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Numerous studies have proposed search engine-based estimation of COVID-19 prevalence
during the COVID-19 pandemic; however, their estimation models do not consider the
impact of various urban socioeconomic indicators (USIs). This study quantitatively analysed
the impact of various USIs on search engine-based estimation of COVID-19 prevalence using
15 USIs (including total population, gross regional product (GRP), and population density)
from 369 cities in China. The results suggested that 13 USIs affected either the correlation
(SC-corr) or time lag (SC-lag) between search engine query volume and new COVID-19 cases
(p <0.05). Total population and GRP impacted SC-corr considerably, with their correlation
coefficients r for SC-corr being 0.65 and 0.59, respectively. Total population, GRP per capita,
and proportion of the population with a high school diploma or higher had simultaneous
positive impacts on SC-corr and SC-lag (p <0.05); these three indicators explained 37e50% of
the total variation in SC-corr and SC-lag. Estimations for different urban agglomerations
revealed that the goodness of fit, R2, for search engine-based estimation was more than 0.6
only when total urban population, GRP per capita, and proportion of the population with a
high school diploma or higher exceeded 11.08 million, 120,700, and 38.13%, respectively. A
greater urban size indicated higher accuracy of search engine-based estimation of COVID-19
prevalence. Therefore, the accuracy and time lag for search engine-based estimation of in-
fectious disease prevalence can be improved only when the total urban population, GRP per
capita, and proportion of the population with a high school diploma or higher are greater
than the aforementioned thresholds.
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1. Introduction

As of 1 January 2022, the global COVID-19 pandemic had reached more than 350 million infections and 5.5 million deaths
worldwide. Early estimation of COVID-19 prevalence is necessary to facilitate early response and resource allocation (Ding
et al., 2021). Previously, infectious diseases were primarily monitored using reports from primary hospitals and medical
institutions at a higher level (Centers for Disease C.& Prevention, 2003). This direct reporting system cannot adequately assist
in monitoring the presence of emerging or unexpected infectious diseases (e.g. COVID-19) because it depends heavily on
laboratory tests and has a considerable time lag.

As information on COVID-19 has primarily been acquired via the Internet during the pandemic (Hoogeveen & Hoogeveen,
2021), Internet big data-based official forecasting systems have been developed in many countries and have achieved
remarkable results (Luo, 2021; Valentin et al., 2021). Search engine data, which play an integral part in Internet big data, have
substantially contributed to infectious disease forecasting (Li, Liang, et al., 2020). During public health emergencies, local
COVID-19 information and disease symptoms generally received the highest attention (Du et al., 2020). With increasing
Internet access, people have gradually shifted from obtaining information from newspapers and television to obtaining it
from the Internet. Owing to fear of the pandemic, individuals experiencing physical discomfort often enter their symptoms in
a search engine to query whether their symptoms match those of COVID-19 before seeking medical advice. Therefore, the
prevalence of COVID-19 can be estimated using search engine data related to COVID-19 symptoms.

Search engine-based estimation of infectious disease prevalence can be traced back to flu forecasting. A regression
forecasting model was established for a flu pandemic using Google Trends (GT), and a comparison between forecast results
obtained from 2003 to 2007 and the American Center for Disease Control and Prevention (CDC) data revealed that the mean
correlation coefficient reached 0.90 and the flu could be forecasted one to two weeks in advance; this resulted in the for-
mation of the Google Flu Trends (GFT) prototype (Ginsberg et al., 2009).

That study also presented two critical indicators for search engine-based estimation of infectious disease prevalence:
correlation (SC-corr) and time lag (SC-lag). Correlation indicates the relationship between search volume and cases, which
directly determines the estimation accuracy. Time lag indicates the time difference between the forecast and actual results,
which directly determines timeliness. These two indicators are used in almost all studies related to search engine-based
estimation of infectious disease prevalence.

During the COVID-19 pandemic, Kurian et al. (2020) collected the GT index for 10 COVID-19 keywords from January to
April 2020 for all the states of the United States of America and analysed their correlations with COVID-19 cases. Their results
revealed that the correlation coefficients between ‘Facemask’, ‘Lysol’, and ‘COVID stimulus check’ and the COVID-19 pandemic
16 days before the first COVID-19 cases were reported were 0.88, 0.92, and 0.79, respectively (Kurian et al., 2020). Further, Li,
Chen, et al. (2020) retrospectively analysed the Baidu index and found that the correlation coefficients between keywords and
daily incidence of COVID-19 were more than 0.89, with a time lag of 6e12 d, thereby exhibiting remarkable correlations.

Jimenez et al. (2020) summarised the studies conducted on the search engine data-based estimation of COVID-19 prev-
alence (as of August 2020) and found that the correlations were predominantly estimated using the GT and Baidu indices. In
other studies, ten or fewer keywords were selected and their significant correlations were noted before the COVID-19
outbreak, and the minimum and maximum time lags were 1e3 d (Husnayain et al., 2020) and 18e22 d (Lu & Reis, 2020),
respectively.

HealthMap is one of themost widely known global infectious disease forecasting, surveillance, and early warning systems.
Operated by Boston Children's Hospital, it acquires Internet big data (Brownstein & Freifeld, 2007) from various sources (e.g.
social media, news reports, online search queries) using artificial intelligence technologies to monitor disease outbreaks. The
initial alarm for the global COVID-19 pandemic was signalled by HealthMap, which demonstrates its accuracy and predictive
capability (Cho, 2020).

Studies on search engine-based estimation of infectious disease prevalence are subject to defects and uncontrollable
factors. For example, GFT failed to estimate the H1N1 pandemic in 2009 (Olson et al., 2013) and overestimated the severity of
the flu pandemic in the United States of America in 2013 (Butler, 2013). Multiple factors affect the search habits of individuals,
which then impact the estimation accuracy. One such fundamental factor is that the search habits of people from different
cities may not be similar and may even vary substantially. Although cities differ in size, most estimation studies integrate
almost all cities to form datasets rather than analysing them separately.

As demonstrated by some phenomena during the COVID-19 pandemic, the spatial distribution characteristics of search
volumes are related to the regional population and economic level. For example, the pandemic search volume is relatively
high and search habits are complicated in economically developed and densely populated areas (e.g. Beijing, Shanghai,
Guangdong, Sichuan, and Hubei) (Zhu et al., 2020). Therefore, temporal characteristics and regional differences should be
considered when estimating COVID-19 prevalence using search engine data.

In our literature review, we found no studies that quantitatively analysed the impact of USIs2 on the search engine-based
estimation of COVID-19 prevalence. To address this issue, we quantitatively analysed the impact of various USIs on SC-corr
and SC-lag based on COVID-19 epidemiological data from 369 cities in China. The COVID-19 prevalence in cities of
2 Abbreviations: urban socioeconomic indicator (USI); gross regional product (GRP); correlation (SC-corr); time lag (SC-lag); correlation coefficients r;
goodness of fit R2.

118



L. Wang, M. Lin, J. Wang et al. Infectious Disease Modelling 7 (2022) 117e126
different sizes was estimated using the search engine and a direct comparison of estimation accuracies and threshold cal-
culations was performed. Our study will provide a reference for other studies on search engine-based estimation of infectious
disease prevalence.

2. Methodology

2.1. Data collection and screening

We collected data from 369 cities in 31 provinces and regions of China. They consisted of 15 USIs: total population;
population density (total urban population divided by urban area); GRP (GDP of a city in one year); proportions of primary,
secondary, and tertiary sectors in GRP (primary sector: agriculture; secondary sector: handicraft; tertiary sector: modern
service or business); GRP per capita; public budget revenue (tax-based fiscal revenue); public budget expenditure (fiscal
expenditure); education expenditure; science and technology expenditure; rate of natural increase (natural increase in urban
population in one year divided by average urban population over the same period); proportion of the population with a high
school diploma or higher; urbanisation rate (urban population divided by total urban population); and proportion of the
population aged 0e39 y.

We obtained the Baidu search index for the 369 cities during the COVID-19 pandemic using search engine web crawlers.
Based on the topics (e.g. symptoms, pathogens, geographical areas, and actions against COVID-19), 32 COVID-19-related
keywords were selected (see Supplementary Materials Table S1).

We obtained information regarding daily new COVID-19 cases in the 369 cities from the websites of provincial health
commissions in China (see Supplementary Materials Table S2). The start date was January 20, 2020, as statistics on new
COVID-19 cases before this date were not recorded in most cities. Since March 2020, the number of daily new COVID-19 cases
in most cities in China was zero for several consecutive days. As data with no new COVID-19 cases are insignificant to the
results, only new COVID-19 cases occurring in the early stage of the COVID-19 outbreak were selected.We selected 44 cities of
different sizes as USI samples where more than 100 cumulative COVID-19 cases were reported; the daily new COVID-19 cases
and Baidu index for keywords in each city from January 20, 2020 to February 29, 2020 were selected as the samples for the
search engine-based estimation.

2.2. Correlation and time lag

Correlation denotes the relationship degree (or connectedness) between two variables, expressed quantitatively by the
correlation coefficient. Time lag, which denotes the interval between two variables, is expressed quantitatively by lag time. In
this study, the correlation between the Baidu index for search keywords and new COVID-19 cases in each city (hereinafter SC-
corr) and the time lag between the Baidu index for search engine keywords and new COVID-19 cases (hereinafter SC-lag)
occurred sequentially. The following rules were followed: correlation coefficient (r) values of 0.6 or more, 0.4e0.6, and
less than 0.4 indicated high, medium, and low correlation, respectively. Time lags of 6 or more, 4e6, and less than 4 d
indicated high, medium, and low lag, respectively.

2.3. Fitted model

This study quantitatively analysed the impact of various USIs on the estimation of COVID-19 prevalence based on search
engine data using linear fitting. As USIs involve multiple dimensions and substantial collinearity is present between data of
different dimensions, we investigated the impacts using univariate linear fitting on the data. The fitting function is as follows:

yi ¼ ai þ bixi þ εi (1)

where i, the number of variables, and yi, the output variable, denote the fitted values of Pearson's correlation coefficient and
lag time for daily new COVID-19 cases and the Baidu index for keywords for 44 cities, respectively. ai denotes a constant term,
bi denotes a fitting coefficient, xi denotes a USI, and εi denotes an error.

When the correlation coefficient and lag time were considered simultaneously, we performed the analysis using three-
dimensional surface fitting. The fitting function is as follows:

zi ¼ ai þ mixi þ wiyi þ sixiyi þ mixi
2 þ tiyi

2 þ εi (2)

where i denotes the number of variables; zi denotes the output variable; ai denotes a constant term; mi; wi; si; mi; and ti
denote a fitting coefficient; xi and yi denote USI; and εi denotes an error.

2.4. Urban classification criteria

During estimation, we classified cities of different sizes into urban agglomerations and used them as the datasets to
simulate the actual estimates. We defined the urban classification indicators as follows:
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C¼
Yb
i¼1

�
1þ xi � xi Min

xi Max � xi Min

�
(3)

where C denotes the size indicator for our classification and b denotes the number of urban indicators that can have a
substantial and simultaneous effect on correlation and time lag. During estimation, USIs that could affect SC-corr and SC-lag
significantly and simultaneously were substituted into Eq. (3) to calculate the urban classification indicator C. Based on the
values of C, the cities were divided into five levels: Level Ⅴ (super cities), Level Ⅳ (megacities), Level III (big cities), Level II
(medium-sized cities), and Level I (small cities) (see Supplementary Materials Table S3).
2.5. Estimation model

We analysed the quantitative relationship between the search engine data and the number of new COVID-19 cases and
established estimation models for all cities. People often use multiple related keywords rather than one keyword when
searching for information about COVID-19; as we used COVID-19-related keyword sets, this resulted in data multicollinearity.
Consequently, the search index for each keyword was highly correlated with each other (see Supplementary Materials
Fig. S1). We eliminated collinearity and generated sparse solutions using L1 regularisation (Lasso regression) to ensure ac-
curacy, robustness, and stability of results. The loss function for the Lasso regression model used in this study is as follows:

J¼ 1
2m

Xm
t¼1

 
logðYtÞ �

Xn
i¼1

bs;ilg
�
Xtþs;i

�� m

!2

þ l

 Xn
i¼1

bs;i

!
(4)

where l denotes the penalty coefficient, bs;i and Xtþs;i respectively denote the regression coefficient and relative index for
keyword i after a lag of s day(s), n denotes the number of selected keywords, and m denotes the sample size.
3. Results

3.1. Analysis results of SC-corr and SC-lag

Based on the comparisons between the Baidu index for 32 keywords and correlation coefficients for daily new COVID-19
cases in China (see Supplementary Materials Table S1), a trend analysis was performed on the Baidu index for five keywords
with r > 0.8 and daily new COVID-19 cases (Fig. 1).

Fig. 1 intuitively shows that the wave shapes for the Baidu index for the five keywordsdnamely, ‘Fever’, ‘Cough’, ‘Fatigue’,
‘Coronavirus’, and ‘Novel coronavirus’dand daily new COVID-19 cases in China remained similar. In addition, the wave peak
position indicates that a lag timewas present. The presence of the lag time is attributable to the fact that the incubation period
for COVID-19 is 1e14 d and the Baidu index is likely to rise a few days before a surge in the number of newCOVID-19 cases. We
obtained the mean correlation coefficient set with a lag time of 1e14 d by moving the time series for the Baidu index for five
keywords and daily new COVID-19 cases in each city and selecting the maximum correlation coefficient and corresponding
time as the correlation coefficient and the lag time for each city, respectively. Thereafter, we calculated and screened out the
correlation coefficients and lag times of the 44 cities used in this study (see Supplementary Materials Table S4).

From the results, the proportions of cities with a high, medium, and low correlation were 34.1%, 36.4%, and 29.5%,
respectively, and the proportions of cities with a high, medium, and low lag were 22.7%, 38.6%, and 38.7%, respectively in the
44 cities of different sizes where more than 100 cumulative confirmed COVID-19 cases were reported in China (Fig. 2).

It is noteworthy that, of the 44 cities, the Pearson correlation coefficient values and lag times were surprisingly low solely
for Jining. This is because most COVID-19 infections occurred in a Jining prison on February 22, 2020 and led tomore than 200
Fig. 1. Baidu index for five keywords with maximum correlation coefficient and new COVID-19 cases in in 2020. Because the Baidu index and confirmed cases
vary extensively in terms of unit and order of magnitude, the Baidu index and new confirmed cases were standardised to a scale ranging from 0 to 100 for an
intuitive comparison.
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Fig. 2. Correlation and time lag between the Baidu index and new cases in cities heavily affected by COVID-19 in China. A) SC-corr distribution. B) SC-lag
distribution.
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new COVID-19 cases on the same day. No more than 10 daily new COVID-19 cases were reported within the selected date
range, excluding February 22, 2020, for which a surge in the number of new COVID-19 cases was reported. This abnormal data
fluctuation led to confusion about the correlation coefficient and lag time. Therefore, to avoid the impact on the results, Jining
was considered a bad datapoint and rejected; thus, the impact of USIs was analysed using data from the remaining 43 cities
only.
3.2. Analysis results of the impacts of USIs on SC-corr and SC-lag

We conducted the fitting analysis using 15 USIs and compared them with their SC-corr and SC-lag, respectively (Fig. 3).
During the estimation of COVID-19 prevalence, a higher SC-corr and SC-lag indicated a more accurate estimation result and
greater practical significance. During the fitting analysis, we selected the aforementioned strong correlation (r >0.6) and
strong time lag (lag time of >6 d) as the thresholds for determining good estimation results and took the first city that
exhibited a greater correlation and time lag than the thresholds as the threshold city (Table 1).

Regarding correlation, the fitting equations for the total population, population density, GRP, proportion of tertiary sector
in GRP, GRP per capita, public budget revenue, public budget expenditure, education expenditure, science and technology
expenditure, proportion of population with a high school diploma or higher, and urbanisation rate passed the significance
test, proving that these USIs substantially affect SC-corr. The correlation coefficients for total population and GRP, r;were 0.65
and 0.59, respectively. Only the goodness of fit R2 values for total population, GRP, public budget revenue, and education
expenditure exceeded 0.5, and these four USIs respectively explain 41.95%, 34.84%, 22.79%, and 23.20% of the data fluctua-
tions, suggesting that they had a greater impact than the other USIs.

The results for the impact of various USIs on time lag are very different. The fitting equations for population density, GRP,
GRP per capita, proportion of high school and above, urbanisation rate, and proportion of population aged 0e39 years passed
the significance test, proving that these USIs substantially affect SC-lag. However, for most USIs, with r values being less than
0.45, only the proportion of population with a high school diploma or higher had a goodness of fit of more than 0.2. These
results indicate that USIs have a greater impact on SC-corr than SC-lag.

The accuracy of estimation of COVID-19 prevalence was subject to SC-corr and SC-lag. After considering the correlation
coefficient and lag time simultaneously, it was found that the USI results converged significantly, only three of the 15 USIs
(total population, GRP per capita, and populationwith a high school diploma or higher) passed the significance test. We listed
the threshold cities for SC-corr and SC-lag in Table 1 and used them as the reference standards for screening data during
COVID-19 forecasting. If the USI values were below the thresholds, SC-corr and SC-lag for that city would be considered weak,
and estimating COVID-19 prevalence in those cities using USIs as the data source would not have distinct significance, and
could even affect the objectivity of the results.
3.3. Impact of USIs on estimation

Within the selected date range, Lasso regression models were respectively established for cities of five levels using the
Baidu index for the five search keywords ‘Fever’, ‘Cough’, ‘Fatigue’, ‘Coronavirus’, and ‘Novel coronavirus’, and daily new
COVID-19 cases (Fig. 4). Thereafter, the estimation performances for cities of different levels were compared directly within
the selected date range (Table 2).
121



Fig. 3. Impact of USIs on correlation (SC-corr) and time lag (SC-lag). A) Impact of USIs on SC-corr. Solid red line indicates linear fitting results, and dashed red line
indicates the dividing line between high correlation and medium correlation. B) Impact of USIs on SC-lag. Solid blue line indicates linear fitting results, and
dashed blue line indicates the dividing line between high hysteresis and medium hysteresis. C) Impact of USIs on SC-corr and SC-lag. Yellow surface indicates
fitting results and grey area indicates the 95% confidence interval belt.
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The results demonstrate that it is feasible to conduct search engine-based estimation of COVID-19 prevalence for cities of
different sizes (p < 0.001); however, the estimation accuracies varied substantially. For USIs from Level Ⅴ cities, the search
122



Table 1
Fitted model for USIs and SC-corr as well as SC-lag.

Indicators Total
population
(million)

Population
density
(relative
value)

GRP
(billion)

Proportion
of primary
sector in
GRP (%)

Proportion
of
secondary
sector in
GRP (%)

Proportion
of tertiary
sector in
GRP (%)

GRP per
capita
(thousand)

Public
budget
revenue
(relative
value)

Public
budget
expenditure
(relative
value)

Education
expenditure
(relative
value)

Science and
technology
expenditure
(relative
value)

Rate of
natural
increase
(%)

Proportion
of
population
with a high
school
diploma or
higher (%)

Urbanisation
rate (%)

Proportion
of
population
aged 0e39
years (%)

Strong correlation (critical value: r ¼ 0.6)
Threshold 14.01 3.271 1593 NA NA 62.56 143.5 7.28 7.48 6.63 6.13 NA 40.87 82.70 NA
Threshold

city
Guangzhou
(14.90)

Guangzhou
(3.302)

Tianjin
(1881)

NA NA Hangzhou
(63.90)

Guangzhou
(155.4)

Chongqing
(7.36)

Shenzhen
(7.63)

Guangzhou
(6.64)

Guangzhou
(6.21)

NA Shenzhen
(41.55)

Tianjin
(83.15)

NA

r 0.65 0.41 0.59 �0.27 �0.36 0.49 0.39 0.50 0.47 0.50 0.47 0.09 0.45 0.45 0.29
Fitting R2 0.4195 0.1663 0.3484 0.1435 0.1070 0.2209 0.1490 0.2279 0.2028 0.2320 0.2049 0.0082 0.1997 0.2018 0.0835
Fitted p

value
<0.0001 <0.05 <0.0001 Not

significant
Not
significant

<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 Not
significant

<0.05 <0.05 Not
significant

Strong hysteresis (critical value: lag time ¼ 6)
Threshold NA 3.239 1984 NA NA NA 127.7 NA NA NA NA NA 37.71 79.9 64.74
Threshold

city
NA Guangzhou

(3.302)
Chongqing
(2036)

NA NA NA Ningbo
(132.6)

NA NA NA NA NA Tianjin
(38.13)

Wuhan
(80.04)

Guangzhou
(65.01)

r 0.17 0.33 0.32 �0.21 �0.08 0.17 0.39 0.07 0.03 0.02 0.10 0.30 0.45 0.40 0.32
Fitting R2 0.0277 0.1103 0.1020 0.0229 0.0178 0.0073 0.1556 0.0097 0.0042 0.0007 0.0121 0.0873 0.2018 0.1563 0.1044
Fitted p

value
Not
significant

<0.05 <0.05 Not
significant

Not
significant

Not
significant

<0.05 Not
significant

Not
significant

Not
significant

Not
significant

Not
significant

<0.05 <0.05 <0.05

Strong correlation and strong hysteresis
Threshold Guangzhou

(14.90)
NA NA NA NA NA Guangzhou

(155.4)
NA NA NA NA NA Xi'an (42.67) NA NA

Fitting R2 0.50 0.17 0.26 0.09 0.08 0.21 0.45 0.22 0.20 0.23 0.19 0.03 0.37 0.27 0.09
Fitted p

value
<0.05 Not

significant
Not
significant

Not
significant

Not
significant

Not
significant

<0.05 Not
significant

Not
significant

Not
significant

Not
significant

Not
significant

<0.05 Not
significant

Not
significant
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engine-based estimation of the COVID-19 prevalence model performed exceptionally well (adjusted R2 value ¼ 0.711). For
USIs from LevelⅣ cities, the adjusted R2 value fell to 0.601. For USIs from Levels IeIII cities, the estimation accuracies were low
(adjusted R2 values < 0.55), resulting in unsatisfactory estimation results. These results differed because the search habits and
patterns of citizens in cities of different sizes vary substantially, and the search engine data from cities of greater sizes are
more closely related to their local COVID-19 prevalence. Typically, greater values of USIs indicate a higher estimation accuracy
and a lower error.

The results show that low-level cities affect the overall result accuracy of estimation if all cities are combined into a dataset
without urban size differentiation. If the adjusted R2 value estimated to be > 0.6 met the acceptable minimum requirement,
the low-level cities may be necessarily rejected, and only USIs from Level Ⅳ cities would be included in the dataset to ensure
estimation accuracy. Therefore, we concluded that total population, GRP per capita, and proportion of the population with a
high school diploma or higher can be used as variables for estimation of COVID-19 prevalence only when they are more than
11.08 million, 120,700, and 38.13%, respectively.
Fig. 4. Effects of search engine data-based actual estimation of COVID-19 prevalence in cities of different levels. A) Proportions of USIs from cities of different
levels. The respective medians of 15 USIs from Levels IeⅤ cities were selected to avoid the impact of abnormal values and ensure objective comparisons. B)
Estimation results for Level Ⅴ cities. C) Estimation results for Level Ⅳ cities. D) Estimation results for Level III cities. E) Estimation results for Level II cities. F)
Estimation results for Level I cities.
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Table 2
Size range of urban agglomerations of different levels and model performance during the actual estimation.

Model performance Level I cities Level II cities Level III cities Level Ⅳ cities Level Ⅴ cities

Classification criteria C < 1.9 1.9 < C < 2.8 2.8 < C < 3.7 3.7 < C < 4.6 C > 4.6
Total population (million) 0.97e10.01 1.07e9.52 8.15e30.75 11.08e15.57 14.90e24.18
GRP per capita (thousand) 21.6e79.5 59.2e132.6 65.9e140.2 120.7e135.1 135.0e190.0
Proportion of population with a high school

diploma or higher (%)
9.90e27.98 19.74e34.67 21.70e42.67 38.13e46.97 41.55e52.72

Lasso regression k value 0.28 0.36 0.27 0.16 0.1
p value <0.001 <0.001 <0.001 <0.001 <0.001
Adjusted R2 value 0.460 0.493 0.508 0.601 0.711
RMSE 0.575 0.527 0.346 0.290 0.305
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4. Discussion

This study pioneered the analysis of the impact of USIs on search engine-based estimation of COVID-19 prevalence. With
growing access to the Internet and the rise of big data, the estimation of infectious disease prevalence based on search engine
data, characterised by high speed, accurate results, and universal application scope, can be performed extensively. For
example, the utilisation of such estimation in combinationwith traditional disease surveillance systems during the COVID-19
pandemic demonstrated its substantial benefits and practical significance, resulting in numerous studies on search engine-
based estimation. However, almost all studies took search engine data from a country or region as a whole, and did not
consider the remarkable differences in search engine data between cities of different sizes, thereby resulting in low esti-
mation accuracy.

We used 15 USIs from 369 cities of different sizes in 31 provinces in China, of which 44 cities in 15 provinces were heavily
affected by COVID-19. Specifically, 15 USIs, which represented a large sample set, were used for each city to produce uni-
versally applicable results. We quantitatively analysed and calculated SC-corr and SC-lag for cities of different sizes, and
performed the fitting analyses of USI and SC-corr as well as USI and SC-lag; USIs that affected SC-corr and SC-lag were
screened, and relevant threshold cities were determined by calculation. The study results can help public health authorities
select varying strategies for cities of different sizes in terms of forecasting and early warning of COVID-19 to effectively
improve estimation accuracy.

The study findings revealed that search engine data from larger cities are more closely related to COVID-19 prevalence and
search engine-based estimation is feasible. The estimation can be conducted more than six days in advance only for a few
cities. The total population, GRP, public budget revenue, and education expenditure significantly affected the estimation
results; total population determines the urban size, GRP determines the degree of urban economic development, public
budget revenue determines the income level of urban residents, and education expenditure determines the number of urban
schools and education quality.

We believe that a reasonable factor involving high-level government administration, improved policies, a sophisticated
query platform for COVID-19 information, high quality of life of residents, and their growing willingness to enquire about
COVID-19 information on the Internet to determine whether they should go to a hospital for further examinations in cities
with high USI values led to the considerable correlation between search engine data and local COVID-19 prevalence.

We conducted the estimations using search engine data and the number of new cases in urban agglomerations of different
levels, respectively. Our results verified the analysis results of SC-corr and SC-lag, and revealed that greater urban size cor-
relates with higher estimation accuracy, which is consistent with the conclusion. In addition, we presented thresholds for
USIs that may be referenced for screening datasets during estimation; cities with the total population, GRP per capita, and
proportion of the populationwith a high school diploma or higher exceeding 11.08 million, 120,700, and 38.13%, respectively,
exhibited a higher goodness of fit R2 in COVID-19 prevalence estimation.

5. Conclusion

This study is the first to quantitatively analyse the impact of 15 USIs on search engine-based estimation of COVID-19
prevalence. The results reveal that cities of different sizes exhibit varying degrees of accuracy and time lags for search
engine-based estimation of COVID-19 prevalence, and the accuracy of search engine-based estimation of infectious disease
prevalence could meet the expectation only when the total urban population, GRP per capita, and proportion of population
with a high school diploma or higher exceeded 11.08 million, 120,700, and 38.13%, respectively. The accuracy and time lag for
search engine-based estimation of infectious disease prevalence were effectively improved based on our study. This study
provides a reference for the practical implementation of search engine-based estimation of infectious disease prevalence.
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