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Abstract
The work described here compared the available technical solutions for the treatment of
ventricular tachycardia with stereotactic body radiation therapy. Due to the complexity of
target motion during cardiac and pulmonary motion as well as the several proximate radio-
sensitive structures of the tracheobronchial tree and esophagogastrointestinal tract, four
potential candidates for this treatment were identified: Accuray CyberKnife (Accuray
Incorporated, Sunnyvale, California, United States), Varian TrueBeam (Varian Medical
Systems, Palo Alto, California, USA), Elekta Infinity (Elekta, Stockholm, Sweden), and Varian
Edge (Varian Medical Systems, Palo Alto, California, USA). All four treatment modalities were
evaluated for their ability to deliver a conformal, homogeneous dose to most of the target
volume, to spare nearby and distant critical and sensitive anatomical structures as well as for
treatment efficiency. It was found that conventional linear accelerator technology was superior
in their ability to spare distant critical structures and deliver treatments efficiently while the
CyberKnife showed superiority in sparing nearby critical structures more aggressively by
creating larger dose gradients at the periphery of the target volume. Both treatment modalities
were similar in their ability to cover the entire target with the prescription dose, conform that
dose to the target volume, and deliver a homogeneous dose.

Categories: Cardiology, Medical Physics, Radiation Oncology
Keywords: ventricular tachycardia, varian edge, varian truebeam, cardiac radiosurgery, cyberknife™,
elekta infinity

Introduction
Ventricular tachycardia (VT) is characterized by a rapid pathological beating of the ventricles of
the heart [1]. It is a condition that is most commonly associated with damage to the heart
induced by coronary artery disease. VT is a condition that can cause death or significant
distress through other symptoms such as syncope, dizziness, palpitations, breathlessness, or
chest pain. The standard of care includes the use of intracardiac defibrillators (ICDs) that shock
the patient back to sinus rhythm at the onset of VT. However, quality of life suffers with
frequent ICD shocks and survival is reduced when VT is frequent [2].

Drugs are often used in an attempt to prevent the occurrence of VT. However, drug treatment is
frequently ineffective and is also associated with a significant risk of unpleasant side-
effects. The failure of drug treatment, and its side-effects, in preventing VT and the desire to
prevent recurrent shocks in patients with ICDs have led clinicians to promote the use of
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catheter ablation (CA) for VT. For patients who have failed drug treatment or who have ongoing
issues with shocks, CA is an effective solution. Unlike ICD therapy, CA addresses the underlying
cause of VT rather than its consequences. Accordingly, CA has been shown to reduce the
recurrence of VT and the number of shocks delivered by ICDs. Unfortunately, CA also carries
with it a substantial number of side-effects, including stroke, heart failure, and vascular and
myocardial injury.

Due to the need for catheterization and the invasiveness of such procedures, several non-
invasive techniques have been developed. Initial experience in radiosurgery for cardiac tumor
was reported by Plowman et al. This case report demonstrated the feasibility and initial safety
of a non-invasive approach to cardiac tissue ablation [3-4]. Given the accuracy and precision
with which current technology allows the delivery of radiation to create fibrosis, block
electrical conduction non-invasively, and employ advances in cardiac imaging, ‘cardiac
radiosurgery’ has been developed to address this unmet clinical need [5]. One such method
takes advantage of the ablative nature of large doses of radiation delivered over one to five
treatment sessions using image-guidance for precise patient alignment and is commonly
referred to as stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation
therapy (SABR). SBRT can deliver similar therapeutic results as mechanical, radiofrequency-
based, or cryogenic ablation techniques and is, therefore, strongly considered by several
research institutions and hospitals [6].

The objectives in treating VT with SBRT are the accurate delivery of the ablative dose to the
target corresponding to the region causing aberrant conduction, conforming the treatment dose
to the target region with a steep fall-off of radiation dose in order to spare identified proximal
and distal critical anatomical structures, and optimizing temporal treatment efficiency.
Furthermore, minimizing the total amount of monitor units (MU) is desired to decrease the
compound leakage radiation that will determine the patient’s whole body dose, which may pose
a long-term secondary malignancy risk for the patient. These objectives require the utilization
of radiosurgery devices that can deliver the dose precisely to a small target moving with
pulmonary and cardiac periodicity and the ability to create steep dose gradients at the target-
to-critical-structure interface. The candidates for such a delivery technology selected for
analysis in this modeling study are the Accuray CyberKnife (Accuray Incorporated, Sunnyvale,
California, United States) with fixed collimators and with a multi-leaf collimator (MLC) [7], the
Varian TrueBeam (Varian Medical Systems, Palo Alto, California, USA) [8], the Elekta Infinity
(Elekta, Stockholm, Sweden), and the Varian Edge (Varian Medical Systems, Palo Alto,
California, USA) [9] with a micro multi-leaf collimator. Special emphasis will also be placed on
the unique imaging capabilities that this linear accelerator presents.

It is expected that the candidate treatment technologies have differing characteristics, making
them more or less suitable to meet the stated treatment objectives for VT. Even though these
treatment modalities were compared in the past from a technical or dosimetric perspective [10],
it became apparent that the unique requirements of VT treatments with complex target motion,
required precision, and anatomical configuration, necessitate a specific technology comparison
for this application.

Materials And Methods
The origin of VT (and, therefore, the target of ablative therapy) is often a region of mixed scar
caused by the occlusion of a coronary artery. However, the case considered in this study was the
less-common, non-ischemic VT caused by aberrant tissue in the anterior basal portion of the
heart. The degree of cardiac motion will be affected by the location of the target and the disease
state of the patient. Apical locations will move more than basal locations in the heart while
larger regions of existing scar reduce the contractility of the heart. In the case considered here,
these effects were in opposition – a basal location (small motion) with very little scarring (large
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motion).

Each component of the target motion can be studied by employing four-dimensional computed
tomography (4D CT) registered to the breathing cycle as well as a cardiac-gated 4D CT. The
appropriate target expansion can be derived from such 4D CT studies and applied. While the
CyberKnife can track a target volume that moves with pulmonary periodicity, linear
accelerators (linacs) can gate the treatment delivery or treat a larger internal target volume
(ITV) to account for the lung motion. Currently, both the CyberKnife as well as the linear
accelerator treatment methods would include a separate target expansion to account for cardiac
target motion derived from the cardiac-gated 4D CT. The appropriately expanded volume is the
planning target volume (PTV), which will be used in the design and evaluation of the treatment
plan.

Nine treatment plans were generated for the treatment of a VT target. The first and second
plans were generated for the Accuray CyberKnife. The first used a fixed collimator with an
Accuray Multiplan 5.1.2 treatment planning system while the second used a CyberKnife with
multi-leaf Collimator (MLC) with an Accuray Precision 1.1.1 treatment planning system. The
third, fourth, and fifth plans were generated for the Varian TrueBeam linear accelerator with
RapidArc for the ITV approach, gating, and no expansion situations. The sixth plan was
generated for an Elekta Infinity linear accelerator with volumetric arc therapy (VMAT) while the
seventh, eighth, and ninth plans were generated for a Varian Edge. The third, fourth, fifth, and
sixth plans were generated on a Philips Pinnacle 9.10 (Philips Radiation Oncology Systems,
Fitchburg, WI, USA) treatment planning system while the seventh, eighth, and ninth
plans were generated on Varian Eclipse.

All plans utilized the same contouring data set, which was originally generated for the first
CyberKnife plan with a dose of 25 Gy at 6 MV photon energy prescribed for a single fraction. The
CyberKnife target contours were defined by the cardiologist using proprietary software,
CardioPlan 1.1, by the defining of ablation lines on the surface rendered cardiac ventricle
(Figure 1). The imaging and target structure data were then exported to the MIM application to
derive a contiguous clinical target volume using a cardiac-gated 4D-CT imaging study that
encompassed the entire cardiac motion but was based on anticipated Synchrony tracking with
the CyberKnife to compensate for respiratory motion. The third and fourth plans (TrueBeam,
ITV, and gating) and the seventh and eighth plans (Edge, ITV, and gating) used expansions of
the clinical target volume (CTV) to the planning target volume (ITV) consistent with the lack of
respiratory tracking on that system. For the third and seventh plans with a non-gated ITV
approach, the CTV was expanded by 4 mm in the superoinferior dimension and 3 mm in all
other directions to generate an ITV while for the fourth and eighth plans, the CTV to ITV
expansion with the gated VMAT Linac case was 2 mm isotropically. The CTV to ITV expansions
were based on the results of previous respiratory motion studies for cardiac radiosurgery. The
fifth, sixth, and ninth plans were generated without any expansions of the clinical target
volume to purely demonstrate the dosimetric performance characteristics of the TrueBeam,
Infinity, and Edge technologies. It should be noted that the three linear accelerator plans with
no expansions are not to be considered practical or deliverable treatment plans and are
included in this study only for theoretical comparison with the Accuray CyberKnife in
evaluating the ability to cover the target and spare nearby critical structures. Only ITV and
gated treatment plans were considered for clinical use in addition to the CyberKnife plans. The
Elekta Infinity linear accelerator was not considered a viable treatment platform due to
shortcomings in imaging technology.
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FIGURE 1: CardioPlan™ patient contouring image
demonstrating the yellow target created by cardiologists, on
either side of the proximal coronary arteries. Contours are sent
to the treatment planning system via a DICOM file.
DICOM: digital imaging and communications in medicine

All plans utilized objective-based inverse treatment planning, sequential optimization in the
case of multiplan/precision and a gradient-based simultaneous annealing optimization
algorithm in the case of Pinnacle. The dose was calculated with the Raytracing and Monte Carlo
dose calculation engines for the CyberKnife plans, the collapsed cone convolution algorithm for
the Pinnacle treatment plans, and analytical anisotropic algorithm (AAA) with the Eclipse plans
for the Edge treatment plans. The Accuray with MLC and Varian TrueBeam for gating are shown
in Figure 2 and Figure 3. The treatment planning optimization objectives are listed in Table 1.
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FIGURE 2: Accuray CyberKnife Dose Distribution with PTV and
prescription isodose line in orange
Accuray Incorporated, Sunnyvale, California, United States

PTV: planning target volume
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FIGURE 3: Varian TrueBeam dose distribution with PTV in
orange and prescription isodose line in yellow
Varian Medical Systems, Palo Alto, California, USA

PTV: planning target volume
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Structure Criteria Dose Objective (Gy)

PTV Min Dose 25.0

PTV Min DVH D95 26.5

PTV Max Dose 32.0

RT Coronary Artery Max Dose 19.0

Ramus Coronary Artery Max Dose 19.0

LT Anterior Descending CA Max Dose 19.0

Mitral Valve Max Dose 19.0

Pericardium Max Dose 19.0

LT Main CA Max Dose 19.0

Circumflex Max Dose 19.0

LT Bronchus Max Dose 20.0

Defibrillator Max Dose 2.0

TABLE 1: Summary of optimization objectives for CyberKnife, Elekta, and Varian
linear accelerator plans
CyberKnife: Accuray Incorporated, Sunnyvale, California, United States; Elekta: Elekta, Stockholm, Sweden; Varian: Varian Medical
Systems, Palo Alto, California, USA

PTV: planning target volume; RT: right; LT: left; CA: coronary artery

The CyberKnife plans utilized a full beam path with a single fiducial for Synchrony-based
tracking. This treatment plan was based on clinical, measured beam data from St. Luke’s
Hospital in Houston, TX, while the CyberKnife MLC plan utilized Accuray provided beam data.
The Varian TrueBeam and Elekta Infinity plans were based on treatment machines with a 5-
mm-wide leaf MLC, a single arc VMAT with an almost complete circular sweep of 340 deg and a
collimator angle of 15 deg. The dose was calculated every 3 deg for this arc therapy, which
resulted in 115 segments. Varian TrueBeam beam data were provided by Philips as a sample for
the TrueBeam linear accelerator machine, which is considered current state-of-the-art in
radiation oncology while Elekta Infinity beam data originated from the clinical practice of one
of the authors. The Varian Edge plans included multiple VMAT arcs.

The optimization process for all treatment plans was implemented by balancing priorities for
target coverage, dose conformity, dose homogeneity, avoidance of hot spots, and critical
structure sparing. This was accomplished by assigning priorities for each of the objectives in
line with the importance of the individual objectives. For the Accuray Precision CyberKnife
plan, the order of objectives determined the sequence of objectives that were addressed; for the
Philips Pinnacle Varian and Elekta treatment plan, priority values were assigned to each of the
objectives that assigned the importance for the optimization process.

Results
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Table 2 below summarizes the administrative and logistical characteristics of the individual
plans, while Table 3 shows the dosimetric comparison of the plans. For Table 3, the relevant
dose volume histogram (DVH) values were extracted from the respective plans; relevance was
based on clinical practice and available contours. Each treatment plan was normalized
individually and due to the emphasis on dose homogeneity with Pinnacle treatment plans, the
Elekta Infinity treatment plan resulted in the highest prescription isodose line. The ITV and
gated Pinnacle plans on the Varian TrueBeam linear accelerators are planned to be delivered
with the above-stated margins. The increased PTV size will impact the ability to spare proximal
critical structures from high doses. Gating on the TrueBeam system ensures proper target
coverage throughout the respiratory cycle but will increase the treatment time. If the treatment
beam was gated to be active for 30% of the respiratory cycle, the treatment time would be
increased by a factor of 3.3. The recorded variation in CTV volume was caused by differing
peripheral voxel management methods of the different treatment planning systems. We should
also acknowledge that normalization for the Accuray Precision, Varian Eclipse, and Philips
Pinnacle treatment plans vary from point maximum dose to isocenter dose. That is the reason
why the product of maximum dose and prescription isodose is not constant across all plans.

Criteria/

Technology

Accuray

CyberKnife w/

fixed

collimator

Accuray

CyberKnife w/

MLC

Varian

TrueBeam

(ITV)

Varian

TrueBeam

(Gated)

Varian

TrueBeam

(no

expansion)

Elekta Infinity

(no exp)

Varian Edge

(ITV)

Varian Edge

(Gated)

Varian Edge

(no

expansion)

Rx Dose (Gy) 25 25 25 25 25 25 25 25 25

Energy (MV) 6 6 6 6 6 6 6 FFF 6 FFF 6 FFF

Dose Rate

(MU/min)
1000 1000 600 600 600 600 1400 1400 1400

Maximum Dose

(Gy)
31.25 28.74 34.71 34.15 32.12 30.74 32.47 32.09 31.39

CT slice

spacing (mm)
1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

CTV/PTV (ccm) 19.80/32.55 19.69/31.79 19.80/63.25 19.80/51.45 19.80/32.55 19.80/32.55 19.4/59.4 19.4/50.0 19.40/31.5

Rx Isodose Line

(%)
80 87 74 74 80 89 77 78 80

PTV coverage

(%)
95.7 95.8 91.0 92.6 93.2 93.1 95 95 95

CI/nCI 1.64/1.72 1.37/1.44 1.59/1.72 1.56/1.69 1.44/1.57 1.31/1.43 0.99/1.10 0.98/1.08 0.97/1.07

Treatment

Modality

Non-

isocentric,

non-coplanar,

robotic

Non-

isocentric,

non-coplanar,

robotic

VMAT VMAT VMAT VMAT VMAT VMAT VMAT

Tracking/Gating
Synchrony

Tracking

Synchrony

Tracking
Neither Gating Neither Neither Neither Gating Neither

Collimator
Fixed

Collimator
2-3mm MLC 5mm MLC 5 mm MLC 5 mm MLC 5 mm MLC 2.5 mm MLC 2.5 mm MLC 2.5 mm MLC
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Beam Direction
Full-Path, ~2 Pi

solid angle

Full-Path, ~2 Pi

solid angle

Coplanar,

continuous

arc, 115

segments

Coplanar,

continuous

arc, 115

segments

Coplanar,

continuous

arc, 115

segments

Coplanar,

continuous

arc, 115

segments

Coplanar, 3

continuous

358 degree

arcs

Coplanar, 3

continuous

358 degree

arcs

Coplanar, 3

continuous

358 degree

arcs

Image

Guidance

Orthogonal,

planar, oblique,

kV, intra-

fraction

Orthogonal,

planar, oblique,

kV, intra-

fraction

CBCT, pre-

fraction

CBCT pre-

fraction

CBCT, pre-

fraction

CBCT, pre-

fraction

CBCT, pre-

fraction

CBCT, pre-

fraction

CBCT, pre-

fraction

Monitor Units 25187.8 11725.6 6767.4 6704.8 6400.7 7598.2 11511 12054 11790

Estimated Tx

Time (w/o

gating) (min)

95 34 9.0 29.7 9.5 11.3 8.2 8.6 8.4

Dose Calc

Algorithm
Raytracing Pencil Beam CCC CCC CCC CCC AAA AAA AAA

TABLE 2: Comparison of treatment parameters for Accuray CyberKnife, Varian
TrueBeam with the ITV approach and gating, TrueBeam, Elekta no margin plans, and
Varian Edge with ITV, gating, and no margin plans. The most desirable
values/characteristics are in bold
CyberKnife: Accuray Incorporated, Sunnyvale, California, United States; Elekta: Elekta, Stockholm, Sweden; Varian: Varian Medical
Systems, Palo Alto, California, USA

ITV: internal target volume; PTV: planning target volume; CTV: clinical target volume; VMAT: volumetric arc therapy; CT: computed
tomography; MLC: multi-leaf collimator; CBCT: cone-beam CT; CCC: collapsed cone convolution; AAA: analytical anisotropic algorithm

Anatomical

Structure

Accuray

CyberKnife w/

cones

Accuray

CyberKnife

w/ MLC

Varian

TrueBeam

(ITV)

Varian

TrueBeam

(Gated)

Varian

TrueBeam (No

expansion)

Elekta Infinity

(No

expansion)

Varian

Edge

(ITV)

Varian

Edge

(Gated)

Varian Edge

(No

expansion)

PTV mean

(Gy)
28.31 27.18 30.41 30.26 28.85 27.85 28.17 27.84 27.22

RCA max

(Gy)
12.24 2.98 7.15 7.27 6.11 8.91 9.61 9.37 8.03

Ramus CA

max (Gy)
21.32 28.12 25.56 24.59 22.10 21.76 24.88 24.22 20.23

LAD CA max

(Gy)
21.23 21.88 24.86 23.71 22.09 20.93 24.08 22.76 18.95

L Main CA

max (Gy)
14.63 13.61 22.78 21.65 19.57 18.11 14.79 13.86 11.77

Circ max

(Gy)
21.35 23.18 24.18 23.11 21.07 21.06 24.26 23.08 20.36
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Mitral Valve

max (Gy)
19.26 22.18 29.62 28.39 25.46 24.07 25.86 25.11 21.62

Pericardium

max (Gy)
31.25 28.74 34.71 34.15 32.05 30.71 32.36 31.90 31.21

Full myocar

CTV mean

(Gy)

31.25 27.36 31.32 31.15 32.05 30.71 29.09 28.59 27.71

Esophagus

max (Gy)
5.21 4.14 10.48 9.62 8.02 10.89 4.47 4.16 3.53

Left

bronchus

max (Gy)

11.21 12.69 19.40 18.17 15.44 16.54 13.64 12.42 10.80

Heart max

(Gy)
31.25 28.74 34.71 34.15 32.04 30.71 32.36 31.90 31.21

Heart

mean (Gy)
6.61 5.25 9.08 8.14 6.58 6.01 5.77 5.20 4.07

Total Lung

mean (Gy)
1.62 1.45 2.51 2.16 1.79 1.62 1.69 1.53 1.19

Cord max

(Gy)
2.50 2.10 5.91 6.50 4.91 7.59 2.40 2.12 1.96

Defib max

(Gy)
1.05 0.09 0.51 0.43 0.36 0.48 0.30 0.27 0.21

TABLE 3: Dosimetric comparison of Accuray CyberKnife, Varian TrueBeam with ITV
and gating approach, TrueBeam, Elekta no margin plans, Varian Edge with ITV,
gating, and no margin plans – most desirable values are in bold. Dose maximum was
reported as D0.001 ccm.
CyberKnife: Accuray Incorporated, Sunnyvale, California, United States; Elekta: Elekta, Stockholm, Sweden; Varian: Varian Medical
Systems, Palo Alto, California, USA

ITV: internal target volume; PTV: planning target volume; CTV: clinical target volume; CT: computed tomography; MLC: multi-leaf
collimator; RCA: right coronary artery; CA: coronary artery; LAD: Left anterior descending

Discussion
The target dose coverage and dose homogeneity are superior for the CyberKnife. Both
CyberKnife plans exhibit a steeper dose gradient at the interface between target volumes and
critical structures, compared to the linear accelerator plans, except for the Varian Edge
treatment plans. Distant critical structures are better spared by all linear accelerator and the
CyberKnife MLC plans due to the smaller amount of monitor units used and the smaller total
amount of total leakage radiation reaching the patient.
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Due to the use of the MLC, the smaller amount of monitor units used, and the minimization of
treatment segments, all linear accelerator plans are more time-efficient in their treatment
delivery compared to both Accuray CyberKnife treatment plans. A smaller treatment time is
always desirable, as it minimizes involuntary patient and target movements.

As the gating and ITV approaches with the Varian TrueBeam and Varian Edge linear accelerator
plans require an increased target margin, a larger volume of nearby uninvolved healthy tissues
are being irradiated and nearby critical structures cannot be spared as easily as with the
CyberKnife plans.

As both CyberKnife and linear accelerators are limited to 0.1% of the primary radiation to be
delivered to the entire patient's body and the number of monitor units delivered by linear
accelerator treatments is generally significantly lower compared to CyberKnife treatments, the
whole body dose is expected to be significantly lower for all linear-accelerator-based treatment
modalities. This effect is expected to decrease the secondary malignancy incidence rate due to
radiation received by the patient outside of the treatment fields.

The MLC-based CyberKnife plan shows similar superior dosimetric results as the CyberKnife
plan using fixed collimators with a significant improvement in treatment efficiency. The MLC
usage with the CyberKnife for VT treatments should be regarded as a true improvement in
treatment efficiency and a decrease in the whole body dose compared to the fixed collimator
CyberKnife treatments.

Conclusions
With real-time imaging and Synchrony-based dynamic target tracking, the CyberKnife appears
to be the best-suited instrument to deliver a dose to the complex-shaped target volume in the
basal region with an aberrant focus and with a nearby critical structure and the
complex pulmonary and cardiac motions with superimposed frequencies and differing
amplitudes. No other target locations were investigated at this point, but it is planned to cover
additional locations, such as apical locations and scar lesions. It is expected that target volumes
in the apical region require a larger margin for the ITV and gated treatment approaches due to
the larger amplitude of target cardiac motion and, therefore, should be considered
disadvantaged compared to the CyberKnife treatment with tracking capabilities due to their
inability to spare nearby critical structures. Also, the treatment efficiency for gated treatments
is expected to decrease due to a more erratic target motion and fewer cardiac phase angles that
can be utilized for the "Beam On" phase during the gating process.

From a dosimetric evaluation perspective, it can be concluded that the CyberKnife provides
better sparing for critical anatomical structures in close proximity to the target while anatomies
at several centimeters distance are better spared by Linac-based techniques. This is caused
by the ability of the CyberKnife to produce very steep dose gradients in the immediate vicinity
of the target volume and the fact that many more monitor units are delivered for the CyberKnife
as compared to the Linac, resulting in a larger amount of leakage radiation reaching the more
distant structures.

The differences in dose conformity are apparent in comparison to the CyberKnife with the no
expansion TrueBeam and Elekta cases but they are more pronounced for the gated and ITV
cases. As the PTV volumes increase for the gated TrueBeam and TrueBeam ITV compared to the
CyberKnife, it is, in principle, increasingly more difficult to cover the target volumes, spare the
nearby critical structures, and conform the prescription isodose line to the target.

Overall, for this basal target volume, the CyberKnife should be considered the more precise
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delivery technology for VT treatments, as it can provide real-time tracking, intra-fraction
imaging, more accurate dose painting, and better sparing of nearby critical anatomical
structures. However, the cost of this achievement remains poor treatment efficiency, which is
overcome partially with the employment of the MLC for the CyberKnife treatment.
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