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Abstract

Being proficient in several foreign languages is an essential part of every-day life. In contrast

to childhood, learning a new language can be highly challenging for adults. The present

study aims at investigating neural mechanisms supporting very initial foreign language

learning in adulthood. For this reason, subjects underwent an implicit semantic associative

training in which they had to learn new pseudoword-picture pairings. Learning success was

measured via a recognition experiment presenting learned versus new pseudoword-picture

pairings. Neural correlates were assessed by an innovative multi-methodological approach

simultaneously applying electroencephalography (EEG) and functional near-infrared spec-

troscopy (fNIRS). Results indicate memory-related processes based on familiarity and

mechanisms of cognitive control to be present during initial vocabulary learning. Findings

underline the fascinating plasticity of the adult brain during foreign language learning, even

after a short semantic training of only 18 minutes as well as the importance of comparing evi-

dence from different neuroscientific methods and behavioral data.

1. Introduction

Verbal communication displays one of the most essential cognitive functions in everyday

social life. In order to communicate successfully, words and rules of a certain language have to

be learned and implemented thoroughly. Infants and children master this developmental step

with an astonishing effortlessness while as adults we tend to have more difficulties and are

more challenged when learning a new language. As globalization grows however, being profi-

cient in several languages gains more and more importance even at later stages of life. Lan-

guage is a conglomerate of different abilities including phonology, prosody, semantics, syntax,

and pragmatics. All of them contribute to a successful communication. However, one of the

important steps during initial language acquisition is building up a vocabulary. Without know-

ing words and names for objects, we are not able to create sentences with meaning.

The Revised Hierarchical Model (RHM) suggests that in very initial foreign language learn-

ing, meaning of the new language (L2) is attained via already existing knowledge from the
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native language (L1) serving as a mediator and memory aid [1–3]. L1 information can be

accessed lexically (via phonology of the word per se) as well as semantically (by the concept the

individual subject has of a specific word) [1–3].

In the educational setting (e.g., school education), experimental designs on word learning

therefore mostly rely either on a word-word (presenting the L2 word alongside with the

respective translation in L1) or picture-word (presenting the L2 word alongside with a picture

of an object representing the word from L1) learning paradigms. Behavioral research shows

that both strategies seem to be beneficial depending on context, age of acquisition of L2, and

learning strategy preference of the individual subject [4, 5].

In general, pictures seem to be easier to remember than words alone, as they provide both

verbal (i.e., familiar objects can be named) as well as pictorial cues [5, 6] (e.g., dual coding the-
ory [7, 8]). Following assumptions of the RHM, this picture superiority effect might funda-

mentally support foreign vocabulary learning, as pictures provide additional conceptual

information beyond pure lexical and semantic cues of the L1 word that can be used as addi-

tional mnemonics. Indeed, such mnestic strategies seem to be commonly performed by indi-

viduals when learning a new language in an educational setting, as often mental images are

created by the learners and then linked to the L2 word as a retrieval cue in order to create

meaning [4, 9]. However, when building up a vocabulary in a natural environment (i.e., in a

foreign country) without a concrete learning setting, such strategies are not necessarily applied

in a conscious manner.

Nevertheless, we are able to learn a new language implicitly by using learning strategies

such as statistical learning, which operates on the basis of probabilities of occurrence of specific

rules. In this sense, everything that is more frequently combined and therefore common in the

environment should be learnt. Usually, this occurs via mere passive listening without concrete

instruction or feedback (for a recent review please refer to [10]). Literature suggests that statis-

tical learning processes are strongly interwoven with memory encoding, storing, consolidat-

ing, and retrieval processes [11, 12]. When it comes to word learning, statistical learning

mechanisms particularly come into play during associative semantic learning, that is, learning

new words in combination with objects (e.g., [13]). Such a learning setting is crucial during

childhood language acquisition [14, 15], but also during adulthood we are frequently con-

fronted with a similar learning environment when learning a foreign language naturally. In

contrast to children however, adults are already familiar with a variety of objects to which they

have to assign new names. Therefore, adults are provided with a greater variability of concep-

tual and pictorial cues of the respective objects (based on personal experience) [16] as well as

with lexical and semantic cues from the L1 (e.g., the L1 name of the object) [17, 18]. Overall,

regardless of context (implicit natural setting or explicit educational setting), relying on objects

seems to be very beneficial when it comes to language learning.

Most research regarding vocabulary learning in picture-word paradigms uses behavioral

parameters. Neuroscientific evidence in regard is scarce. In order to investigate neuroscientific

mechanisms of initial and implicit foreign vocabulary learning in adults, we therefore opted

for the application of an associative semantic word-learning paradigm. The repeated presenta-

tion of the same congruous word-object pair intermixed with variable incongruous pairings

allows the learner to familiarize “learned” (i.e., congruous) and to discard “new” (i.e., incon-

gruous) associations. However, in contrast to most behavioral research, which uses real exist-

ing foreign language words or rules, we decided to use self-constructed pseudowords

corresponding to foreign linguistic rules. This allows for uncovering initial foreign language

learning processes that are not confounded by prior knowledge arising from the subjects’

native language or different linguistic proficiency levels acquired in a second language.
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In the present study, neural processes were assessed via two neuroscientific methods that

provide a quite ecologically valid learning setting. Functional near-infrared spectroscopy

(fNIRS) was applied in order to reveal accurate topographical evidence about the involvement

of brain areas. Temporally precise electrophysiological responses were assessed by means of

electroencephalography (EEG). Both methods do not interfere with each other and are both

soundless, thus being ideal for the investigation of acoustic linguistic stimuli. In general, neu-

roscientific studies showed that even when a foreign language is learned during adulthood, a

high proficiency level can be attained while brain areas similar to those of the L1 are recruited

[19–22].

It is known, that language is lateralized in the adult brain. The Dynamic Dual Pathway
Model [23] provides a dichotomy of language functions and assigns these to different hemi-

spheres. Segmental information such as phonology, lexico-semantics, and syntax predomi-

nantly recruits a fronto-temporo-parietal network of the left hemisphere while suprasegmental

information such as prosody is mainly processed in homologous right hemispheric areas. This

is in line with the multi-time resolution hypothesis [24] as well as the dual-stream model [25].

Phonological and lexico-semantic aspects play a central role during word learning. Single

phonemes have to be identified and combined to phonological word forms that can afterwards

be accessed in the mental lexicon. Only then, the meaning of a word can be retrieved. In gen-

eral, phonological and lexico-semantic processing was found to elicit activations in a fronto-

temporo-parietal network comprising predominantly the superior temporal gyrus (STG), mid-

dle temporal gyrus (MTG), angular gyrus (AG) as well as areas in the ventrolateral prefrontal

cortex (vlPFC) including the inferior frontal gyrus (IFG) (for a review, see [26]). In language

learning settings, both structural and functional changes were found by means of magnetic res-

onance imaging (MRI). In particular, grey matter increases of frontal and temporal areas

could be attested with increasing L2 proficiency [27–31]. Frontal regions, including prefrontal

areas as well as IFG, showed a specific importance in semantic retrieval and selection, which

necessitates language control mechanisms [26, 32–37]. Temporal areas, in particular the MTG,

were assigned an important role during long-term storage of conceptual-semantic knowledge

[37, 38]. A larger reliance on language control areas, especially at the beginning of language

learning (i.e., in low proficient learners), is postulated by the Convergence Hypothesis (CH) [39,

40]. During initial language learning, semantic retrieval in L2 is assumed to be more effortful

and difficult, thus it necessitates increased controlled processes neurally reflected by enhanced

frontal activations. This assumption was also confirmed by functional MRI studies revealing

increased activations in frontal areas for low proficient learners that shifted to a more temporal

recruitment with increasing L2 proficiency when semantic representations are better instanti-

ated [41–43]. It should be noted, however, that the before mentioned studies trained partici-

pants over several days and months with multiple training sessions. Therefore, it is unclear

whether similar activations arise for very initial vocabulary learning after only one short

semantic training.

Electrophysiological studies investigating foreign language learning with an associative

learning paradigm are scarce and mostly found modulations with respect to the N400 compo-

nent. The N400 reflects lexico-semantic mechanisms and is sensitive to processing effort with

the amplitude being larger when access to the mental lexicon is more difficult [44]. Dobel et al.

used magnetoencephalography (MEG) to investigate a semantic associative learning paradigm

[45]. Stimuli consisted of pseudowords as well as real words combined with pictures of real

objects. First, the acoustic word/pseudoword was presented, followed by a real object after 200

ms. Adult subjects had to learn the correct associations from repetitive correct combinations

intermixed with random combinations (i.e., distractors). During this training, subjects had to

press a button whether the combinations matched or not but did not get any feedback. They
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were trained 20 min á day on 5 consecutive days. On each day, congruous and incongruous

word-picture pairings were presented four times each. In order to assess neural changes elic-

ited by the training, a semantic priming procedure was performed during which the acoustic

word/pseudoword was presented at first, followed by the picture presentation after 700 ms.

Subsequently, subjects had to indicate by button press whether the picture was a man- or

nature-made object. Results showed a reduced activation after training for pseudowords

approximating that of real words, which was interpreted as a reflection of successful access to

the mental lexicon as well as an automatization process.

It should be noted that this study used pseudowords that conformed to linguistic rules of

the subjects’ native language. Thus, subjects were already familiar with these rules pre-experi-

mentally due to their lifelong experience with their native language. Similar reduced brain acti-

vation in frontal and temporal areas was also attested by a learning study [46] in which new

pseudowords had to be learned together with the corresponding native language word. This

reduction in activation was also interpreted as an approximation to a real word status. In a fur-

ther MEG study with a similar training paradigm, Dobel, Lagemann, and Zwitserlood used

pseudowords including a non-native phoneme completely unknown to the subjects [47]. Con-

gruous and incongruous word-picture pairings were presented 8 times each per day. Interest-

ingly this time, the magnetic N400 amplitude for pseudowords including a non-native

phoneme increased after training. Therefore, these originally completely unknown pseudo-

words seemed to have lost the non-word status (usually indexed by a very small amplitude)

and the integration in the lexicon started. A similar N400 modulation for native and non-

native rules was also attested in a 3-day learning study [48] using a proto-semantic categoriza-

tion task in which subjects had to learn to assign new pseudowords to an arbitrary category.

One important issue during language learning is the successful retrieval from memory. Sev-

eral aspects were discussed in literature that elicit differential neural patterns and seem to play

a crucial role during recognition tasks. In this regard, the differentiation of familiarity versus

recollection has to be highlighted. The former describes a feeling of recency while the latter

points to the retrieval of details of the learned items [49] (for a recent review in regard please

refer to [50]). Furthermore, familiarity can be subdivided into relative and absolute familiarity

[50]. Relative familiarity establishes when new information (e.g., never heard pseudowords)

was presented recently in a learning context, for example by repetition. Absolute familiarity is

built on pre-experimentally and already established information, thus life-long experiences

(e.g., adults’ knowledge of the word ball is already present since childhood). Electrophysiologi-

cally, old/new effects (i.e., larger positive effects for learned/more familiar items) were attested

during recognition memory tasks. However, relative and absolute familiarity processes were

found to give rise to two distinct event-related potential (ERP) components: a frontally distrib-

uted FN400 for relative and a posteriorly distributed N400 for absolute familiarity (e.g., [51,

52]). Topographically, in particular the perirhinal cortex (PrC) was found to play a crucial role

in this regard [53]. Familiarity judgements (e.g., deciding whether an item is familiar or not)

were further found to be impacted by top-down regulation mechanisms such as allocation of

attention and cognitive control [50]). Such top-down mechanisms relevant during the selec-

tion/decision of a correct response seem to be predominantly processed by the lateral prefron-

tal cortex with larger activations for correctly identified familiar items than incorrect decisions

[49, 54–57].

In the present study, we constructed an associative learning paradigm combining statistical

learning rules adopted in the studies by Dobel et al. [45, 47]. To assure a learning setting that

reflects very initial word learning as naturally as possible, participants underwent an implicit

semantic associative training without feedback at first. Immediately afterwards, a recognition

experiment was conducted in order to evaluate explicit retrieval of previously learned word-
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picture pairings. However, we opted for several modifications compared to Dobel and col-

leagues [45, 47]: (1) we used only non-native pseudowords conforming to foreign phonotactic

rules (i.e., permissible combinatory rules of phonemes in a specific language [58]), in order to

maximize the degree of unfamiliarity of our acoustic material; (2) completely unknown/unfa-

miliar pseudowords and pictures of pre-experimentally familiar real objects were presented

simultaneously during both training and recognition; (3) learning during semantic training

was completely implicit (i.e., without any task); (4) in order to investigate very initial fast learn-

ing unaffected by a potential influence of overnight consolidation (e.g., [59]) we decided to

train our subjects only on one day with the training lasting 18 minutes and congruous/incon-

gruous pairings repeated six times each; (5) in order to evaluate neural changes elicited by the

training as well as learning success, a recognition experiment was conducted in which learned

and new combinations were presented and had to be explicitly identified by button press.

These changes were intended to create an implicit associative learning training resembling

very initial vocabulary acquisition in childhood (i.e., simultaneous combination of an object

and its name without a task but including distracting combinations).

Apart from shedding light on the neural underpinnings of initial vocabulary learning in

adulthood, the present investigation also allows for attesting the feasibility and impact of an

implicit, short associative paradigm using foreign phonotactics on relative and absolute famil-

iarity mechanisms. Based on previous findings, in the recognition experiment we expected to

find either an FN400 or an N400 in the EEG, both with more positive amplitudes for congru-

ous/learned pseudoword-picture pairings (PPPs) resembling the influence of either relative or

absolute familiarity. For the fNIRS, we expect increased activations particularly in lateral pre-

frontal regions for congruous/learned compared to incongruous/new PPPs if top-down influ-

ences such as cognitive control are relevant during the decision/selection process.

The use of familiar pictures and completely unknown foreign pseudwords provides the

opportunity to assess whether absolute familiarity (elicited by the presented pictures), relative

familiarity (induced by unknown pseudowords) or even both may be the driving force during

recognition of learned combinations. Furthermore, the innovative application of two neurosci-

entific methods bears the potential to provide detailed insights into the underlying neural

processes.

2. Material and methods

The present study was approved by the Ethics Committee of the Medical University of Inns-

bruck, Austria (no. AN2016-0204 366/4.17). Participants gave written informed consent.

2.1 Participants

In total, 34 healthy adults (13 male) participated in the present study. Only those subjects were

included in the final statistical analyses that performed well during the recognition experiment

(at least 60% of all items correctly identified, i.e., 36 of 60 items). Due to this inclusion crite-

rion, one subject had to be excluded from the study sample. The remaining 33 subjects entered

EEG analyses. Data of two further subjects had to be excluded from fNIRS analyses due to

technical problems during measurements. All 33 participants were 34 years old on average

(range: 22–50 years). All were healthy, had no neurological disorders, did not suffer from hear-

ing or visual impairments and no prematurely born subjects were included in the study. Fur-

thermore, participants reported no severe deficits in language development during childhood

as well as no deficits in reading and speaking in general (e.g., dyslexia).

Participants were raised monolingually with German as their native language and lived in

Austria at time of testing. Some studies showed that being raised bilingually from birth alters
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brain development and especially impacts cognitive abilities relevant for language learning

[60–63]. In the present study, all participants learned their first foreign language (i.e., English

n = 29, Italian = 2, French = 1, Latin n = 1) at a mean age of 9 years (range: 7–12 years). 30 sub-

jects learned a second foreign language (i.e., French n = 14, Italian = 7, Spanish n = 5, English

n = 4) at a mean age of 15 years. 19 subjects learned a third foreign language (i.e., Italian n = 6,

Latin n = 5, French n = 4, Spanish n = 2, Greek n = 1, Norwegian n = 1) at a mean age of 18

years. 11 subjects came in contact with a fourth foreign language (Spanish n = 5, Italian n = 4,

Japanese n = 1, Latin n = 1) at a mean age of 22 years. Importantly, subjects had no knowledge

in Slavic languages. This was strictly controlled for as the stimulus material included linguistic

cues of the Slovak language, which should be unfamiliar to the participants. Self-reported pro-

ficiency levels of each learned language were obtained from each participant on 6-point Likert

scales for proficiency in hearing, reading, writing, and speaking (1 = like mother tongue,

6 = mostly forgotten). Please note that most participants reported to have no remaining knowl-

edge in the third and fourth foreign languages. Subjects of the present study showed to have

quite high mean language proficiency levels: German (n = 33): hearing = 1.0, reading = 1.06,

writing = 1.18, speaking = 1.15; first foreign language (n = 33): hearing = 2.18, reading = 2.15,

writing = 3.15, speaking = 2.82, second foreign language (n = 30): hearing = 3.8, reading = 3.67,

writing = 4.63, speaking = 4.43, third foreign language (n = 19): hearing = 5.47, reading = 5.21,

writing = 5.74, speaking = 5.58; fourth foreign language (n = 11): hearing = 5.36, reading = 5.27,

writing = 5.64, speaking = 5.55.

We assessed handedness in all subjects using the Oldfield Handedness Inventory [64]. All

participants were right-handed with a mean score of 87.55 (range: 66.7–100). Level of educa-

tion was rather high in the present study (university degree: n = 22; high school: n = 5; compul-

sory schooling: n = 6).

Additionally, we conducted the d2 Test: Concentration Endurance Test [65] which is a

time test in order to measure attention and concentration capabilities. All participants in the

present study were in the average (n = 6) or above average (n = 27) range (mean d2

score = 493.3; min = 333; max = 642; PR range = 50–99.9).

2.2 Material

Since the aim of the present study was to investigate initial foreign language learning in adult-

hood, we structured stimuli in such a way that they would be as unfamiliar as possible to the

participants. In total, 30 pseudowords were constructed. All pseudowords consisted of

CCVCV (consonant-consonant-vowel-consonant-vowel) combinations. Onset consonant

clusters conformed to phonotactic rules of the Slovak language, which belongs to the Slavic

languages. The Slovak language has proven to be very suitable for foreign language study

designs with German native speakers since it provides a greater variability of consonant com-

binations in word onsets than the German language [48, 66, 67]. Thus, the linguistic rules of

pseudowords were unfamiliar to all participants.

For all 30 pseudowords, the following onset consonant clusters typical for Slavic languages

and non-existent in German were chosen: /bd/, /dw/, /tm/, /fp/, /fn/. Six bisyllabic pseudo-

words were formed per onset cluster (e.g., fpogo, bdafa, tmipi), while additionally ensuring

that the frequency of vowels and consonants in all pseudowords was equally distributed.

The voice recordings took place in an anechoic chamber (Laboratory for Psychoacoustics at

the Department of Hearing, Speech, and Voice Disorders of the Medical University of Inns-

bruck) and were performed by a female speech scientist. Pseudowords were spoken in a neu-

tral prosody. Additionally, all pseudowords were spoken with a trochee stress pattern on the

first syllable corresponding to the most frequent stress pattern in German and thus, not further
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introducing another foreign language factor to the material. All stimuli were recorded at 44

kHz and 16 bit sampling rate. Afterwards, the acoustic stimuli were edited using the editing

programme Audacity (www.audacityteam.org). This procedure predominantly included cut-

ting, inserting a short silence period of 30 ms at the onset and offset of each pseudoword, and

normalizing pitch and loudness.

Furthermore, 30 pictures of common objects were needed for the experiments. Therefore,

we narrowed down the standardized picture pool by Rossion and Pourtois [68] to 47 colored

pictures of real objects whose descriptions consisted of bisyllabic words to match the selected

pseudowords (e.g., Bir-ne—engl. pear). Furthermore, all picture names did not contain any

consonant clusters at word onsets in order to not confound with phonotactic rules of pseudo-

words used in the present study. The pictures were evaluated by 30 independent but age- and

gender-matched raters via an online survey (www.soscisurvey.de). Participants had to name

all objects and those 30 pictures were chosen that had the highest naming correspondence.

The final 30 pictures were assigned to 5 categories: animals (n = 8), music instruments (n = 2),

cutlery (n = 3), food items (n = 5), and other (n = 12).

Finally, pseudoword-picture pairings (PPPs) for the semantic association training were

constructed. For this, each pseudoword was assigned to one colored real object in order to

create 30 congruous pairings (i.e., PPPs that should be learned during the training; e.g.,

/fpogo/ with Birne—engl. pear). All congruous PPPs met the following criteria: (1) pseudo-

word and object name did not start with the same letter (e.g., /fpogo/ and Birne) and (2)

pronunciations of both pseudoword and object name did not sound similar. Then, six addi-

tional but different pictures were assigned to each pseudoword to generate six incongruous

pairings per pseudoword (i.e., PPPs that served as distractors during the semantic training,

e.g., /fpogo/ with Leiter–engl. ladder, Hase–engl. rabbit, Sofa–engl. sofa, Kette–engl. neck-

lace, Löwe–engl. lion, and Messer–engl. knife). Then, an additional seventh incongruous

PPP was constructed per pseudoword for the recognition experiment in order to create a

picture-pseudoword combination not presented in the semantic training (e.g., /fpogo/ and

Eule–engl. owl) and therefore serving as a new/unlearned pairing in contrast to the congru-

ous/learned pairings.

The following criteria were met during the construction of all seven incongruous PPPs: (1)

pseudoword and object name did not start with the same letter (e.g., /fpogo/ and Leiter–engl.

ladder), (2) object names of incongruous pairings did not start with the same letter as the

object name of the respective congruous pairing (e.g., Birne and Leiter, Hase, Sofa etc.), (3) no

more than 2 out of 7 object names started with the same letter, (4) pseudoword and object

name did not sound similar, (5) object names of all 7 incongruous pairings were not allowed

to sound similar (e.g., Hase–engl. rabbit and Hose–engl. trousers) or look similar (e.g., zebra

and donkey). The following additional rules applied for picture categories: (1) in all 7 incon-

gruous pairings, no more than 1 music instrument, 1 cutlery, 2 food items, and 3 animals were

allowed, (2) if 3 objects belonged to the animal category, the third animal object had to be

assigned to the seventh PPP (i.e., the new pairing for the recognition experiment), (3) if the

object of the congruous pairing belonged to categories music instrument, cutlery, or food

items, no other picture out of these categories was allowed for the respective incongruous pair-

ings, and (4) if the object of the congruous pairing belonged to the animal category, only one

additional object of this category was allowed in all 7 respective incongruous pairings. All in

all, 30 congruous PPPs were constructed with seven incongruous PPPs respectively, resulting

in a total number of 240 pseudoword-picture combinations. Please refer to Fig 1 for an exam-

ple of PPP construction.
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2.3 Procedure

Neural activity was assessed simultaneously by means of electroencephalography (EEG) and

functional near-infrared spectroscopy (fNIRS). The former method excellently tracks fast pro-

cessing mechanisms in the millisecond range, whereas the latter provides a good spatial resolu-

tion indicating the underlying brain areas recruited. This multi-methodological approach has

proven to be highly beneficial for investigating acoustic stimuli, as both methods are soundless,

do not interfere with each other, and provide a quite natural setting [69].

During the experiments, subjects sat on a chair 1 m in front of a computer monitor. To

enable a simultaneous measurement of both methods, subjects wore elastic EEG caps (EasyCap

GmbH, Herrsching, Germany) in which both EEG electrodes as well as fNIRS optodes were

integrated. Pseudowords were acoustically presented via loudspeakers at an intensity of 70 dB.

The pictures of colored objects were shown on the computer screen simultaneously to the

auditory presentation of pseudowords.

2.3.1 Implicit semantic training. At first, an implicit semantic training in form of a pic-

ture-word-association training without feedback was conducted in all subjects. Subjects did

not have to perform any specific task in order to capture implicit learning mechanisms. The

presentation of each PPP lasted 2 s interspersed with a constant inter-stimulus-interval (ISI) of

1 s. Over the course of this training, all 30 pseudowords were presented six times with the

same picture (congruous pairings) as well as six times with six different pictures (incongruous

pairings, distractors). All 240 PPPs were presented in a pseudorandomized fashion using a

block design meeting the following criteria: 6 large repetition blocks in total, each containing

the congruous pairing of each pseudoword (e.g., /fpogo/ with the pear) as well as one of the six

incongruous pairings (e.g., /fpogo/ with the sofa). Each repetition block consisted of 12 mini-
blocks. Then again, each miniblock contained five consecutive picture-word combinations

belonging either to only the congruous or the incongruous pairing condition. Miniblocks

within one large repetition block were pseudo-randomized by ensuring that no more than

three congruous or incongruous miniblocks were presented in succession. Please refer to Fig 1

for a better understanding of the procedure. In total, 4 pseudorandomization versions were

used for the semantic training which lasted 18 minutes.

Fig 1. Design of implicit semantic training a. Example for one congruous pseudoword-picture pairing (PPP) (/fpogo/

with pear) pseudorandomly repeated six times during training and its additional six incongruous pairings

(distractors). b. Example for presentation sequence of PPPs c. Illustration of the block design used for the semantic

training in the present study. Images were taken from [68] with image courtesy of the authors as well as from license-

free databases.

https://doi.org/10.1371/journal.pone.0246421.g001
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2.3.2 Recognition experiment. In the recognition experiment, which followed immedi-

ately after the semantic training on the same testing day, actual retrieval from memory by

means of a picture-word-identification task was tested. All 30 learned PPPs (i.e., congruous

PPPs from the semantic training) were presented again. In addition, each pseudoword was

presented again in a new picture-pseudoword combination that did not appear in the semantic

training. (i.e., new PPP). Please note that pictures in new PPPs were taken from the same

object picture pool as in the semantic training, meaning that both pseudowords and pictures

were now familiar to the subjects, but the respective combination of a specific pseudoword

with a specific picture was new. Thus, in the recognition experiment, each pseudoword was

presented twice, one time in a previously learned pairing and one time in a new pairing. All

PPPs were presented in a pseudorandomized manner with the following criteria: (1) maxi-

mally three consecutive learned or new PPPs in succession, (2) at least three different pictures

between the same object, and (3) at least three different pseudowords between words with the

same onset clusters.

PPPs were presented for 2 s. Afterwards subjects had to explicitly press a left or right button

(counterbalanced across subjects) whether they recognized the previously learned picture and

pseudoword combination or not. A visual signal prompted the button press for maximally 3 s.

After each trial, a variable inter-stimulus-interval (ISI) (mean duration: 10 s, range: 6–14 s)

was integrated (cf. Fig 2). By introducing this variable ISI, the experimental design was

adjusted to the requirements of the rather slow hemodynamic response measured by the

fNIRS. Usually, vascular responses reach their maximum at around 5 s after stimulus presenta-

tion with the activation returning to baseline after 15–20 s [70]. Therefore, variable ISIs pre-

vent hemodynamic responses from overlapping systematically. In total, 4

pseudorandomization versions were used for the recognition experiment which lasted 14

minutes.

2.3.3 Follow-up behavioral production test. In order to test whether subjects are able to

successfully produce previously learned pseudowords and assign them to their respective

object picture, we conducted a follow-up behavioral experiment. Participants (n = 29, 11 male,

mean age: 33.9 years) matched with respect to all inclusion criteria, but not participating in the

neuroscientific experiments, were confronted with both the semantic training as well as the

recognition experiment. Right after the recognition experiment, they were then provided with

all 30 object pictures and were asked to produce the respective corresponding pseudoword to

each picture (i.e., learned PPP). In line with the neuroscientific measurements, only those sub-

jects were included in final analyses that were able to at least identify 60% of all PPPs correctly

in the recognition experiment. This resulted in 24 analyzed subjects. Furthermore, subjects

were asked about the mnemonic strategies adopted during solving this task.

Fig 2. Experimental design of recognition experiment. Images were taken from [68] with image courtesy of the

authors as well as from license-free databases.

https://doi.org/10.1371/journal.pone.0246421.g002
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2.4 EEG recordings

EEG was recorded from 32 AgAgCl active electrodes (BrainProducts GmbH, Gilching, Ger-

many) placed into an elastic EEG cap at the following positions: F5, F3, FT7, FC5, FC3, T7, C5,

C3, CP3, CPP5H, P7, P5, P3, F4, F6, FC4, FC6, FT8, C4, C6, T8, CP4, CPP6H, P4, P6, P8, Fz,

Pz, and Cz (cf. Fig 3). Vertical and horizontal electrooculogram were recorded above and next

to the right eye with electrodes FP2 and F10. An electrode (TP9) at the left mastoid served as

online reference, while an electrode at the right mastoid (TP10) was recorded for further re-

referencing during offline analyses. Position AFz served as ground electrode. Electrode imped-

ance was kept below 10 kΩ (actiCAP Control, Brain Products GmbH, Gilching, Germany).

The EEG signal was measured by means of BrainVision Recorder (Brain Products GmbH,

Gilching, Germany) software with a sampling frequency of 1000 Hz (amplified between

0.016–450 Hz) and filtered before digitalization by means of the analog/digital converter with

an upper cut-off of 450 Hz (24 db/oct) to prevent aliasing.

2.5 fNIRS recordings

Vascular changes were measured by means of functional near-infrared spectroscopy. With this

method, concentration changes of both oxygenated [oxy-Hb] and deoxygenated hemoglobin

[deoxy-Hb] in cortical brain areas can be assessed by emitting light in the near-infrared spec-

trum to the biological tissue. Calculations of concentration changes in both hemoglobins are

based on a modified Beer-Lambert law [71]. The physiological basis of fNIRS is the neurovas-

cular coupling: an increased activation in a brain region leads to several vascular and metabolic

changes. It is known that vasodilation leads to a local increase in blood volume demanding

more oxygen and glucose, which in turn leads to an increase in regional cerebral blood flow

and an increase in regional blood flow velocity [72, 73]. In consequence, the color of the blood

changes. The blood flow increase overcompensates oxygen consumption and elicits a focal

hyperoxygenation resulting in an increase in oxygenated hemoglobin [oxy-Hb] as well as a

decrease in deoxygenated hemoglobin [deoxy-Hb] [74]. [Deoxy-Hb] is inversely correlated to

Fig 3. Simultaneous EEG electrodes and fNIRS channel placement. a. EEG electrode configuration including regions of interest

(ROIs). b. fNIRS channel arrangement: stars indicate 8 fNIRS light emitters; dots indicate 8 fNIRS detectors; ellipses indicate fNIRS

channels; channels cover prefrontal inferior (PFi), prefrontal superior (PFs), frontal (F), fronto-temporal (FT), temporal inferior (Ti),

temporal superior (Ts), temporo-parietal inferior (TPi), and temporo-parietal superior (TPs) brain regions, for both hemispheres

respectively. Additionally, all 8 left-hemispheric fNIRS channels are marked with an L; all 8 right-hemispheric fNIRS channels are

marked with an R. Each two adjacent channels were combined to generate 4 ROIs per hemisphere.

https://doi.org/10.1371/journal.pone.0246421.g003
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the BOLD signal measured by functional magnetic resonance imaging (fMRI) (for more

details see [75, 76]).

The used fNIRS system (NIRScout, NIRx Medizintechnik GmbH, Berlin, Germany) sends

wavelengths at 760 and 850 nm in a cw-mode and recorded data at a sampling rate of 7.81 Hz.

In total, eight light emitters and eight light detectors were used to assess activations over bilat-

eral fronto-temporo-parietal brain areas. Interoptode distance was 3.5 cm. This emitter-detec-

tor configuration allowed the assessment of 8 channels per hemisphere, covering prefrontal

inferior (PFi), prefrontal superior (PFs), frontal (F), fronto-temporal (FT), temporal inferior

(Ti), temporal superior (Ts), temporo-parietal inferior (TPi), and temporo-parietal superior

(TPs) brain regions (cf. Fig 3).

2.6 Data analyses

2.6.1 Behavioral task performance during recognition experiment. Behavioral parame-

ters of performance such as percentage of correctness of PPP identification and reaction times

for both conditions (new and learned PPPs) were analyzed. In order to investigate differences

between learned versus new PPPs, paired t-tests were applied for both performance and reac-

tion times.

2.6.2 EEG data. EEG data was filtered offline with a 30 Hz low pass Butterworth zero

phase filter (high cutoff: 30 Hz; slope: 12 dB/oct). Data was then segmented from -200 ms to

1500 ms with 0 ms representing the time point of the PPP onset. An ocular correction based

on the Gratton & Coles algorithm [77] was applied to correct vertical eye movement artefacts.

Overly contaminated channels were rejected manually from each segment by inspecting each

segment visually for artefacts. Only subjects in whom at least 50% of all segments per condition

(learned versus new pairings) in at least 15 of all 29 electrodes survived this procedure were

included in the final analyses. This criterion applied to all 33 subjects, thus no participant had

to be excluded from statistical analyses. In the next steps, data was re-referenced to averaged

mastoids (TP9, TP10) and a pre-stimulus baseline of 200 ms was applied. For the EEG, only

correctly identified PPPs (i.e., learned PPP was correctly marked as “known”; new PPP was

correctly marked as “unknown”) entered final statistical analyses.

Event-related brain potentials (ERPs) were extracted by averaging the segments for each

subject and each condition (learned PPP vs. new PPP). In addition, a 50-ms-analysis was per-

formed in order to select the time windows for final statistical analyses. This analysis included

paired-sampled t-tests on each electrode between learned and new PPPs in consecutive 50 ms

steps between 100 and 1500 ms. Results from this analysis as well as visual inspection of the

grand averages revealed 650–800 ms and 800–1300 ms to be the time windows indicating dif-

ferences between conditions and therefore were selected for further statistical analyses.

Since the topographical localization of EEG is only rough, we decided to perform the final

statistical analyses on 6 regions of interest (ROIs). The following lateral ROIs were defined for

statistical EEG analyses: left frontal (F3, F5, FC3, FC5), right frontal (F4, F6, FC4, FC6), left

temporo-parietal (C3, C5, T7, CP3), right temporo-parietal (C4, C6, T8, CP4), left parietal

(CPP5H, P3, P5, P7), and right parietal (CPP6H, P4, P6, P8) (cf. Fig 3). Midline electrodes (Fz,

Cz, Pz) were analyzed separately. We then performed a three-way ANOVA with the within-

subject factors Condition (learned vs. new PPP), Hemisphere (left hemisphere vs. right hemi-

sphere), and Region (frontal vs. temporo-parietal vs. parietal) for lateral ROIs and a two-way

ANOVA with Condition and Region (Fz vs. Cz vs. Pz) for midline electrodes. In order to

check whether the correct identification of pseudoword-picture pairings has an impact on

neurophysiological processes, we performed these ANOVAs for both correctly identified

learned and new PPPs as well as for all presented PPPs (correctly and incorrectly identified),
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irrespectively of identification performance. Whenever a main effect of Condition or an inter-

action with Condition reached significance, post-hoc t-tests were subsequently performed. Sig-

nificance level was set at p�.050 and adjusted with the False Discovery Rate procedure [78].

Corrected significance according to Greenhouse and Geisser [79] was applied whenever the

degrees of freedom exceeded 1.

2.6.3 fNIRS data. In order to analyze concentration changes (mmol/l) of [oxy-Hb] and

[deoxy-Hb], the collected reflected light was transformed by means of the modified Beer-Lam-

bert function [71]. Exclusion of artefacts of each participant was performed manually. Arte-

facts (e.g., abrupt changes) were removed by a linear interpolation approach. A 0.4 Hz low

pass filter (Butterworth, third order) was applied to attenuate high-frequency artefacts mainly

arising from heartbeat. Next, data were correlated with a predictor generated by convolving

the boxcar function of the stimulus design including both conditions (new vs. learned PPPs)

with the canonical hemodynamic function [70, 80] peaking at 5 s. Data were then fed into a

general linear model approach to obtain beta-values for each condition as well as for each of

the two hemoglobins. Statistical analyses were performed on the beta-values of both [oxy-Hb]

and [deoxy-Hb]. Please note that both a decrease in [deoxy-Hb] as well as an increase in [oxy-

Hb] are considered as reflections of increased activation, thus we report both hemoglobins

separately [75, 81].

Every two adjacent fNIRS channels were combined resulting in the following 4 regions of

interest (ROIs) (left (L) and right (R) hemisphere respectively): prefrontal (LPFi, RPFi, LPFs,

and RPFs), frontal (LF, RF, LFT, and RFT), temporal (LTi, RTi, LTs, and RTs), and temporo-

parietal (LTPi, RTPi, LTPs and RTPs) (cf. Fig 3). We performed a three-way ANOVA with the

within-subject factors Condition (learned vs. new PPP), Hemisphere (left hemisphere vs. right

hemisphere), and Region (prefrontal vs. frontal vs. temporal vs. temporo-parietal) for [oxy-

Hb] and [deoxy-Hb], separately. In order to check whether the correct identification of pseu-

doword-picture pairings has an impact on vascular processes, we performed these ANOVAs

for both correctly identified learned and new PPPs as well as for all presented PPPs (correctly

and incorrectly identified), irrespectively of identification performance. As this three-way

ANOVA unfortunately did not yield any significant main effect or interaction, we subse-

quently performed a two-way ANOVA with the within-subject factors Condition (learned vs.

new PPPs) and Hemisphere (left hemisphere vs. right hemisphere) on 4 regions (prefrontal,

frontal, temporal, and temporo-parietal) for [oxy-Hb] and [deoxy-Hb], separately. Again, this

analysis was performed for correctly identified PPPs as well as for all presented PPPs. When-

ever a main effect of Condition or the interaction between Condition and Hemisphere reached

significance, post-hoc t-tests were subsequently performed. Significance level was set at

p�.050 and adjusted with the False Discovery Rate procedure [78]. Corrected significance

according to Greenhouse and Geisser [79] was applied whenever the degrees of freedom

exceeded 1.

2.6.4 Follow-up behavioral production test. Production rate was computed as follows:

each pseudoword was split up in its 5 phonemes (e.g., b–z–o–p–o). For each correctly pro-

duced phoneme, 1 point was assigned. A total of 150 points could be achieved in this produc-

tion test (30 PPPs, each pseudoword consists of 5 phonemes, 30x5 = 150). Subsequently, this

rate was converted into percentages.

3. Results

3.1 Task performance and reaction times

All participants identified at least 60% of all 60 PPPs (30 learned and 30 new PPPs) correctly as

known or unknown (mean 76.7%, range: 63.3–93.3%). Overall, a mean number of 20.3 out of

PLOS ONE The challenge of learning a new language in adulthood

PLOS ONE | https://doi.org/10.1371/journal.pone.0246421 February 19, 2021 12 / 23

https://doi.org/10.1371/journal.pone.0246421


30 (range 15–29) learned PPPs (67.8%) was estimated correctly as known, while a mean num-

ber of 25.7 (range 20–30) new PPPs (85.6%) was rated correctly as unknown. A paired t-test

between percentage of correctly identified learned versus new PPPs revealed a highly signifi-

cant difference [t(32) = -6,453, p< .0001] indicating a better selection performance for new

pairings.

Evaluation of reaction times (rt) revealed no significant differences between correctly iden-

tified learned and new PPPs (mean rt for learned: 1015.2 ms; mean rt for new: 965.6 ms).

3.2 EEG results

3.2.1 EEG results for all pseudoword-picture pairings. The ANOVA did not result in

any significant main or interaction effect for both time windows.

3.2.2 EEG results for correctly identified pseudoword-picture pairings. For time win-

dow 650–800 ms, a three-way ANOVA (Condition x Hemisphere x Region) revealed a signifi-

cant main effect for Condition on lateral ROIs [F(1,32) = 5.450, p = .026; ηp
2 = .146] showing

larger negative amplitudes for new than learned PPPs (6 lateral ROIs merged) (see Fig 4). Fur-

thermore, a significant main effect for Condition was found on midline electrodes (Fz, Cz, Pz)

pointing in the same direction [F(1,32) = 6.492, p = .016; ηp
2 = .169].

For time window 800–1300 ms, the same three-way ANOVA (Condition x Hemisphere X

Region) showed interaction effects for Condition x Hemisphere [F(1,32) = 6.772, p = .014; ηp
2

= .125] and for Condition x Hemisphere x Region [F(2,64) = 5.149, p = .012, ηp
2 = .139] on lat-

eral ROIs. Post-hoc t-tests revealed significant differences on right frontal (F4, F6, FC4, FC6)

[t(32) = -3.164, p = .003; FDR corrected at p�.008] and temporo-parietal (C4, C6, T8, CP4) [t
(32) = 2.530, p = .017; FDR corrected at p�.017] ROIs with larger negativities for new com-

pared to learned PPPs. No significant effects were found on midline electrodes.

Fig 4. ERP results for new compared to learned pseudoword-picture pairings. a. Bar charts for time window 650–800 ms merged for all lateral

ROIs (left) and for all midline electrodes (right). b. Grand averages for right frontal and right temporo-parietal electrodes. Significant differences were

found on these electrodes between 800–1300 ms. Negative polarity is plotted upwards. An 8 Hz low-pass filter was applied for presentation purposes

only.

https://doi.org/10.1371/journal.pone.0246421.g004
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3.3 fNIRS results

3.3.1 fNIRS results for all pseudoword-picture pairings. The three-way ANOVA (Con-

dition x Hemisphere x Region) did not reveal any significant main effect or interaction, neither

for [oxy-Hb] nor for [deoxy-Hb]. The two-way ANOVA (Condition x Hemisphere) for [oxy-

Hb] revealed a significant interaction for Condition x Hemisphere on the frontal region [F
(1,30) = 4.413, p = .044, ηp

2 = .128]. Post-hoc t-tests showed stronger activations for learned

PPPs only, on left (LF + LFT) compared to right frontal (RF + RFT) ROIs [t(30) = 2.783, p =

.009; FDR corrected at p�.025]. No significant effects were found for [deoxy-Hb] (see Fig 5).

3.3.2 fNIRS results for correctly identified pseudoword-picture pairings. Neither the

three-way ANOVA (Condition x Hemisphere x Region) not the two-way ANOVA (Condition

x Hemisphere) resulted in any significant main or interaction effect for both [oxy-Hb] and

[deoxy-Hb].

Fig 5. fNIRS results. Beta-values of [oxy-Hb] for new compared to learned pseudoword-picture pairings on left and

right frontal ROIs (ø LF/LFT vs. ø RF/RFT). The asterisk indicates statistically significant differences.

https://doi.org/10.1371/journal.pone.0246421.g005
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3.4 Follow-up behavioral production test

Results revealed that 34.9% of pictures were assigned correctly with the corresponding learned

pseudoword. Interestingly, vowels (43.1%) and middle consonants (36.9%) were more often

recalled correctly than onset consonant clusters (25.8%).

The evaluation of the adopted mnemonic strategies revealed that 58.3% of subjects predom-

inantly remembered pairings based on similarities between pseudowords and words familiar

from the native language (L1) (e.g., “fpata” sounds similar to “Panther” [German word for

panther, engl.]), 20.8% of subjects predominantly focused on pictorial cues relevant from per-

sonal experiences (e.g., preference for certain food), and 12.5% of subjects could not indicate a

specific strategy but reported the attempt to remember frequently appearing PPPs. 8.3% of

subjects adopted both the first and second mentioned strategy.

4. Discussion

The present study aimed at investigating foreign language learning in adulthood by means of

an implicit associative semantic training. This consisted in the repetitive presentation of con-

gruous pseudoword-picture pairings (PPPs) intermixed with incongruous pairings during an

implicit training without feedback. Importantly, pseudowords were specifically constructed to

reflect a foreign language. Onset consonant clusters resembled phonotactic cues of the Slovak

language, thus foreign language rules unknown/unfamiliar to the German-speaking subjects

of the present study. The verification of learning success was tested by means of a recognition

experiment in which subjects were confronted with congruous/learned PPPs from training

alongside with totally new pairings. Here, they had the task to identify learned and new pair-

ings. Such an implicit language learning design is new in the neuroscientific field. Fast

dynamic processing mechanisms as well as recruited brain regions were assessed simulta-

neously by an innovative multi-methodological approach combining electroencephalography

(EEG) as well as functional near-infrared spectroscopy (fNIRS).

From EEG data event-related brain potentials (ERPs) were analyzed. In this regard, results

from the recognition experiment showed a larger negativity for new compared to learned

PPPs. This effect was mainly distributed on midline electrodes and fronto-temporo-parietal

electrode sites of the right hemisphere. This topographical distribution thus does not reflect a

classical lexico-semantic N400 component [44] but mirrors an old/new effect [82–84]. The

old/new effect is typically found during familiarity, memory and retrieval-related paradigms

with the negativity usually being larger when subjects are confronted with new compared to

old/known items (in literature often referred to as an increased positivity for old/known

items). Furthermore, the old/new effect does not reflect a language-specific but a domain-gen-

eral component (i.e., auditory, visual) being elicited also with stimuli from different semantic

contexts (e.g., words, real objects, faces, etc. [83, 85–90]). However, research indicates that

nonverbal stimuli such as meaningless objects often fail to elicit an old/new effect [86, 88, 91,

92]. The old/new effect was further found to differentiate between absolute and relative famil-

iarity (for a recent review please refer to [50]). Absolute familiarity refers to pre-experimentally

already established life-long knowledge, which applies to our presented pictures of known real

objects. Relative familiarity, in contrast, indicates a recently acquired familiarity as it is the case

for our completely unknown pseudowords conforming to foreign linguistic rules. However,

relative familiarity also applies for pseudoword-picture pairings in a whole as they were

recently presented during the semantic training directly prior to the recognition experiment.

ERP studies addressing this dichotomy of familiarity found a more frontally distributed FN400

to index relative familiarity and a more posteriorly distributed N400 component to reflect

absolute familiarity. A broad topographical distribution ranging from frontal to parietal areas
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as suggested by our ERP results therefore indicates that both aspects might have come into

play.

Topographically, the old/new effect has been found to be differently distributed due to vari-

ations of task, study design, and material criteria. In particular, a right frontal old/new effect

has been described as a mechanism of post-retrieval monitoring and decision making during a

retrieval attempt (i.e., cognitive evaluation capacities necessitated by internal judgements prior

to response selection) [82, 84, 93]. Such a mechanism might be the driving force also in our

results, as subjects had to recognize earlier learned information explicitly, forcing them to

actively make familiarity judgements. As ERPs did not show a purely linguistically driven pro-

cess of an N400, results cannot confirm that phonotactic rules of a foreign language could suc-

cessfully be integrated into the mental lexicon by changing from a non-word to a lexico-

semantic status [47]. Instead, the results seem to indicate a more domain-general memory

retrieval mechanism guided by familiarity. Intriguingly, this shows that adult subjects of the

present study are indeed able to successfully memorize and recognize completely new foreign

words assigned to a known picture even after such a short (i.e., 18 min) semantic training.

Furthermore, findings from our second neuroscientific method, the fNIRS, provide addi-

tional crucial insights about the nature of the underlying mechanisms. Results revealed that

learned PPPs elicited larger activations on left frontal compared to homologous right hemi-

spheric areas. This fact might point to the involvement of language-related processes, as the

topography of these effects covers regions such as the ventro-lateral prefrontal cortex (vlPFC)

including the inferior frontal gyrus (IFG).

Activations of the left IFG in particular were found during selection processes of semantic

information when especially semantic competitors are present [32–35]. Even though subjects

of our study have indeed to distinguish between learned and new PPPs, forcing them to

actively select between stimuli, no explicit semantic or phonological competitors were present

in the material. Thus, such an interpretation seems to be rather less likely for our effects.

The left IFG has also been found to be activated during processes of associative memory

retrieval, especially in intentional learning settings compared to incidental ones (e.g., [94]). As

our design represents both an intentional learning setting and an associative learning context

in which participants had to build up associations between specific pseudowords and object

pictures, such an interpretation seems to fit our results at least partially.

The IFG activation in our study was found during the recognition experiment in which

subjects had to actively retrieve learned and new PPPs and thus had to control their selection/

decision. We suggest that this activation might reflect top-down control processes postulated

to be relevant especially during relative familiarity judgements, as such mechanisms are impor-

tant for differentiating task-relevant from irrelevant information [50, 95, 96]. Thus, it seems

highly plausible that they become active during our recognition experiment in particular for

the selection of learned PPPs. The left dominance of this effect might be related to the mne-

monic strategies used to better remember PPPs. A follow-up behavioral experiment in our lab

with participants independently recruited from the neuroscientific experiments showed that

34.9% of pictures could be named correctly after the semantic training and recognition experi-

ment. This means that subjects were able to successfully assign pseudowords to over one 3rd of

the previously learned pairings even after such a short semantic training. Interestingly, interro-

gation of subjects about their adopted memorizing strategies during semantic training further

revealed a predominant use of mnemonic cues drawn from L1 (i.e., comparison of pseudo-

words with known words from L1) aiding the association between object and congruous pseu-

dowords which supports mechanisms outlined by the Revised Hierarchical Model (RHM) [1].

This reliance on mnemonic cues from L1 might have contributed to the left dominance of the

frontal activation found in the fNIRS.
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A larger recruitment of left IFG has been shown in the context of language control, espe-

cially at the beginning of language learning (i.e., in low proficient learners) by the Convergence

Hypothesis (CH) [39, 40]. During initial language learning, semantic retrieval in L2 is assumed

to be more effortful and difficult than retrieval from L1, thus it necessitates increased con-

trolled processes neurally reflected in enhanced frontal recruitment. Similar mechanisms

could be plausible also for our study, as participants are at the very beginning of language

learning and could reasonably have difficulties with controlling the judgement of learned com-

pared to new PPPs. This might result in increased left IFG activation for learned PPPs as these

are successfully recognized. A similar reliance on frontal areas in low proficient learners was

also confirmed by functional MRI studies [41–43]. Interestingly, once semantic representa-

tions are better instantiated in long-term storage and participants thus become more profi-

cient, this activation shifts to a more temporal recruitment, especially to the MTG. However,

fNIRS findings of the present study did not show any temporal activation. This leads to the

assumption that a short semantic training of 18 minutes does not yet enable learned words to

be integrated in the mental lexicon. Most likely, rather initial domain-general control pro-

cesses relevant for familiarity judgements are still at work at this early stage of vocabulary

learning.

In addition, our robust findings (evidenced by large effect sizes) emphasize the importance

of combining various neuroscientific methods as well as behavioral data. Using a multi-meth-

odological approach enables each method per se to shed light on the neurophysiology and

behavioral performance of learning. However, more importantly, both EEG and fNIRS bear

the potential to complement each other in gathering substantial and profound information on

mechanisms underlying language learning by assessing differential neurophysiological signals

(i.e., electrophysiological and vascular responses). Furthermore, a simultaneous measurement

provides the opportunity to investigate advantages as well as limitations of each single method.

Interestingly, EEG and fNIRS revealed a differential sensitivity with respect to signal-to-noise.

While EEG showed reliable results only for correctly identified PPPs, fNIRS resulted to be

more stable when all (correctly and incorrectly identified) PPPs were analyzed. Recent studies

showed that for extracting reliable ERPs, not only the mere number of trials [97] is important.

ERPs are also impacted by the number of subjects and effect magnitude (defined in the magni-

tude of an effect in microvolts) [98]. Compared with their conclusions, our ERP effects are

rather small in magnitude, however, we had a quite large number of subjects with an interme-

diate number of trials per condition. These factors are intertwined and possibly have led to the

effect that ERPs only yield reliable effects when the signal is clean even though the number of

trials is thus reduced. With respect to fNIRS, findings seem to indicate that here the number of

trials per condition is crucial for ascertaining reliable results. However, further studies system-

atically varying different factors such as number of trials, number of subjects, and effect mag-

nitude have to be conducted in order to provide essential insights in this regard. Another

more theoretically driven explanation, at least for ERP data, is that familiarity effects usually

are present only when items are identified correctly during the recognition task [50]. This fur-

ther provides evidence that our ERP results resemble familiarity effects as they only occurred

for correct responses and not when all responses were merged.

Our multi-methodological results nicely fit to assumptions recently proposed by the neuro-

cognitive account of familiarity effects [50]. ERP findings predominantly suggest the involve-

ment of relative familiarity with a contribution of absolute familiarity arising from known

objects. fNIRS findings ascertain the influence of top-down control processes during the rec-

ognition task which is corroborated by results from the follow-up behavioral production task

predominantly pointing towards the use of mnemonic cues from L1. Overall, results of the

present study underline the fascinating plasticity of the adult brain during very initial foreign
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language learning, even after a short semantic training. The present study provides evidence

that implicit associative learning paradigms are feasible and can be applied successfully in the

neuroscientific field. Furthermore, we were able to show that phonotactics can be used to cre-

ate solid foreign language learning materials. Finally, this study provides new evidence that rel-

ative and absolute familiarity play a crucial role during recognition tasks and are strongly

intertwined with mnemonic and cognitive control mechanisms.
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11. Gómez Rebecca L. Do infants retain the statistics of a statistical learning experience? Insights from a

developmental cognitive neuroscience perspective. Philosophical Transactions of the Royal Society B:

Biological Sciences. 2017; 372: 20160054. https://doi.org/10.1098/rstb.2016.0054 PMID: 27872372

12. Thiessen Erik D. What’s statistical about learning? Insights from modelling statistical learning as a set of

memory processes. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017; 372:

20160056. https://doi.org/10.1098/rstb.2016.0056 PMID: 27872374

13. Breitenstein C, Knecht S. Development and validation of a language learning model for behavioral and

functional-imaging studies. Journal of Neuroscience Methods. 2002; 114: 173–179. https://doi.org/10.

1016/s0165-0270(01)00525-8 PMID: 11856568

14. Friedrich M, Friederici AD. Neurophysiological correlates of online word learning in 14-month-old

infants. Neuroreport. 2008; 19: 1757–1761. https://doi.org/10.1097/WNR.0b013e328318f014 PMID:

18955904

15. Obrig H, Mock J, Stephan F, Richter M, Vignotto M, Rossi S. Impact of associative word learning on

phonotactic processing in 6-month-old infants: A combined EEG and fNIRS study. Developmental Cog-

nitive Neuroscience. 2017; 25: 185–197. https://doi.org/10.1016/j.dcn.2016.09.001 PMID: 27692617

16. Nishimura M, Scherf S, Behrmann M. Development of object recognition in humans. F1000 Biol Rep.

2009; 1. https://doi.org/10.3410/B1-56 PMID: 20948628

17. Moore RK, Bosch LT. Modelling vocabulary growth from birth to young adulthood. Interspeech.

2009;10.

18. Bates E, Carnevale GF. New Directions in Research on Language Development. Developmental

Review. 1993; 13: 436–470. https://doi.org/10.1006/drev.1993.1020

19. Perani D, Paulesu E, Galles NS, Dupoux E, Dehaene S, Bettinardi V, et al. The bilingual brain. Profi-

ciency and age of acquisition of the second language. Brain. 1998; 121: 1841–1852. https://doi.org/10.

1093/brain/121.10.1841 PMID: 9798741

20. Hahne A. What’s Different in Second-Language Processing? Evidence from Event-Related Brain

Potentials. J Psycholinguist Res. 2001; 30: 251–266. https://doi.org/10.1023/a:1010490917575 PMID:

11523274

21. Friederici AD, Steinhauer K, Pfeifer E. Brain signatures of artificial language processing: Evidence chal-

lenging the critical period hypothesis. PNAS. 2002; 99: 529–534. https://doi.org/10.1073/pnas.

012611199 PMID: 11773629

22. Rossi S, Gugler MF, Friederici AD, Hahne A. The Impact of Proficiency on Syntactic Second-language

Processing of German and Italian: Evidence from Event-related Potentials. Journal of Cognitive Neuro-

science. 2006; 18: 2030–2048. https://doi.org/10.1162/jocn.2006.18.12.2030 PMID: 17129189

23. Friederici AD, Alter K. Lateralization of auditory language functions: A dynamic dual pathway model.

Brain and Language. 2004; 89: 267–276. https://doi.org/10.1016/S0093-934X(03)00351-1 PMID:

15068909

24. Poeppel D, Idsardi WJ, van Wassenhove V. Speech perception at the interface of neurobiology and lin-

guistics. Philos Trans R Soc Lond, B, Biol Sci. 2008; 363: 1071–1086. https://doi.org/10.1098/rstb.

2007.2160 PMID: 17890189

25. Hickok G, Poeppel D. The cortical organization of speech processing. Nature Reviews Neuroscience.

2007; 8: 393–402. https://doi.org/10.1038/nrn2113 PMID: 17431404

26. Binder JR, Desai RH, Graves WW, Conant LL. Where Is the Semantic System? A Critical Review and

Meta-Analysis of 120 Functional Neuroimaging Studies. Cereb Cortex. 2009; 19: 2767–2796. https://

doi.org/10.1093/cercor/bhp055 PMID: 19329570

27. Legault J, Fang S-Y, Lan Y-J, Li P. Structural brain changes as a function of second language vocabu-

lary training: Effects of learning context. Brain and Cognition. 2019; 134: 90–102. https://doi.org/10.

1016/j.bandc.2018.09.004 PMID: 30429056

28. Mårtensson J, Eriksson J, Bodammer NC, Lindgren M, Johansson M, Nyberg L, et al. Growth of lan-

guage-related brain areas after foreign language learning. NeuroImage. 2012; 63: 240–244. https://doi.

org/10.1016/j.neuroimage.2012.06.043 PMID: 22750568

29. Klein D, Mok K, Chen J-K, Watkins KE. Age of language learning shapes brain structure: A cortical

thickness study of bilingual and monolingual individuals. Brain and Language. 2014; 131: 20–24.

https://doi.org/10.1016/j.bandl.2013.05.014 PMID: 23819901

PLOS ONE The challenge of learning a new language in adulthood

PLOS ONE | https://doi.org/10.1371/journal.pone.0246421 February 19, 2021 19 / 23

https://doi.org/10.1016/0010-0285%2873%2990032-7
https://doi.org/10.1002/wcs.1373
http://www.ncbi.nlm.nih.gov/pubmed/27906526
https://doi.org/10.1098/rstb.2016.0054
http://www.ncbi.nlm.nih.gov/pubmed/27872372
https://doi.org/10.1098/rstb.2016.0056
http://www.ncbi.nlm.nih.gov/pubmed/27872374
https://doi.org/10.1016/s0165-0270%2801%2900525-8
https://doi.org/10.1016/s0165-0270%2801%2900525-8
http://www.ncbi.nlm.nih.gov/pubmed/11856568
https://doi.org/10.1097/WNR.0b013e328318f014
http://www.ncbi.nlm.nih.gov/pubmed/18955904
https://doi.org/10.1016/j.dcn.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/27692617
https://doi.org/10.3410/B1-56
http://www.ncbi.nlm.nih.gov/pubmed/20948628
https://doi.org/10.1006/drev.1993.1020
https://doi.org/10.1093/brain/121.10.1841
https://doi.org/10.1093/brain/121.10.1841
http://www.ncbi.nlm.nih.gov/pubmed/9798741
https://doi.org/10.1023/a%3A1010490917575
http://www.ncbi.nlm.nih.gov/pubmed/11523274
https://doi.org/10.1073/pnas.012611199
https://doi.org/10.1073/pnas.012611199
http://www.ncbi.nlm.nih.gov/pubmed/11773629
https://doi.org/10.1162/jocn.2006.18.12.2030
http://www.ncbi.nlm.nih.gov/pubmed/17129189
https://doi.org/10.1016/S0093-934X%2803%2900351-1
http://www.ncbi.nlm.nih.gov/pubmed/15068909
https://doi.org/10.1098/rstb.2007.2160
https://doi.org/10.1098/rstb.2007.2160
http://www.ncbi.nlm.nih.gov/pubmed/17890189
https://doi.org/10.1038/nrn2113
http://www.ncbi.nlm.nih.gov/pubmed/17431404
https://doi.org/10.1093/cercor/bhp055
https://doi.org/10.1093/cercor/bhp055
http://www.ncbi.nlm.nih.gov/pubmed/19329570
https://doi.org/10.1016/j.bandc.2018.09.004
https://doi.org/10.1016/j.bandc.2018.09.004
http://www.ncbi.nlm.nih.gov/pubmed/30429056
https://doi.org/10.1016/j.neuroimage.2012.06.043
https://doi.org/10.1016/j.neuroimage.2012.06.043
http://www.ncbi.nlm.nih.gov/pubmed/22750568
https://doi.org/10.1016/j.bandl.2013.05.014
http://www.ncbi.nlm.nih.gov/pubmed/23819901
https://doi.org/10.1371/journal.pone.0246421


30. Hosoda C, Tanaka K, Nariai T, Honda M, Hanakawa T. Dynamic Neural Network Reorganization Asso-

ciated with Second Language Vocabulary Acquisition: A Multimodal Imaging Study. J Neurosci. 2013;

33: 13663–13672. https://doi.org/10.1523/JNEUROSCI.0410-13.2013 PMID: 23966688

31. Stein M, Federspiel A, Koenig T, Wirth M, Strik W, Wiest R, et al. Structural plasticity in the language

system related to increased second language proficiency. Cortex. 2012; 48: 458–465. https://doi.org/

10.1016/j.cortex.2010.10.007 PMID: 21106192

32. Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ. Role of left inferior prefrontal cortex in

retrieval of semantic knowledge: A reevaluation. PNAS. 1997; 94: 14792–14797. https://doi.org/10.

1073/pnas.94.26.14792 PMID: 9405692

33. Gabrieli JDE, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory.

PNAS. 1998; 95: 906–913. https://doi.org/10.1073/pnas.95.3.906 PMID: 9448258

34. Moss HE, Abdallah S, Fletcher P, Bright P, Pilgrim L, Acres K, et al. Selecting Among Competing Alter-

natives: Selection and Retrieval in the Left Inferior Frontal Gyrus. Cereb Cortex. 2005; 15: 1723–1735.

https://doi.org/10.1093/cercor/bhi049 PMID: 15728742

35. Grindrod CM, Bilenko NY, Myers EB, Blumstein SE. The role of the left inferior frontal gyrus in implicit

semantic competition and selection: An event-related fMRI study. Brain Research. 2008; 1229: 167–

178. https://doi.org/10.1016/j.brainres.2008.07.017 PMID: 18656462

36. Snyder HR, Banich MT, Munakata Y. Choosing Our Words: Retrieval and Selection Processes Recruit

Shared Neural Substrates in Left Ventrolateral Prefrontal Cortex. Journal of Cognitive Neuroscience.

2011; 23: 3470–3482. https://doi.org/10.1162/jocn_a_00023 PMID: 21452939

37. Rodrı́guez-Fornells A, Cunillera T, Mestres-Missé A, de Diego-Balaguer R. Neurophysiological mecha-
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56. Hoppstädter M, Baeuchl C, Diener C, Flor H, Meyer P. Simultaneous EEG–fMRI reveals brain networks

underlying recognition memory ERP old/new effects. NeuroImage. 2015; 116: 112–122. https://doi.org/

10.1016/j.neuroimage.2015.05.026 PMID: 25988228

57. Dobbins IG, Rice HJ, Wagner AD, Schacter DL. Memory orientation and success: separable neurocog-

nitive components underlying episodic recognition. Neuropsychologia. 2003; 41: 318–333. https://doi.

org/10.1016/s0028-3932(02)00164-1 PMID: 12457757

58. Trask RL. A Dictionary of Phonetics and Phonology. Routledge; 2004. https://doi.org/10.4324/

9780203695111

59. Davis MH, Di Betta AM, Macdonald MJE, Gaskell MG. Learning and Consolidation of Novel Spoken

Words. Journal of Cognitive Neuroscience. 2008; 21: 803–820. https://doi.org/10.1162/jocn.2009.

21059 PMID: 18578598

60. Stocco A, Prat CS. Bilingualism trains specific brain circuits involved in flexible rule selection and appli-

cation. Brain and Language. 2014; 137: 50–61. https://doi.org/10.1016/j.bandl.2014.07.005 PMID:

25156160

61. Liu H, Rossi S, Zhou H, Chen B. Electrophysiological Evidence for Domain-General Inhibitory Control

during Bilingual Language Switching. PLOS ONE. 2014; 9: e110887. https://doi.org/10.1371/journal.

pone.0110887 PMID: 25343253

62. Schweizer TA, Ware J, Fischer CE, Craik FIM, Bialystok E. Bilingualism as a contributor to cognitive

reserve: Evidence from brain atrophy in Alzheimer’s disease. Cortex. 2012; 48: 991–996. https://doi.

org/10.1016/j.cortex.2011.04.009 PMID: 21596373

63. Woumans E, Santens P, Sieben A, Versijpt J, Stevens M, Duyck W. Bilingualism delays clinical mani-

festation of Alzheimer’s disease. Bilingualism: Language and Cognition. 2015; 18: 568–574. https://doi.

org/10.1017/S136672891400087X

64. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsycholo-

gia. 1971; 9: 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 PMID: 5146491

65. Brickenkamp R. Test d2. Aufmerksamkeits-Belastungstest. 5th ed. Göttingen: Hogrefe; 1975.
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