial populations,

includingthosewith lowerantibiotic selection intensities. Intriguingly, convergentevolutionwas identifiedondifferentorganizational

levels, ranging from the above sequence amplification, high variant frequencies in specific genes, prevalence of individual

nonsynonymous mutations to the unusual repeated occurrence of a particular synonymous mutation in Glycine codons.

We conclude that constrained evolutionary trajectories underlie rapid adaptation to antibiotics. Of the identified genomic

changes, sequence amplification seems to represent the most potent, albeit costly genomic response mechanism to high antibiotic

stress.
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Introduction

Bacterial populations are able to adapt to environmental

stress extremely rapidly. This has best been documented

with the help of evolution experiments in the laboratory,

for which environmental conditions can be precisely con-

trolled, permitting reliable inference of cause–effect relation-

ships (Kawecki et al. 2012). One of the classic examples is the

adaptation of Escherichia coli to one of its phages in less than

5 days (Lenski and Levin 1985). More recent examples refer

to a 5,000-fold increase in resistance of E. coli to strong

ionizing radiation within 20 selection cycles (Harris et al.

2009) or the substantially increased fitness of E. coli in

extreme temperature environments within 2,000 genera-

tions (Tenaillon et al. 2012). Perhaps the most compelling

evidence for swift bacterial adaptation comes from work

on antibiotic resistance evolution. Within merely 2 days

GBE

� The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 6(6):1287–1301. doi:10.1093/gbe/evu106 Advance Access publication May 20, 2014 1287

1 
-
five 
two 
XPath error Undefined namespace prefix


after onset of drug deployment, experimental E. coli popu-

lations restore growth to almost untreated levels (Hegreness

et al. 2008). Such fast antibiotic resistance evolution

represents a global health problem (Palumbi 2001; Jacoby

2009), and although comprehensive information is available

on the molecular basis of resistance (Walsh 2000, 2003;

Alekshun and Levy 2007), the mechanisms, patterns, and

processes underlying its evolution are still only poorly

understood (MacLean et al. 2010).

One particular challenge of current research therefore is to

understand the genomic underpinnings of such fast adaptive

changes. We here assume that adaptation is based on evolu-

tion (i.e., a change in allele frequencies within a population)

and that it must thus manifest itself as change in the genome

sequence. Which genes and thus trait functions are then

associated with fast adaptations and are thus likely the

target of selection? Which specific molecular mechanisms

generate the necessary changes within the genome (Stapley

et al. 2010)? Is adaptation possible through changes in a

variety of different genes or are such changes limited to

only one or few genes, resulting in convergent evolution

(Dettman et al. 2012)? These questions can now be efficiently

addressed with the help of whole-genome sequencing of

evolved experimental populations (Hegreness and Kishony

2007; Toprak et al. 2011).

Here, we expand the data from our previous study

on the experimental evolution of E. coli antibiotic resistance

(Peña-Miller et al. 2013) by including an additional

high-dosage combination evolution treatment and newly

generated genome data. On the basis of genome sequences

for a total of 63 evolved populations, our aim was to address

the following three questions: 1) Which trait functions, genes,

and/or molecular mechanisms show patterns of convergent

evolution in the resistant populations and are thus potentially

adaptive (cf. Christin et al. 2010; Wake et al. 2011)? 2) Are

there differences in the response to different antibiotic selec-

tion intensities (e.g., low versus high concentrations of the

antibiotic combination used)? 3) What is the importance

and stability of the previously observed sequence amplification

(Peña-Miller et al. 2013) during resistance evolution, especially

for the newly considered high-dosage combination

treatment?

Materials and Methods

Materials

We used whole-genome sequencing data for independent

replicate populations from our previously published evolution

experiment (Peña-Miller et al. 2013). Genome data were avail-

able for four different antibiotic treatments and a control

treatment without antibiotics (noAB). The two single drug

treatments (doxycycline [DOX] and erythromycin [ERY]) were

each calibrated to 50% growth inhibition compared with the

noAB control, and the low-dosage combination treatment

(C50) contained 50% of each of the single drug dosages

(fig. 1). Now, we additionally considered the high-dosage

combination treatment containing 100% of the single drug

dosages (C100), which fully inhibited bacterial growth on day

1 (fig. 1). An initial analysis of the sequence data for all but the

C100 treatments was already presented in Peña-Miller et al.

(2013) but was strictly focused on the context of the respec-

tive mathematical models and their interpretation. Our new

analyses used the same raw data and combined it with the

sequencing data from the C100 populations and the ancestral

strain of E. coli. The sequencing data were generated in

identical form for all populations (Peña-Miller et al. 2013).

Prior to sequencing, cultures were regrown for 1 day under

exactly the same treatment conditions as those used during

the evolution experiment. The only exception referred to the

C100 replicate populations. Here, the five resistant C100

populations were each regrown twice, once with the

experimental antibiotic concentrations (C100_r_AB) and

once without antibiotics (C100_r_0). Of the remaining 14

susceptible populations, only 13 were viable and thus

regrown to sufficient quantities in the absence of antibiotics

(C100_s). Precise details on the evolution experiment,

culturing conditions, DNA isolation, and next generation

sequencing are provided in the supplementary material,

Supplementary Material online (see also Peña-Miller et al.

2013).

Reference Tailoring

Initially, the closest published E. coli K12 reference genome

(BW2952 with GenBank accession NC_012759.1 in its version

from the November 14, 2011, Ferenci et al. 2009) was used

for read mapping and variant calling. The current reference

version is available under National Center for Biotechnology

Information (NCBI) accession number NC_012759. Using

gap5 (Bonfield and Whitwham 2010) from the Staden

package, we conducted a detailed visual review of variant

calls based on the BW2952 reference (for the version

number used, see supplementary table S1, Supplementary

Material online). This analysis revealed the incorrect placement

of sequence reads for the evolved populations, especially in

regions containing breakpoints for SVs, which represent

differences between the BW2952 reference and our starting

strain (for a strain ancestry review, see supplementary fig. S1,

Supplementary Material online). In turn, read misplacement

produced erroneous single-nucleotide variant (SNV) calls with

SNVer (Wei et al. 2011) and VarScan (Koboldt et al. 2012) and

also erroneous breakpoint calls by Pindel (Ye et al. 2009). To

minimize the number of such false calls, a tailored reference

(MYMC4100) was created from the BW2952 reference and

used for all read mapping, variant calling, and variant

annotation (see further details in the supplementary methods,

Supplementary Material online).
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Genome Analyses

With the help of the tailored reference genome, we analyzed

the distribution of different types of sequence changes (i.e.,

SNVs, indels, SVs, and the large-scale amplification) across

evolution treatments. The initial steps of the analysis followed

the previously described protocol (Peña-Miller et al. 2013) as

explained in the supplementary material, Supplementary

Material online. For the 316-kb sequence amplification

FIG. 1.—Overview of treatments, phenotypic results, and sequencing scheme. Antibiotic conditions are shown for the evolution experi-

ment and for regrowth of replicates before whole-genome sequencing. Inset graphs are optical density (OD) measurements at 600 nm for the

duration of 1 day, averaged over all replicates of a treatment and displayed with the treatment’s standard deviation as a gray band (see explanatory panel

in bottom left corner). The newly considered high-dosage combination treatment C100 (with labels set in bold) diverges into two phenotypes by day 5:

Five replicates become resistant and grow, whereas the other 14 replicates show no growth. The 13 viable nonresistant replicates were regrown

for sequencing without antibiotics in the medium (label C100_s), the five resistant replicates were each regrown once without (label C100_r_0)

and once with the original antibiotic concentrations (label C100_r_AB). Ten samples each of all the other treatments were regrown under the

respective experimental antibiotic concentrations. 100 DOX¼ 0.15 mg
ml; 100 ERY¼ 9 mg

ml. For each drug alone, these concentrations initially inhibited

growth at 50% compared with the no drug control, whereas growth inhibition of the C50 combination treatment was initially close to 100% (Peña-

Miller et al. 2013) due to synergy of the drugs. The high-dosage combination treatment C100 initially achieved full growth inhibition.
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region, the average relative coverage was computed for each

sequenced population using the following procedure: We first

computed the absolute coverage of each sequence position

and then separately averaged over all positions from the

amplified region and over those from the rest of the

genome. The ratio of these two gives the relative coverage

for the sequence amplification region, with values above 1

indicating amplification. Because entire populations were

sequenced, these coverage values reflect the average amplifi-

cation level for each population. The treatment means of

these population averages were then compared (fig. 3 and

supplementary table S3, Supplementary Material online). For

SVs and indels, Pindel (Ye et al. 2009) calls with more than ten

reads support were further analyzed, thus acknowledging the

conservative detection approach of Pindel (for an overview of

all bioinformatics tools used, see supplementary table S1,

Supplementary Material online). SNVs were only considered

for further analyses if they either occurred in two independent

replicate populations (irrespective of whether they were from

the same or different evolution treatments) or if they were

identified by both SNV callers (SNVer by Wei et al. [2011] and

VarScan by Koboldt et al. [2012]). Variants also found in the

no drug control were excluded from further analyses, because

they very likely represent adaptations to the general

experimental conditions and not to specific antibiotic

treatments.

The possible function of the thus identified genes and

genomic regions were inferred using the available literature

and the EcoCyc database (Keseler et al. 2011; functions

summarized in table 3). We additionally used the program

PolyPhen2 (Adzhubei et al. 2010) for an assessment of the

effect of nonsynonymous SNVs, and the online tool insertion

sequence (IS) Finder (Siguier et al. 2006) for identification,

confirmation and analysis of IS events, IS names, and ISs.

Further details and discussion regarding known gene func-

tions are provided in the supplementary information,

Supplementary Material online.

For the documentation of synonymous SNVs as well as

indels and SVs, we identified the need of a unified nomencla-

ture of sequence changes, which is not based on amino acid

changes (as is commonly used for nonsynonymous SNVs). We

therefore made use of the existing Human Genome Variation

Society nomenclature for sequence variants (den Dunnen and

Antonarakis 2000 and see: http://www.hgvs.org/mutnomen/,

last accessed May 28, 2014; used in supplementary table S4,

Supplementary Material online).

Availability of Supporting Data

Supplementary material, Supplementary Material online, is

available online alongside this article and provides additional

data and information—especially a detailed description of the

material and methods used for genome data analysis. It addi-

tionally contains one figure and five tables: supplementary

figure S1, Supplementary Material online, gives an overview

of the ancestry of the E. coli K12 strain MC4100.

Supplementary table S1, Supplementary Material online, lists

all programs used for genome data analysis, including the

respective version numbers. Supplementary table S2,

Supplementary Material online, summarizes how the refined

pipeline and the tailored reference genome improved SNV

calling. Supplementary table S3, Supplementary Material

online, shows the statistical results on the variation in

sequence amplification across treatment groups.

Supplementary table S4, Supplementary Material online,

describes the variants identified across treatments.

Supplementary table S5, Supplementary Material online,

summarizes the four synonymous SNVs.

We submitted our tailored E. coli K12 strain MC4100

reference under the name MYMC4100 to the European

Nucleotide Archive (ENA) under accession HG738867

(study accession is PRJEB4621). We also deposited the

original genomic DNA Illumina sequence data to the ENA

sequence read archive under accession number

PRJEB4687, with submitted read files named according to

treatment abbreviations used throughout this article (see

e.g., fig. 1).

Results

Phenotypic Resistance Evolution

We previously demonstrated that antibiotic resistance evolved

rapidly within 2 days of the evolution experiment in

both monotherapies and the C50 combination treatment

(resistance sensu lato, defined as increased growth rate in

the presence of antibiotic(s) relative to the ancestral control;

fig. 1 [Peña-Miller et al. 2013]). Of these treatment groups, the

C50 combination led to a lower bacterial growth than the

single drug treatments (DOX and ERY) on day 1 only, whereas

growth increased from day 2 onward, suggesting more

rapid evolution of resistance in the C50 combination

treatment (Peña-Miller et al. 2013). Now, we asked how

bacteria respond to an even higher, above minimal inhibitory

concentration dosage in the combination treatment. For this,

we included a treatment where bacteria had evolved at twice

the C50 concentrations of the drugs (C100 high-dosage

combination treatment in fig. 1). This treatment resulted in

full growth inhibition in 14 out of 19 replicate populations

across the 5-day evolution period (C100_s in fig. 1). In contrast

to the latter populations and the ancestral control, the

remaining C100 populations were able to resume growth,

strongly indicating resistance evolution (C100_r_0 and

C100_r_AB, day 1 vs. day 5 in fig. 1). The additional

consideration of this treatment allowed us to contrast

genomic changes in 1) resistant populations subjected

to drug combinations with a substantial difference in

selection intensity (C50 vs. C100_r); 2) C100 populations
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that either evolved or did not evolve resistance (C100_r vs.

C100_0); and 3) resistant C100 populations regrown with or

without antibiotics prior to sequencing (equivalent to

sustained versus relaxed selection for resistance; C100_r_AB

vs. C100_r_0).

Variant Calling Using a Tailored MYMC4100 Reference
Genome

Our starting strain (E. coli K12 strain MC4100) differed

from the closest published reference (BW2952, GenBank

accession NC_012759.1 Ferenci et al. 2009) in five

structural variants (SVs), seven insertions/deletions shorter

than 50 bp (indels), and 13 SNVs. These differences likely

arose during independent laboratory maintenance of

the two strains (see information on strain histories in

supplementary fig. S1, Supplementary Material online). To

improve variant calling, we here tailored the available

BW2952 reference to our starting strain, compared different

variant calling tools, refined our confidence criteria, and

manually inspected unannotated variants (see Materials and

Methods and the supplementary material, Supplementary

Material online). These alterations led to identification of 14

SNVs that we failed to detect during our previous analysis,

whereas four of the previously identified SNVs could not be

validated (supplementary table S2, Supplementary Material

online). As a consequence, a total of 21 changes were now

recorded during adaptation to only DOX, 25 changes to only

ERY, 14 to the C50 combination treatment, 14 for the

nonresistant C100 samples (C100_s), two for the resistant

C100 samples regrown without antibiotics for sequencing

(C100_r_0), and three for the resistant C100 samples

regrown with antibiotics for sequencing (C100_r_AB;

tables 1 and 2, and supplementary table S4, Supplementary

Material online).

Sequence Amplification

We could confirm our previous finding that the duplication of

a large genomic region is significantly associated with rapid

resistance evolution in the C50 combination treatment (figs. 2

and 3; Peña-Miller et al. 2013). This amplification of a 316-kb

sequence region contains numerous known resistance genes

such as those coding for components of the AcrA-AcrB-TolC

efflux pump. Our previous repetition of the evolution

experiment with an acrAB knockout strain indeed suggested

that duplication of the acrAB operon directly contributes to

fast adaptation (Peña-Miller et al. 2013). The same sequence

amplification was now found in the newly sequenced

populations from the C100 treatment (figs. 2 and 3). The

degree of sequence amplification (i.e., the copy number of

the respective chromosomal segment) varied depending on

the treatment and also growth conditions prior to sequencing.

Although none of the antibiotic-free controls (noAB) and only

few samples of the single drug treatments (DOX and ERY in

figs. 2 and 3) showed clear signs of sequence amplification, a

significant increase was found for both the C50 and the re-

sistant C100 samples (C100_r_0 and C100_r_AB; figs. 2 and

3; supplementary table S3, Supplementary Material online).

Moreover, the resistant C100 samples that were regrown in

the presence of antibiotics prior to sequencing (C100_r_AB)

had a significantly higher average level of sequence amplifi-

cation (around 3-fold) than all other groups—notably includ-

ing both the C50 and the C100_r_0 groups. In contrast, the

average amplification level for the susceptible C100 samples

(C100_s) was only slightly elevated and thus significantly

lower than those of the C100_r_AB and C50 treatments

(figs. 2 and 3; supplementary table S3, Supplementary

Material online). Interestingly, the start and end points of

the amplified region were always located within the same

two copies of the IS gene insH (compare e.g., Nicoloff et al.

2007; Adler et al. 2014).

SNVs, Indels, and SVs

We identified 47 changes across the evolved populations (in

addition to the above reported sequence amplification).

Forty-four of these affected coding sequences (CDSs),

whereas the remaining three changes (one SNV; one

insertion/deletion, indel; and one IS event) fell into known

regulatory sequences (table 1 and supplementary table S4,

Supplementary Material online). A similar pattern emerged

for the frequency of variant occurrences (i.e., the total

number of times, sequence changes were found across all

replicate populations), for which 131 out of 139 cases fell

into CDSs (table 1). In total, 23 genes were affected by

mutational changes (for their functions see table 3), which

encompassed all three main types of sequence alterations

(SNVs; indels; and SVs). In particular, 30 unique SNVs occurred

a total of 109 times across all but two treatments (tables 1 and

2, and supplementary table S4, Supplementary Material

online). The two treatments without SNVs, the resistant

C100 populations regrown either with or without antibiotics

(C100_r_AB and C100_r_0), only showed SVs including the

large-scale sequence amplification. Twenty-nine out of the 30

unique SNVs were found in CDSs (a total of 108 occurrences),

and all but four resulted in nonsynonymous changes (table 1

and supplementary table S4, Supplementary Material online).

Interestingly, the four synonymous SNVs were present 35

times, representing approximately a third of all SNV occur-

rences (table 1 and supplementary tables S4 and S5,

Supplementary Material online).

In addition to SNVs, 11 unique indels (non-SNVs shorter

than 50 nucleotides) were identified (tables 1 and 2;

supplementary table S4, Supplementary Material online).

Only one single-nucleotide indel fell outside of CDSs, affecting

the regulatory sequence of frmR. Nine additional single-

nucleotide indels were found in CDS, where they caused a

frameshift and were thus nonsilent. The remaining indel
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Table 2

Distribution of Independent Mutational Changes (SNVs/Indels/SVs) across Evolution Treatments and Affected Genes

Gene DOXa ERYa C50a C100_sa C100_r_0a C100_r_ABa Total No. of Popsb

acrA 1/0/0 1

acrB 1/0/0 1

acrR 2/0/0 2/0/0 4

clcB 1/0/0 1

dnaQ 1/0/0 1/0/0 2/0/0 4

frmR 0/1/0 0/1/0 0/1/0 0/3/0 6

ftsP 2/0/0 2/0/0 4

lon 0/0/1 0/0/1 2c

marR 4/4/1 5/3/1 16

mdaB 1/0/0 1

melR 4/0/0 5/0/0 7/0/0 16

menC 0/0/1 0/0/1 2

mngB 2/0/0 2/0/0 4

nudC 2/0/0 3/0/0 5

qor 5/0/0 3/0/0 5/0/0 13

rcnA 1/0/0 1

recO 6/0/0 2/0/0 5/0/0 13

ycbZ 3/4/4 0/1/0 8

ydhW 2/0/0 2

yjjG 3/0/0 4/0/0 5/0/0 12

yjjU 1/0/0 1/0/0 4/0/0 6

yohF 1/0/0 2/0/0 2/0/0 5

ypfI 2/0/0 1/0/0 3

amplifd 0/0/3 0/0/3 0/0/9 0/0/8 0/0/5 0/0/5 33

Total no.e 10/4/4 10/5/5 10/1/9 6/5/9 0/0/5 0/3/5 36/18/37

Combined totalf 10 10 10 12 5 5 52

Total Ng 10 10 10 13 5 5 53

aThe three digits represent the number of populations with SNVs/indels (<50nt)/SVs.
bTotal no. of pops, number of replicate populations affected by variants in the respective gene.
cThese two samples were derived from the same replicate population with different regrowth conditions for sequencing (fig. 1).
damplif, 316-kb amplification containing acrAB.
eTotal no., number of affected replicate populations per treatment and variant type.
fCombined total, number of replicate populations per treatment with any variant.
gTotal N, total number of sequenced populations per treatment.

Table 1

Overview of the Number of Different Variant Types

Variant Type Non-CDS CDS Total

Unique SNVs 1 29 (25 non-SYN) 30

Occurrences 1 108 (73 non-SYN) 109

Non-CDS CDS Total

Unique indels 1 10 (9 frames) 11

Occurrences 6 14 (13 frames) 20

Non-CDS (IS) CDS (IS/DUPa/DEL/INV) Total

Unique SVs 1 (1) 5 (2/1/1/1) 6a

Occurrences 1b (1) 9 (6/1/1/1) 10a,b

Totals Non-CDS CDS Total

Unique variants 3 44a 47a

Occurrences 8b 131a 139a,b

NOTE.—DEL, deletion; DUP, duplication; frame, frameshift; INV, inversion; SYN, synonymous.
aValue excludes the large-scale sequence amplification.
bValue considers only one occurrence of the lon variant, as it occurred in two nonindependent samples from the same replicate
population that were regrown differently before sequencing.
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produced a deletion of four complete codons in marR in only

one of the DOX single drug treatments (DOX; supplementary

table S4, Supplementary Material online). We further detected

six unique SVs (in addition to the large-scale sequence ampli-

fication), consisting of three unique IS events, one duplication

event, one deletion event, and one inversion event (tables 1

and 2, supplementary table S4, Supplementary Material

online).

The distribution of sequence changes showed distinct

differences among the evolution treatments (table 2 and

FIG. 2.—Sequence coverage and location of sequence variations across replicate populations and treatments. Each circular coverage plot represents one

population of the respective treatment. Colored squares indicate different types of mutational changes in the various replicate populations, with the affected

genes marked on the outer ring (i.e., outside the genome position scale). Combination treatments show a higher prevalence of sequence amplification,

especially under high dosage conditions, and contain a smaller number of other variants.
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supplementary table S4, Supplementary Material online;

fig. 2). In the single drug treatments (DOX and ERY), all

populations contained SNVs and approximately half of them

indels and/or SVs. The C50 treatment also had SNVs in all

populations. However, it differed from the single drug

treatments regarding the other variant types, as only one of

the C50 populations was affected by indels, but nine out of

ten by the large sequence amplification. This pattern was even

more pronounced in the high-dosage combination treatment

C100: Of the 13 sequenced susceptible C100_s populations,

only six contained SNVs, five indels, but nine were affected by

SVs. The resistant C100 populations lacked SNVs altogether,

although three out of five samples regrown with antibiotics

for sequencing (C100_r_AB) had indels and all five samples

from both regrowth conditions (C100_r_0 and C100_r_AB)

showed SVs including the large amplification.

Convergent Evolution

The independently evolved replicate populations showed

sequence variations with identical or related functional

consequences, strongly suggesting convergent evolution. In

particular, presence of the large sequence amplification was

significantly enriched in the C50, C100_r_0, and C100_r_AB

treatments (figs. 2 and 3; table 2, and supplementary tables

S3 and S4, Supplementary Material online). For the DOX

monotherapy and the nonresistant C100_s treatment,

independent sequence changes specifically accumulated in

marR (a total of 9 SNVs, 7 indels, and 2 SVs; fig. 2; table 2

and supplementary table S4, Supplementary Material online).

Changes in the ERY populations similarly fell in only few

genes, especially ycbZ (a total of three SNVs, four indels,

and four SVs; fig. 2; table 2 and supplementary table S4,

Supplementary Material online).

Interestingly, convergent changes were observed across

different organizational levels, affecting either the same SNV

at a particular nucleotide position, the same synonymous

mutation within a particular codon, the same gene, or the

same functional unit. For instance, exactly the same SNV in

the gene melR was found in 16 independent replicate popu-

lations of the DOX, ERY, and C50 treatments (table 2 and

supplementary table S4, Supplementary Material online).

Most impressively, a particular synonymous SNV was identi-

fied to cause the same Glycine codon change (GGC to GGG)

in four unrelated genes (mngB, qor, recO, and yohF) for a total

of 35 cases across the DOX, ERY, and C50 treatments (fig. 2,

table 2, supplementary tables S4 and S5, Supplementary

Material online). Several genes also showed an accumulation

of different types of mutational changes, especially the genes

marR and ycbZ (see above, fig. 2 and table 2). At an even

broader level, two main types of functions were particularly

affected by sequence changes across the involved genes: 1)

the AcrA-AcrB-TolC efflux system (e.g., genes acrA, acrB,

acrR, lon, marR, and ycbZ; see fig. 4), supporting its prominent

role in mediating antibiotic resistance, even in populations

without the large-scale sequence amplification and 2) DNA

integrity (e.g., dnaQ, lon, recO, and ycbZ). For these two

types of functions, convergence is particularly common

across the independent populations from the DOX, ERY,

and C50 treatments (fig. 2, table 2, and supplementary

table S4, Supplementary Material online).

Discussion

In this study we analyzed the genomes of 63 available E. coli

populations that rapidly evolved resistance to different

antibiotic treatments under tightly controlled experimental

conditions (Peña-Miller et al. 2013). A specifically tailored

reference genome was used for reliable variant identification,

revealing several distinct genomic sequence changes which

associate with fast bacterial adaptation. Most crucially, our

analyses included high numbers of independent replicate pop-

ulations, allowing us to elucidate convergent patterns of rapid

molecular evolution.

Resistance by Amplification of a Large Sequence Region
Including Multidrug Efflux Pump Genes

The highly resistant populations in our experiment harbored

an amplification of a 316-kb region, thus confirming our own

FIG. 3.—Average sequence coverage for the amplified region across

treatments. Each dot represents the relative coverage of the whole 316-kb

fragment per replicate population. Relative coverage is always normalized

to the average genome coverage of the respective replicate (calculated

excluding the 316-kb region). Treatment labels are as specified in figure 1.

Treatments not sharing a common letter (placed at the top) significantly

differ in their average coverage based on a Tukey HSD test (supplementary

table S3, Supplementary Material online).
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previous results (Peña-Miller et al. 2013) and the identified

genetic basis of evolved E. coli tetracycline resistance in a

previous selection experiment (Nicoloff et al. 2006, 2007).

The amplified region contains the acrAB operon (Peña-Miller

et al. 2013), which encodes two components of the AcrA-

AcrB-TolC multidrug efflux pump (Ma et al. 1995; Nishino and

Yamaguchi 2001; Sulavik et al. 2001; Blair and Piddock 2009;

Symmons et al. 2009). The importance of such membrane

pumps for multidrug resistance has not only been shown for

bacteria (Nikaido and Takatsuka 2009) but also for fungi

(Cannon et al. 2009), malaria (Sanchez et al. 2010), and

human cancer cells (Gillet et al. 2007). Sequence amplification

Table 3

Known Functions of Genes Affected by Variants

Genes and Functions

acrA encodes the component of the AcrA-AcrB-TolC efflux pump (Blair and Piddock 2009; Symmons et al. 2009) which spans the perisplasmic

space connecting AcrB and TolC (Ma et al. 1993, 1995; Zgurskaya and Nikaido 1999, 2000; Higgins et al. 2004; Mikolosko et al. 2006;

Symmons et al. 2009).

acrB encodes the inner membrane pump (Eicher et al. 2009) part of the AcrA-AcrB-TolC efflux pump (Blair and Piddock 2009). It is responsible

for substrate specificity (Elkins and Nikaido 2002).

acrR encodes the repressor of the acrAB operon (Ma et al. 1996). It can bind a variety of structures in its multi-entrance binding pocket (Li et al.

2007; Su et al. 2007; Routh et al. 2009) and disruption of AcrR increases AcrA (Wang et al. 2001) and AcrB levels (Webber and Piddock 2001).

clcB encodes a putative voltage-gated chloride channel, inferred by homology to clcA (Accardi and Miller 2004). ClcA in turn is implied to be

involved in acid resistance (Iyer et al. 2002).

dnaQ encodes the 3’-5’ exonuclease of DNA polymerase III, responsible for fidelity in DNA replication (Scheuermann et al. 1983). Disruption leads

to a transversion mutator phenotype (DiFrancesco et al. 1984; Wu et al. 1990).

frmR encodes a transcriptional repressor of the frmRAB operon (Herring and Blattner 2004), whose products FrmA and FrmB serve to detoxify

formaldehyde (Gutheil et al. 1992; Gonzalez et al. 2006). FrmR is part of the CsoR-like_DUF156 superfamily (Liu et al. 2007) of transcriptional

regulators, some of which are involved in multidrug sensing (Liu et al. 2007).

ftsP (Kato et al. 1988) encodes for a stabilizer of divisome assembly under stress conditions (Samaluru et al. 2007).

lon encodes the Lon protease, responsible for MarA (and SoxS) turnover (Nicoloff et al. 2006; Nicoloff and Andersson 2013) and the variant

found here has been shown to increase IS activity (Nicoloff et al. 2007) and facilitate duplications involving acrAB (Nicoloff and Andersson

2013).

marR encodes the repressor (Seoane and Levy 1995; Maneewannakul and Levy 1996) of marA, which in turn regulates acrAB expression

(Barbosa and Levy 2000).

mdaB encodes an NADPH-specific quinone reductase (Hayashi et al. 1996), involved in a quinone redox cycle in E. coli (Adams and Jia 2005).

melR encodes a regulator of the melAB operon (Hanatani et al. 1984), with MelA an alpha-galactosidase (Schmitt 1968; Burstein and Kepes

1971; Nagao et al. 1988) and MelB a cotransporter of a cation (H+, Na+, Li+) and certain sugars (among them melibiose) (Yazyu et al. 1984;

Wilson DM and Wilson TH 1987; Reizer et al. 1994; Wilson and Ding 2001).

menC (Sharma et al. 1993) encodes the O-succinylbenzoate synthase (OSBS) (Palmer et al. 1999; Thompson et al. 2000). This enzyme is part of

the menoquinone biosynthesis pathway (Bentley and Meganathan 1982). The resulting menoquinone (or vitamin K2) is necessary for anaerobic

growth (Newton et al. 1971).

mngB (recently renamed from ybgG) encodes an alpha-mannosidase (Sampaio et al. 2004)

nudC encodes a member of the nudix hydrolase superfamily (McLennan 2006), thought to be involved in sustaining oxidation under anaerobic

conditions (Frick and Bessman 1995; Bessman et al. 1996).

qor encodes an NADPH:quinone oxidoreductase possibly involved in quinone detoxification (Lilley et al. 1993; Edwards et al. 1994; Thorn et al.

1995; Bolton et al. 2000; Ross 2004)

rcnA encodes a nickel and cobalt efflux protein (Rodrigue et al. 2005). Its repressor RcnR is in the same superfamily as FrmR (see above).

recO encodes a protein that is part of the homologous recombination RecF pathway (Kolodner et al. 1985; Morrison et al. 1989), which is

responsible for the repair of stalled or broken replication forks by homologous recombination (Cox 2007).

ycbZ encodes a putative peptidase with domains homologous to a Lon protease domain (see http://www.uniprot.org/uniprot/C4ZQ81, last accessed

May 28, 2014), suggesting similar functionality.

ydhW is predicted to encode part of an oxidoreductase, probably activated under anaerobic growth conditions (Partridge et al. 2008).

yjjG encodes a nucleotidase from the haloacid dehalogenase (HAD)-like superfamily showing phosphatase activity on dTMP, dUMP, and UMP

(Proudfoot et al. 2004; Kuznetsova et al. 2006) and protects DNA against the potentially mutagenic incorporation of noncanonical pyrimidine

derivatives (Titz et al. 2007).

yjjU encodes a putative transcriptional regulator (Serres et al. 2001) and is inferred by sequence homology to be a lipid hydrolase (see http://

www.uniprot.org/uniprot/P39407, last accessed May 28, 2014). It is upregulated when mitomycin C causes DNA damage in cells (Khil and

Camerini-Otero 2002).

yohF encodes a putative acetoin dehydrogenase (diacetyl reductase) (Reed et al. 2003).

ypfI (recently renamed to tmcA), encodes an enzyme which specifically acetylates the wobble base of E. coli elongator tRNA(Met) (Ikeuchi et al.

2008) which is required for correct AUG codon recognition.
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of genes encoding such pumps can increase the number of

efflux pumps in the cell membrane and thus the ability of

microbes to cope with antifungal drugs (Selmecki et al.

2008) or antibiotics (Sandegren and Andersson 2009).

Interestingly, the genomic mechanism of sequence amplifica-

tions does not only contribute to antibiotic resistance evolu-

tion but also seems to represent a more general adaptive

strategy of bacteria against highly stressful environments, as

previously illustrated during carbon starvation, heat, or heavy

metal stress (Andersson and Hughes 2009).

Large-Scale Sequence Amplification Scales to Selection
Pressure

As an important extension to our previous findings (Peña-

Miller et al. 2013), our new analyses demonstrate that the

amplification level (i.e., the copy number of the amplified

chromosomal segment) is significantly higher when drug

dosage and thus selection intensity is increased (in the C100

treatment compared with C50). Interestingly, resistance evo-

lution over the 5 days of our experiment is less frequent under

the higher dosage combination treatment (5 out of 18

sequenced C100 populations compared with 10 out of 10

in C50) and appears asynchronously in C100, when compared

with the C50 populations developing resistance almost in

unison. This suggests that a higher drug dosage selects for a

copy number above two, which is much less probable and

requires a longer waiting time. This is very likely connected

to 1) the molecular mechanism of sequence amplification and

2) differential initial growth capabilities in the different

combination treatments. The location of the amplification

breakpoints in two identical IS gene copies (insH) suggests

homologous recombination to be the main duplication

mechanism (e.g., Roth et al. 1996; Lovett 2004; Hastings

et al. 2009). Assuming such a mechanism, a duplication

only requires one step of amplification, whereas a triplication

would require two consecutive steps. As 3–10% of cells in any

population are estimated to bear a duplication of some chro-

mosomal segment (Anderson and Roth 1981; Roth et al.

1996), the acrAB containing duplication is probably present

in the inoculation culture at high enough frequencies to be

transferred into all replicate populations of the experiment.

This enables populations in C50 replicates to almost immedi-

ately resume exponential growth. In the C100 treatment, cells

with the same duplication would have an increased chance of

survival but would require a further recombination event to

resume normal growth—which is probably the reason for the

asynchronous waiting times. In addition, most recombination

mechanisms rely on replication of the chromosome, which is

only initiated once per cell cycle (see e.g., Mott and Berger

2007) and further amplifications should therefore only appear

in growing populations. As C100 populations do survive, but

initially show no visible growth, the necessary amplification

event is even less likely, providing a further explanation for

the lower abundance of resistant populations and the differ-

ent waiting times.

Large-Scale Sequence Amplification Is Unstable

When the highly resistant C100 populations with 3-fold

amplifications were regrown in the absence of antibiotics

(C100_r_0), amplification levels dropped significantly within

24 h (fig. 3). A similar effect was recently found, where an

adaptive sequence amplification in E. coli was shown to entail

a fitness cost (Adler et al. 2014). This suggests that amplifica-

tions generally come at high fitness costs and are lost from the

population when favorable selection subsides (e.g., because

drug treatment ceases) and/or when other types of resistance

mutations (e.g., based on SNVs) occur and spread through the

bacterial populations (Andersson and Hughes 2009;

Sandegren and Andersson 2009; Adler et al. 2014).

FIG. 4.—Components of the AcrA-AcrB-TolC efflux pump regulon. Bold labels point to genes or regulatory sequences with mutational changes in the

evolved populations that are either known or likely to affect gene function, as indicated. Gene lengths are drawn to scale, with mar-genes depicted at �4

magnification compared with all others.
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Convergent Functional Targets in Resistance Evolution:
AcrA-AcrB-TolC Efflux Pump and Genome Integrity

The general importance of the 316-kb amplification for fast

adaptation is especially emphasized by the convergent

patterns found across the independent replicate populations.

Almost all resistant multidrug (C50 and C100) and some

monotherapy populations (DOX and ERY) contained the

sequence amplification. Such patterns of convergent

evolution (convergent evolution as defined by Arendt and

Reznick [2008]) are usually taken as a strong indication for

the particular adaptive value of the identified mechanism

and/or affected function (Christin et al. 2010; Wake et al.

2011)—irrespective of convergence being due to selection

on standing or de novo sequence variation. In our case,

convergent sequence amplification was mainly found in the

multidrug treatments, especially when selection intensity is

high. Interestingly, our new refined analyses demonstrate

that convergent evolution of the acrAB locus is not restricted

to the amplification and also not to the multidrug treatments.

In populations lacking the amplification, mutational changes

were identified in the same locus and in genes from the same

regulon (figs. 2 and 4; table 2 and supplementary table S4,

Supplementary Material online). Two of the affected genes,

acrA and acrB, encode components of the AcrA-AcrB-TolC

efflux pump (Ma et al. 1993, 1995; Elkins and Nikaido 2002;

Eicher et al. 2009; Symmons et al. 2009). Four additional genes

likely influence regulation of acrAB (acrR, marR, lon, and pos-

sibly ycbZ; fig. 4 [Seoane and Levy 1995; Ma et al. 1996;

Maneewannakul and Levy 1996; Barbosa and Levy 2000;

Nicoloff et al. 2006]). Moreover, two of the four genes

(marR and ycbZ) are affected by a particularly high number

of mutational changes, further emphasizing their possible

adaptive value.

Our new results additionally revealed convergent evolution

in genes involved in the maintenance of genome integrity and

repair (i.e., lon, ycbZ, recO, and dnaQ). In detail, deficiencies in

the Lon protease result in the activation of ISs (Nicoloff et al.

2007), which might lead to an elevated overall mutation rate

in the genome (Chao et al. 1983) and a Lon protease

deficiency has explicitly been shown to facilitate sequence

duplications involving the acrAB locus (Nicoloff and

Andersson 2013). A similar function may be expressed by

ycbZ, which shows domain homology to the Lon protease

(see http://www.uniprot.org/uniprot/C4ZQ81, last accessed

May 28, 2014). RecO is part of the RecF pathway involved

in repair of stalled or broken replication forks (Kolodner et al.

1985; Morrison et al. 1989; Cox 2007) and might affect oc-

currence of large insertions, deletions, and duplications (Lovett

2004). DnaQ influences DNA polymerase III fidelity

(Scheuermann et al. 1983), and its disruption leads to a trans-

version mutator phenotype (DiFrancesco et al. 1984; Wu et al.

1990). Mutations in these four genes may therefore prove

advantageous, especially in stressful conditions (Taddei et al.

1997), where the benefits of elevated mutation rates allowing

fast adaptation outweigh the costs of deleterious mutations

(Sniegowski et al. 1997). In such cases, mutators may arise

and will—at least transiently—constitute a significant and de-

tectable part of the population (Tenaillon et al. 2004;

Galhardo et al. 2007; MacLean et al. 2013). Such mutator

phenotypes are indeed common in resistant and pathogenic

clinical isolates of various bacteria (LeClerc et al. 1996; Matic

et al. 1997; Oliver et al. 2000; Lindgren et al. 2003). Even

though a direct increase in mutation rate in the affected sam-

ples would not be discernible in our data, the above sequence

variants could still have aided adaptation to antibiotics in our

experimental populations—making these genes interesting

candidates for future studies on the mechanisms of resistance

evolution.

Convergence at the mRNA Level: Synonymous Glycine
Codon Changes

Overall, our analyses identified patterns of convergent evolu-

tion across different levels of biological organization (see also

Losos 2011). In addition to the above observations, made at

the functional and gene level, our new results also show an

unusual case of convergence at the mRNA level. Four

synonymous SNVs (one each in mngB, qor, recO, and yohF)

each occurred in 4–13 independent replicates of the DOX,

ERY, and C50 treatments. Each of these SNVs changed a

GGC to a GGG Glycine codon (supplementary table S5,

Supplementary Material online). The distribution of this

particular synonymous change across unrelated genes and

independent replicate populations strongly suggests an

adaptive value of the resulting codon change. A fitness

effect underlying such a possible adaptive value could come

from a change in mRNA stability and/or the abundance of

encoded proteins, both of which are possible results of

synonymous SNVs (reviewed in Plotkin and Kudla 2011;

Shabalina et al. 2013). Interestingly, synonymous codon

change in an antibiotic resistance gene was previously

shown to associate with a fitness increase (Schenk et al.

2012). In general, however, we still lack an in-depth

understanding of the role of these synonymous changes

during rapid adaptation—clearly requiring further research,

particularly in the context of antibiotic resistance evolution.

Conclusions

In conclusion, our genomic analyses of 63 independently

evolved replicate populations from distinct antibiotic

treatment groups revealed comprehensive convergent evolu-

tion, strongly suggesting constrained evolutionary trajectories

during the adaptation to antibiotics. High selection pressure

during multidrug treatments, especially under the high-

dosage conditions, specifically favored amplification of a

large genomic region, containing known antibiotic resistance

genes such as components of the AcrA-AcrB-TolC efflux
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pump. We identified amplification as a potent and scalable

response mechanism with a high evolutionary cost, most likely

leading to its transient presence in the adapting populations.

Less intense selection in the single drug treatments favored

convergent mutational changes in several trait functions,

including the AcrA-AcrB-TolC system and DNA integrity. In

addition, we discovered that synonymous SNVs are an inter-

esting candidate for advantageous sequence changes during

adaptation. Taken together, distinct selective challenges are

countered by different genomic response mechanisms, each

enabling continued bacterial growth in an unfavorable

environment. Thus, increased antibiotic stress does not neces-

sarily lead to bacterial elimination but rather causes a change

in the set of genomic adaptations.

Supplementary Material

Supplementary material is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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