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The hallmarks of ovarian cancer encompass the development of resistance, disease recurrence and poor prognosis. Ovarian
cancer cells express gene signatures which pose significant challenges for cancer drug development, therapeutics, prevention and
management. Despite enhancements in contemporary tumor debulking surgery, tentative combination regimens and abdominal
radiation which can achieve beneficial response rates, the majority of ovarian cancer patients not only experience adverse effects,
but also eventually relapse. Therefore, additional therapeutic possibilities need to be explored to minimize adverse events and
prolong progression-free and overall response rates in ovarian cancer patients. Currently, a revival in cancer drug discovery
is devoted to identifying diagnostic and prognostic ovarian cancer biomarkers. However, the sensitivity and reliability of such
biomarkers may be complicated by mutations in the BRCA1 or BRCA2 genes, diverse genetic risk factors, unidentified initiation
and progression elements, molecular tumor heterogeneity and disease staging. There is thus a dire need to expand existing ovarian
cancer therapies with broad-spectrum and individualized molecular targeted approaches. The aim of this review is to profile
recent developments in our understanding of the interrelationships among selected ovarian tumor biomarkers, heterogeneous
expression signatures and related molecular signal transduction pathways, and their translation into more efficacious targeted
treatment rationales.

1. Introduction

Ovarian cancer is the major cause of gynecological cancer
deaths worldwide [1–6]. It is widely accepted that the dis-
tinctive genotypic and phenotypic characteristics of ovarian
cancer not only promote its metastatic potential but are also
responsible for the development of resistance to conventional
modes of cancer therapy, disease recurrence, and poor
prognosis [2, 4, 7–19]. In particular, epithelial ovarian cancer
(EOC) presents a considerable impediment to successful
treatment outcome because of its propensity to embark on
a program of epithelial-to-mesenchymal transition (EMT), a
transdifferentiation process that is almost invariably associ-
ated with tumor progression and invasiveness [2, 15, 19–24].

Furthermore, self-renewing ovarian cancer stem cells
(OCSCs) or ovarian cancer-initiating cells (OCICs), as well
as mesenchymal stem cells (MSCs), have been implicated

in ovarian tumorigenesis, intra- and extraperitoneal metas-
tases, and chemoresistance [2, 19, 25–27]. Since cancer stem
cells (CSCs) are predominantly quiescent, have upregulated
DNA repair capacity, are noncommittal to apoptosis, and
overexpress ATP-binding cassette (ABC) drug efflux trans-
porters, for example, ABCG1 (MDR1/P-glycoprotein/Pgp),
ABCG2, and breast cancer resistance protein (BCRP), and a
profusion of cancer gene signatures, they sustain the succes-
sion of clonal tumor cell proliferation and repopulation in
the tumor microenvironment [2, 22, 25, 26, 28–38]. Many
CSC-derived or EMT-induced tumors, including ovarian
cancer, also express this aggressive, malignant, and multidrug
resistance (MDR) phenotype and other tumor prosurvival
repertoires which pose significant challenges for cancer drug
development, therapeutics, prevention, and management [2,
19–22, 28, 33, 34, 39].
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The optimal management modality for ovarian cancer
includes histopathological diagnosis and staging, debulking
(surgical resection) of the tumor, and several cycles of
intravenous (IV) or intraperitoneal (IP) chemotherapy with
carboplatin and paclitaxel at maximum tolerated doses
(MTDs), followed by maintenance or salvage treatments,
in cases of disease recurrence [3, 12, 15, 40, 41]. Although
refinements in tumor ablation procedures and IP combi-
nation chemotherapy with carboplatin and paclitaxel can
achieve beneficial response rates, for example, median pro-
gression-free survival (PFS) range of 16 to 21 months and
median overall survival (OS) range of 24 to 60 months,
most patients with advanced disease ultimately relapse [15,
23, 40, 42–46]. Likewise, the majority of contemporary or
tentative regimens of more than two cytotoxic drugs as well
as low-dose chemosensitizing abdominal radiation have not
yielded radically improved efficacy or significantly reduced
adverse effects over the dual combination of carboplatin and
paclitaxel, suggesting that other therapeutic avenues need to
be explored to prolong PFS and OS rates in ovarian cancer
patients [23, 39, 41, 47–55].

Recently, there has been a resurgence of efforts to identify
ovarian cancer biomarkers for use in initial detection, stag-
ing, disease prognosis, molecular therapeutic targeting, and
individualized clinical management of patients [14, 56–
73]. Nonetheless, the sensitivity and reliability of ovarian
cancer biomarkers may be confounded by several charac-
teristics of the disease such as mutations in the BRCA1 or
BRCA2 genes and their arcane absence in sporadic ovarian
cancer, diverse genetic risk factors, unidentified initiation
and progression elements, molecular tumor heterogeneity,
and transition time between different stages of the disease.
Correspondingly, the lack of a one-fit-all (i.e., highly sensitive
and specific) biomarker for different histotypes of ovarian
cancer—for example, EOC can be classified into four
distinct histotypes: fallopian tube (serous), endometrium
(endometrioid), endocervix (mucinous), or nests within the
vagina (clear cell), coupled with differential overexpression
of homeobox (Hox) genes—suggests that combination pan-
els of biomarkers may offer greater diagnostic and prognostic
probability [2, 12, 71, 73–75]. There is a critical need to
develop broad-spectrum as well as individualized molecular-
targeted therapies for ovarian cancers. Ingenious approaches
are currently being applied to precisely map signal trans-
duction pathways and target key molecular role players that
direct ovarian tumor sensitivity and resistance to therapy and
OS rates in patients. These include improved ultrasound and
imaging technologies, molecular genetic analysis, as well as
genomic, transcriptomic, and proteomic profiling of novel
ovarian tumor biomarkers [2, 7, 14, 16, 56, 61, 72, 76–
94]. In view of the complexities and variable response rates
experienced with ovarian cancer patients clinically, the aim of
this review is to outline recent developments in our under-
standing of the interrelationships among selected ovarian
tumor biomarkers, heterogeneous expression signatures and
related molecular signal transduction pathways, and their
translation into futuristic as well as more efficacious targeted
treatment rationales.

2. The Molecular Therapeutic
Targeting Paradigm

The recurrence of ovarian tumors implies resistance to ther-
apy regardless of encouraging response rates to cytoreductive
surgery and combination chemotherapy, and most patients
who relapse will eventually succumb to the disease [3, 15,
43, 44, 65, 95–98]. The poor prognosis in ovarian cancer
patients may be broadly ascribed to distinct tumor histotypes
or heterogeneity, disparate genomic expression profiles, and
strikingly different molecular abnormalities [2, 12, 16–
18, 39, 56, 69, 99–104]. Thus, the likelihood of ovarian
cancer recurrence and resistance to therapy warrants serious
alternative or complementary strategies to conventional on-
cologic modalities [1–4, 23, 42, 96, 105–107]. The poten-
tial for molecular-targeted therapy of ovarian cancers is
increasingly being recognized and empirically validated [61,
108, 109]. Molecular therapeutic targeting is an approach
that exploits specific hallmarks of cancers and the tumor
microenvironment and their rationalization into clinically
relevant and potent anticancer drugs with fewer side effects
[1, 2, 23, 37, 39, 110–118]. Moreover, the application and
exploitation of the dynamics of molecular-targeted system
networks hold great promise for the design of personalized
cancer therapies [119, 120]. This review provides a concise
insight into recent advances in the molecular mechanisms of
signal transduction pathways, the development MDR, DNA
repair mechanisms, and tumor biomarkers of prognostic
indicators and their therapeutic potential as translational
targets in ovarian cancer.

3. Ovarian Cancer Biomarkers and Cell
Signaling Pathways

A number of reliable, complementary, or potential diagnostic
and prognostic biomarkers have been reported to be overex-
pressed or deregulated in different types of ovarian cancer.
These will be considered in Sections 3 and 4.

3.1. Breast Cancer 1 and 2 (BRCA1/2) Oncogenes. Ovarian
cancers are associated with breast cancer 1 (BRCA1) and
BRCA2 oncogenes, variously inherited as germline muta-
tions [121–124]. Wild-type BRCA1/2 genes are critical
for DNA repair by the homologous recombination (HR)
pathway—hence their deletion causes genomic instability
and predisposes affected females to familial breast and
ovarian cancers [103, 104, 125–127]. Ovarian cancers with
mutated BRCA1/2 genes are particularly sensitive to agents
that cause DNA double strand breaks (DSBs) and DNA
interstrand cross-links, like the platinum compounds (e.g.,
cisplatin and carboplatin) and poly(ADP-ribose) polymerase
(PARP) inhibitors (e.g., olaparib, iniparib, veliparib) [128–
132]. It is conceivable, therefore, that secondary or reversion
mutations of the BRCA1/2 genes, through multiple complex
mechanisms, may favor DNA repair by HR and increase
tumor cell survival and so trigger resistance to these com-
pounds [133–138].
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In addition, upregulation of ABCB1 genes encoding the
P-glycoprotein drug efflux pump has been found to be
responsible for acquired resistance in a genetically engi-
neered mouse model (GEMM) for BRCA1-associated breast
cancer, following prolonged exposure to olaparib [139]. Such
resistance mechanisms need to be demarcated in order to
realize the full potential of molecular targeting of BRCA1/2
mutations in ovarian cancer [140, 141]. Nonetheless, a recent
phase II clinical trial with orally active olaparib in women
with confirmed genetic BRCA1/2 mutations and recurrent
measurable ovarian cancer has provided tangible proof
of concept of the efficacy and tolerability of molecularly
targeted treatment with PARP inhibitors, and validated
BRCA1/2 mutations as biomarkers for predicting responses
of ovarian cancer patients to PARP inhibition [142]. Several
other reports have, in the context of BRCA1−/− ovarian can-
cers and their sensitivity to small molecule PARP inhibitors,
presented preclinical and clinical evidence that the concept
of synthetic lethality which defines a condition whereby two
mutations, each with viable phenotypes, produce a lethal
phenotype when they are combined can thus be exploited as
a molecular-targeted strategy [133, 135, 143–147].

3.2. Vascular Endothelial Growth Factor (VEGF) and Its Recep-
tor (VEGFR). Tumor neovascularization or angiogenesis, a
process dictated by complex cellular pathways that fine-tune
proangiogenic and antiangiogenic factors (i.e., an angiogenic
switch) in the tumor microenvironment, allows cancers to
develop new blood vessels for nutrient and oxygen supply,
elimination of metabolic waste products, growth, acquisition
of an invasive phenotype, and metastastic spread [148–153].
Vascular endothelial growth factor (VEGF) and its receptor
(VEGFR) occupy a position of prominence in angiogenesis
signaling in normal ovarian physiology and in ovarian cancer
progression [1, 2, 4, 15, 23, 65, 114, 154–156]. Therefore,
inhibition of the angiogenesis signal transduction pathway
via its ligands and receptors in ovarian cancers represents a
perfectly cogent molecular targeting strategy [1, 4, 95, 98,
113, 153, 154, 157]. VEGF has long been recognized as a
biomarker for predicting ovarian cancer patient responses to
VEGF and other therapies and may as well have applications
in formulating individualized therapies [4, 71, 72, 158–
161]. Inhibitors of the VEGF pathway include bevacizumab
(a humanized antibody that targets the ligand VEGF) and
VEGF-trap (aflibercept, a high-affinity VEGFR decoy fusion
protein that binds and inactivates VEGF and other ligands)
[1, 3, 51, 95, 98, 114, 162, 163].

Besides blocking the VEGF pathway with VEGF anti-
bodies, the angiogenic pathway can be targeted with small
molecule VEGFR tyrosine kinase inhibitors (TKIs)—those
currently used in ovarian cancer include, sorafenib, sunitinib
cediranib, vandetanib, and intedanib (BIBF 1120) [7, 15,
65, 153, 154, 162, 164–166]. Since multiple ligands and
their receptors are involved in neovascularization, including
platelet-derived growth factor (PDGF/R), epidermal growth
factor (EGFR/R), placenta growth factor (PlGF/R), KIT,
fibroblast growth factor (FGF/R), and hepatocyte growth
factor (HGF/R), resistance to single antiangiogenic drugs

may occur in ovarian cancer patients, blocking such alter-
native pathways with rational drug combinations that have
cross-specificity would be an appropriate molecular targeting
strategy [1, 4, 15, 23, 114, 148, 150, 153, 156, 167–170].

3.3. The EGFR/ErbB Family of Receptor Tyrosine Kinases. In
humans, the epidermal growth factor receptor EGFR/ErbB
family of receptor tyrosine kinases (RTKs) comprises
four members: EGFR/ErbB1/HER-1, ErbB2/Neu/HER-2,
ErbB3/HER-3, and ErbB4/HER-4 [171, 172]. ErbB2 lacks
ligand-binding capacity because its ectodomain is fixed and
in an unfolded conformation, but it is the preferred ally
for heterodimerization with EGFR to increase the duration
and intensity of the signal triggered by high-affinity ligand
binding to EGFR. Thus, ErbB2 is an amplifier of the ErbB
signaling network [171]. Aberrant coexpression and collabo-
ration of EGFR and ErbB2 is widespread in cancers and has
been associated with poor prognosis [172–175]. Therefore,
EGFR is deemed to be a useful biomarker for ovarian
cancers [1, 2, 4, 61, 176, 177]. In ovarian cancers, mutant or
isoforms of EGFR RTKs transactivate signaling transduction
cascades such as PI3K/AKT and Ras/Raf/MEK/MAPK/ERK
that result in diverse effects, including cell proliferation,
dedifferentiation, adhesion, migration, invasion, angiogen-
esis, and apoptosis evasion [177–183]. Accepted tenets of
molecular targeting of EGFR signaling in ovarian and
non-ovarian cancers encompass small molecule TKIs (e.g.,
erlotinib, gefitinib), ATP-binding site inhibitors (e.g., CI-
1033), anti-EGFR/ErbB2monoclonal antibodies (e.g., mat-
uzumab, pertuzumab, cetuximab, trastuzumab), and multi-
kinase inhibitors (e.g., vandetanib, sorafenib) [164, 166, 174,
184–194].

A recent phase II trial in women with predominantly
platinum-resistant recurrent ovarian cancer concluded that
vandetanib, a multikinase inhibitor designed to perturb
both angiogenesis (i.e., VEGFR) and tumor cell growth
(i.e., EGFR), did not produce translational clinical benefit
since the drug inhibited EGFR and AKT levels in tumor
biopsies, but had no effect on VEGFR [164]. Likewise,
EGFR gene mutations and EGFR protein expression do not
necessarily correlate with clinical outcome [182, 195–197].
Previous phase II clinical studies with imatinib and gefitinib
in patients with refractory or recurrent EOC suggested that
although these agents have marginal benefits as monothera-
pies in EOC, their ability to modulate molecular targets (e.g.,
EGFR, c-Kit, PDGFR, ERK, AKT) and demonstrate proof
of concept corroborates their applicability in combinatorial
molecular therapeutics [198, 199]. A number of reports have
reinforced the notion that inhibition of a single transduction
pathway may be insufficient since activation of alternative
signaling cascades may conceal efficacy, and that it would
be more advantageous to target integrated cancer signals, for
example, VEGFR- and EGFR-interdependent pathways [170]
and heparin-binding epidermal growth factor-like growth
factor (HB-EGF) [200, 201]. Remarkably also, the mam-
malian target of rapamycin (mTOR) is a central intracellular
kinase that not only orchestrates proliferation, survival, and
angiogenic pathways, but has also been linked to resistance
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to EGFR antagonists, and thus mTOR inhibition could be
explored to interfere with tumor growth and expansion at
multiple levels [4, 83, 84, 92, 159, 170, 202–205]. Another
multiple molecular targeting platform is provided by EGFR-
induced EMT in EOC, possibly via mechanisms that incor-
porate estrogen signaling, E-cadherin downregulation and
expression of matrix metalloproteinase-9 (MMP-9), and
Snail transcription family members (SNAIL and SLUG)
[79, 206, 207]. Additionally, oncolytic viruses engineered
to deliver anti-EGFR antibodies to intraperitoneal ovarian
cancer cells show great potential as a future gene therapeutic
focus [208]. Irrespective of the prospects for molecular
targeting of EGFR RTKs in ovarian cancer, resistance to
EGFR inhibitors and unwanted adverse events in ovarian and
non-ovarian tumors are major clinical concerns that need to
be circumvented [16, 166, 174, 191, 209, 210].

3.4. Mucin 16 (MUC16) and Lewis X Mucin Determinant
(OVX1). The role of mucins in epithelial cancer, including
ovarian cancer, pathogenesis is well established [211–213].
Mucin 16 (MUC16)—also called carcinoma antigen 125
(CA125)—is arguably the most consistently used biomarker
for ovarian cancer [58, 59, 61, 64, 72, 73, 211, 214–
221]. MUC16 is overexpressed in EOC and correlates with
decreased E-cadherin, elevated N-cadherin and vimentin
levels, and heightened invasivesness, tumorigenesis, tumor
cell proliferation, and metastases, as confirmed by MUC16
knockdown which completely abolished the development
of subcutaneous tumors in nude mice [222]. Interest-
ingly, the C-terminal domain of MUC16 promotes cis-
platin resistance and MUC16 selectively modulates the
sensitivity of EOC cells to DNA-damaging drugs such
as cyclophosphamide, doxorubicin and etoposide, effects
validated by downregulation of cell surface MUC16 [223].
The strong interaction between MUC16 and mesothelin, a
glycosylphosphatidylinositol- (GPI-) anchored glycoprotein,
promotes cell adhesion and peritoneal metastasis of ovarian
cancer cells [224, 225]. Furthermore, MUC16 suppresses
natural killer (NK) cell-induced cytolysis in EOC patients,
indicating that it compromises immune-mediated tumor
surveillance and destruction [226]. In preclinical and clinical
studies, antibodies and vaccines directed against mucins,
evaluated for their potential to delay or limit the spread
of tumor cells, produced significant survival benefits [211,
227–229]. The usefulness of MUC16 as a target antigen in
ovarian carcinomas is hampered by cleavage and secretion
of its extracellular domain. However, a recent study has
shown that the introduction of a gene encoding a chimeric
antigen receptor (CAR) targeted to the retained extracellular
fraction (MUC-CD) and its retroviral transduction into
human T cells specifically targets and lyses MUC-CD+ tumor
cells and may thus signify an innovative design to adoptive
immunotherapy of cancer [230–232]. In view of the previous
assertions, MUC16 needs to be probed for its plausibility as
a molecular target in the immunotherapy of ovarian cancers
[233, 234].

MUC16 is used along with multiple serum biomarkers
for the early detection and screening of ovarian cancer [235].
One such biomarker is the Lewis X mucin determinant

(OVX1) which is increased in the majority of patients with
EOC [59, 71, 72, 125, 218, 221, 236–238]. Monoclonal
antibodies to OVX1 are internalized by ovarian cancer
cell lines in vitro and may prove useful in the molecular
targeting of this neoplasm with conjugated antibodies and
immunotoxins [232, 238–241]. Curiously, alterations of the
sugar moieties of the glycosylated Lewis X and Lewis Y
antigens are frequent in epithelial ovarian cancers and,
besides having obvious prognostic implications, may be
prime arbiters along with extracellular matrix component
interactions (e.g., β-integrin/fibronectin, CA125/mesothelin,
CD44/hyaluronan) in CD44-mediated adhesion and peri-
toneal spreading (metastasis) of ovarian cancer cells [242].
These mechanisms should be explored as a molecular
targeting principle in ovarian cancers.

3.5. The IL-6R-JAK-STAT3 Axis and Nuclear Factor Kappa-
B (NF-κB). The upregulation of several proinflammatory
cytokines in ovarian cancers confirms a link between
inflammation and immunogenic-tumor microenvironment
interactions in the increased risk of ovarian tumor initiation
and progression [243–251]. IL-6 is a proinflammatory
cytokine that modulates pleiotropic cellular and immune
responses. Binding of the ligand, IL-6, to the α-subunit
of its receptor (IL-6R) results in the formation of a het-
erodimeric complex (IL-6R/gp130) which activates Janus
kinase (JAK) and various downstream effectors such as
signal transducer and activator of transcription 3 (STAT3),
SHP-2/Ras, mitogen-activated protein kinase (MAPK), and
phosphatidylinositol-triphosphate kinase PI3K/Akt, critical
for cell proliferation, apoptosis evasion and survival, drug
resistance, and inactivation of tumor suppressors [252–
258]. STAT3 is also activated by growth factor receptor
signaling, including EGFR, HER2, VEGFR, PDGFR, IGFR,
and FGFR [252]. Indeed, raised levels of IL-6 in ascites and
serum from ovarian cancer patients correlate with cisplatin
and paclitaxel resistance and poor disease prognosis [259],
whereas blockade of STAT3 expression in ovarian cancer cells
increases their sensitivity to paclitaxel [254]. The expression
of IL-6 and its downstream signaling proteins is upregulated
in ovarian clear cell adenocarcinoma (OCCA) and EOC
[7, 260].

A recent study has shown unequivocally that siltuximab
(a monoclonal anti-IL-6 antibody) significantly reduced
ovarian cancer expression of STAT3 downstream proteins
such as Mcl-1, Bcl-X(L), and survivin, implying proapoptotic
effects. In the same study, metastatic and drug-resistant
recurrent ovarian tumors expressed significantly higher IL-6
levels than primary ovarian cancer tissue [261]. By the same
token, administration of sunitinib, a potent multikinase
(VEGFR, PDGFR, and KIT) inhibitor, to two OCCA patients
with progressive disease and refractory to conventional
chemotherapy resulted in markedly lower levels of CA125
and notable reduction in tumor mass [7]. The possible
mechanistic correlation for the favorable responses seen in
these patients had been advanced as inhibition by sunitinib
of IL-6, STAT3, and hypoxia-induced factor (HIF). Thus,
the upregulation of the IL6-STAT3-HIF pathway in OCCA
may be exploited as a biomarker to clinically differentiate
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OCCA from other ovarian tumor types [7], and inhibition
of the IL-6-STAT3 signaling autocrine pathway may offer
yet another molecular targeting strategy in the management
of cisplatin- and paclitaxel-resistant ovarian cancers [259,
262]. The observation that crosstalk between the EGFR
and IL-6R signaling through JAK/STAT3 mediates EMT in
ovarian cancers further adds to the number of exploitable
opportunities that are emerging to target the molecular
intricacies that underscore the aggressive phenotype of
ovarian cancer and its recurrence in patients [258, 263, 264].
Generic strategies to target the IL-6R-JAK-STAT3 signal-
ing axis include receptor-ligand antagonists or antibodies,
tyrosine or serine kinase inhibitors, transcription factor
decoy (siRNA), physiological protein modulators of STAT3
activation, disrupters of STAT dimerization, inhibitors of
STAT3 nuclear translocation, and target gene transcription
[257].

Nuclear factor kappaB (NF-κB) is a highly inducible
transcription factor which regulates several inflammatory
response and cancer signaling pathways [252, 265, 266]. NF-
κB is constitutively expressed in the majority of tumors,
including ovarian cancer [80, 256, 257, 266]. Many cytokine-
induced signaling pathways that control inflammation and
cancer converge on NF-κB and STAT3 [252]. The mam-
malian NF-κB family comprises five members, namely, RelA
(p65), RelB, cRel (Rel), NF-κB1 (p50 and its precursor p105),
and NF-κB 2 (p52 and its precursor p100) which form
homo- and heterodimers whose activities are regulated by
two key NF-κB activation pathways. In the first (classical
or canonical) pathway, RelA:p50 dimers are sequestered
in an inactive conformation in the cytoplasm through
interactions with inhibitory proteins, I-κB. Upon binding of
ligands such as TNF-α or IL-1, viruses, genotoxic agents,
and exposure to ionizing radiation, the I-κB molecules
become phosphorylated at specific serine residues by the I-
κB kinase complex (IKK, made up of two catalytic subunits,
IKKα and IKKβ, and a regulatory subunit, NEMO/IKKγ)
which results in their ubiquitylation and proteasomal degra-
dation. The liberated RelA:p50 dimers translocate to the
nucleus to activate transcription of several target genes that
regulate innate immunity and inflammation. In the second
(alternative or non-canonical) pathway which is stimulated
almost exclusively by members of the TNF superfamily,
an upstream NF-κB-inducing kinase (NIK) activates IKKα,
causing phosphorylation and proteasomal processing of
p100, the principal RelB inhibitor, followed by RelB:p52
and RelB:p50 nuclear translocation and binding to genes
responsible for regulating development, organization, and
function of secondary lymphoid organs, B-cell maturation,
and survival. Even though many genes are regulated by
STAT3 and NF-κB, these two master regulators both favor the
transcriptional activation of protumorigenic and antiapop-
totic genes such as Bcl-xL, Bcl-2, and c-IAP2, while A1 and
c-FLIP genes are predominantly NF-κB-dependent and Mcl-
1 and survivin genes are STAT3-dependent [252, 256, 265,
266]. NF-κB (RelA/p65) is overexpressed in advanced-stage
metastatic serous ovarian carcinoma, and its localization
to the nucleus is associated with poor PFS [267]. Using
specimens from patients with IKKβ-positive ovarian tumors

and ovarian cancer cell lines, a recent study showed that
activation of the NF-κB pathway by downregulating IKKβ
activity with highly specific kinase inhibitors or through
short hairpin RNA (shRNA), depletion of IKKβ correlated
not only with a number of cellular expressions associated
with the invasive phenotype of this cancer, but also with poor
OS [80]. These findings are in agreement with the notion that
constituent expression of NF-κB in OCSCs, which may be
the trigger of chemoresistance and disease recurrence, can be
targeted by inactivation of NF-κB signaling [25, 247].

Although IL-6 signaling has been studied extensively in
ovarian cancers, several reports have indicated the involve-
ment of many other interleukins in the development of this
neoplasm [248, 252]. These will not be considered further
in this review, except to mention that IL-8 has previously
been identified to have autocrine growth factor, tumorigenic
and angiogenic effects in human ovarian cancer [268–273],
but conflicting reports have also appeared [274]. Particu-
larly noteworthy is the fact that activation of G-protein-
coupled receptor protease-activated receptor-1 (PAR1) by
matrix metalloproteinase (MMP1) is a principal promoter
of angiogenesis and metastasis in peritoneal mouse models
of ovarian cancer. In ovarian carcinoma cells, activated
MMP1-PAR1 induces the release of angiogenic factors such
as interleukin-8 (IL-8) and growth-regulated oncogene-
alpha (GRO-α) which, through paracrine signaling, act on
endothelial CXCR1/2 to effect endothelial cell proliferation,
tube formation, and migration [110]. This pathway may be
targeted to identify novel ovarian cancer therapies.

3.6. PI3K/AKT/mTOR Cell Signaling Pathway. The mam-
malian target of rapamycin (mTOR) is a central intracellular
kinase that coordinates mitogenic, angiogenic, antiapoptotic,
and survival pathways in cancers through crosstalk with
VEGF, HIF-1, and the EGFR/ErbB family of RTKs [202].
PI3K/Akt/mTOR signaling thus confers a selective survival
advantage on tumor cells [397]. Activators of this pathway
include defective tumor suppressor PTEN, upregulation or
mutation of PI3K and AKT, and ligand binding to growth
factor receptors. Mutation or amplification of PI3K or
Akt triggers mTOR phosphorylation and increased ovarian
tumor cell survival [398]. A recent study has shown that
PI3K/AKT/mTOR signaling is involved in EOC develop-
ment and resistance to cisplatin, since downregulation of
AKT with triciribine or shRNA transfection of ovarian
cancer cells decreased their resistance to cisplatin via
mTOR/survivin signaling [92]. In advanced-stage ovarian
cancer, the mTOR pathway is upregulated, and hence its
blockade will enhance ovarian cancer cell sensitivity to
antitumor drugs [204]. In patients with serous ovarian
carcinoma undergoing cisplatin-taxane-based therapy, acti-
vation of VEGFR2/AKT/mTOR pathway was significantly
correlated with raised ascites levels and decreased OS [205].
mTOR has been implicated in the resistance of various
cancers to EGFR inhibitors [202] and mTOR pathway acti-
vation is a poor prognosticator of EOC [84]. Furthermore,
treatment of highly metastatic ovarian tumor cells with



6 Journal of Oncology

Table 1: Candidate biomarker profiles and the molecular basis for their targeting in ovarian cancers.

Biomarker†Molecular basis for biomarker targeting in ovarian cancer References

M-CSF

Hematopoietic cytokine that stimulates differentiation, activation, and proliferation of monocyte and
macrophages; can also act as an autocrine or paracrine growth factor for some epithelial cancers; promotes
vasculogenesis; modulates CSCs, and can thus be targeted in OCSCs to induce immune-mediated tumor cell
lysis; a phase II trial with GM-CSF and recombinant interferon gamma 1b (rIFN-γ1b) in women with
recurrent, platinum-sensitive ovarian, fallopian tube, and primary peritoneal cancer produced reasonable OS.

[14, 16, 33,
34, 59, 275]

HNF-1β
Overexpressed in ovarian clear cell adenocarcinoma (OCCC); reduction of HNF-1β expression by RNA
interference induces apoptotic cell death in ovarian OCCC cells; HNF-1β is hypomethylated in OCCC and can
thus be targeted in ovarian cancers.

[276–280]

HE4 A glycoprotein highly expressed in ovarian cancers that might have a role in ovarian carcinogenesis; HE4
expression is highest in endometrioid and serous ovarian cancer

[214, 281,
282]

OPN

A glycophosphoprotein cytokine secreted by activated T-lymphocytes, macrophages, and leukocytes at the
inflammation site; higher levels occur in patients with ovarian cancer versus normal control; correlates
significantly with tumor response to surgery, chemotherapy, and disease recurrence; implicated in
tumorigenesis, tumor invasion, metastasis, and poor prognosis; binding of OPN as an ECM component to
integrin and CD44 receptors in the tumor microenvioronment regulates signaling cascades associated with
adhesion, migration, invasion, chemotaxis, and cell survival; alternative splicing of OPN leads to 3 isoforms,
OPNa, OPNb, and OPNc; the latter possess ovarian protumorigenic properties mediated by PI3K/Akt signaling
pathway which serves as a critical cancer molecular target.

[14, 111, 283–
285]

MES

Binding of MUC16 to MES, a GPI-anchored glycoprotein, is thought to facilitate cell adhesion and peritoneal
metastasis of ovarian tumors; this function can be exploited as a molecular targeting strategy, for example,
anti-MES antibodies, to limit the metastatic spread of the tumor; MES is an attractive candidate for
adenoviruses-mediated gene therapy of ovarian cancers; diffuse mesothelin expression is associated with
prolonged survival in patients with high-grade ovarian serous carcinoma.

[224, 225,
286, 287]

HP-α

Glycoprotein synthesized in the liver, but also present in ascites and serum of ovarian cancer patients;
proteomic profiling identified HP-α as a potential biomarker with high specificity for ovarian cancer; high
levels of this acute phase protein correlate with poor prognosis, but attenuate with chemotherapy—this
mechanism should be explored further.

[14, 71, 288–
291]

BIK

This glycosylated protease suppresses ovarian tumor cell invasion and metastasis by downregulating PI3K and
Ca2+-dependent TGF-β signaling pathways; plasma BIK is a strong prognostic indicator of ovarian cancer; a
combination of BIK and paclitaxel significantly reduced tumor burden and ascites in a mouse model of ovarian
cancer; BIK overexpression has been shown to suppress TNF-induced apoptosis in ovarian cancer cells; BIK
also downregulates uPA/R and HBP gene expression in ovarian cancer cells; other target genes of BIK include
transcriptional regulators, oncogenes/tumor suppressor genes, signaling molecules, growth/cell cycle,
invasion/metastasis, cytokines, apoptosis, ion channels, and ECM proteins; the evidence cited here underlines
the applicability of BIK in therapeutic strategies targeting the inhibition of peritoneal invasion and
dissemination of ovarian cancer.

[14, 292–299]

FRα

This protein is an alternative folate transporter which may confer an increased DNA synthesis and growth
advantage on tumor cells; ovarian cancer patients have elevated blood levels of this protein, identified as a
diagnostic marker and molecular target in high-grade, high-stage serous tumors; the status of FRα apparently
does not change in response to chemotherapy and has no effect on overall patient survival; however,
farletuzumab, a humanized monoclonal antibody against FRα, demonstrated anticancer efficacy in patients
with platinum-refractory/resistant EOC; FRα expression is preserved on metastatic foci and recurrent tumors,
suggesting that novel folate-targeted therapies may have therapeutic potential for the majority of women with
newly diagnosed or recurrent ovarian cancer.

[300–304]

TTR

This is a highly sensitive biomarker used in the screening of prostate, lung, colorectal, and ovarian (PLCO)
cancers; was found to be downregulated in grade 3 ovarian tumors; and has been validated for its high
specificity and sensitivity in early-stage ovarian cancer; further research on TTR is needed to explore its
molecular targeting possibilities.

[58, 71, 305–
307]

IαI
The expression of this protein is reportedly upregulated in ovarian cancer patients and it is used mainly to
complement MUC16/CA125 in the screening for EOC; however, proteomic analysis showed its levels to be
significantly reduced in the urine of patients with ovarian carcinoma.

[14, 125, 308]

CRP

Is one of a panel of plasma biomarkers used for the identification of women with ovarian cancer and to
significantly increase diagnostic performance compared to MUC16/CA125 used singly; raised serum levels of
CRP is associated with high levels of Il-6 and haptoglobin, considered as adverse prognostic factors in ovarian
cancer; CRP are also a marker of high-grade inflammation in advanced-stage ovarian cancer and anemia in
EOC (i.e., CRP correlates negatively with hemoglobin levels); high levels of prediagnostic CRP may indicate an
inflammation stage that precedes ovarian cancer development and might denote increased risk.

[235, 291,
309–313]
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Table 1: Continued.

Biomarker†Molecular basis for biomarker targeting in ovarian cancer References

PRSS

This channel-activating serine protease is overexpressed in EOC; it is localized to the apical surface of normal
epithelial cells and suppresses cancer cell invasion in vitro; in various cancer cell lines, PRSS downregulates
EGFR signaling by cleaving its extracellular domain and hence interferes with cell proliferation and tumor
expansion; this property should be investigated as a molecular target.

[14, 71, 72,
314–316]

CLDNs

Large family of integral membrane proteins essential for tight junction formation and function; CLDN3 and
CLDN4 expression levels are upregulated in EOCs of all subtypes and correlate with MMP-2 activity; CLDNs
may promote ovarian cancer invasion and metastasis; CLDN upregulation in ovarian carcinoma effusions is
associated with poor survival; cells that overexpress CLDN4 exhibit low DNA methylation and high histone H3
acetylation of the critical CLDN4 promoter region, while the converse is true for cells that do not overexpress it;
CLDN4-expressing EOC cells secrete proangiogenic factors (e.g., IL-8) and downregulate genes of the
angiostatic IFN pathway; CLDN5 overexpression is associated with aggressive behavior in serous ovarian
adenocarcinoma; CLDNs are, therefore, suitable biomarkers for different types of ovarian cancer and promising
molecular targets for ovarian cancer therapy.

[317–326]

APOA1

Is the protein component of HDL; the APOA1 gene is upregulated in chemoresistant EOC and has an
established role in tumorigenesis; algorithmic proteomic profiling of postdiagnostic/pretreatment sera of
women with ovarian cancer revealed that the ApoA1 and TTR combination yield high specifity, but low
sensitivity as tumor markers; further investigations into the mechanistic roles of APOA1 in ovarian
tumorigenesis are crucial for its consideration as a molecular target in ovarian cancer.

[306, 327]

LPA

Generated by the action of the enzyme, lysophospholipase; LPA is the ligand for GPCRs (LPAR2 and LPAR3)
which are upregulated during ovarian tumorigenesis; LPA is a bioactive lipid central to the initiation and
progression of ovarian cancer; LPA is preferable to MUC16/CA125 as a biomarker for the diagnosis, but not the
prognosis of EOC; in human EOC tissues obtained from patients, LPA-induced POSTN (an ECM constituent,
see the following) expression in cancer-associated stromal fibroblasts correlates with poor survival and
recurrence; remarkably, LPA also regulates IL-6 expression and STAT3 phosphorylation via the
Gi/PI3K-Akt/NF-κB pathway in ovarian cancer cells; LPA enhances growth and invasion of ovarian cancer cells
and tumor angiogenesis; active RTK and EGFR signaling is required for LPA-mediated Gi-dependent cellular
responses in ovarian cancer cells; LPA antibodies, LPA antagonists, and LPAR gene silencing may thus be useful
molecular targeting strategies in ovarian cancer.

[2, 268, 328–
339]

POSTN

POSTN is an ECM protein which normally functions as a homophilic adhesion molecule in bone formation; 5
isoforms have so far been identified; targeted comparative glycotranscriptome analyses of ovarian cancer and
normal ovarian tissues have shown that POSTN and thrombospondin may be useful biomarkers for specific
tumor-specific glycan changes in benign ovarian adenomas, borderline ovarian adenocarcinomas, as well as
malignant ovarian adenocarcinomas; POSTN binds to numerous cell-surface receptors, predominantly
integrins, and signals effectively via the PI3K/Akt and other pathways to promote cancer cell survival, EMT,
invasion, metastasis, and angiogenesis; ovarian cancer cells actively secrete the protein; interaction of the ligand,
POSTN, with integrins facilitates ovarian cancer cell motility; antibodies directed against POSTN have been
shown to inhibit growth and metastasis of subcutaneous and ovarian tumors derived from a POSTN-expressing
ovarian cancer cell line; thus, POSTN represents a novel molecular-targeted therapy for ovarian cancer.

[330, 340–
345]

KLK

Largest family of flanking proteases in the human genome, comprising at least 15 members; KLKs are secreted
serine proteases that stimulate or inhibit tumor progression; KLK5-11 levels are typically elevated in sera of
ovarian cancer patients and regarded as predictors of poor disease prognosis; aberrant KLK gene expressions in
different types of ovarian cancers may complicate generalizations; for example, high tumor KLK6 protein
expression correlates with inferior patient outcome in ovarian cancer, while raised KLK8 is an independent
marker of favorable prognosis in ovarian cancer, whereas KLK5 levels are low in serum of patients with benign
ovarian tumors; elevated KLK5 antigen in serum and ascitic fluid of ovarian cancer patients is a prognostic
factor for PFS; KLK5-specific antibodies have been detected in patients with benign masses, borderline tumors,
and ovarian carcinomas compared with healthy controls; the presence of KLK5 antibodies suggests that KLK5
might represent a possible target for immune-based therapies; KLK6 exemplifies the altered glycosylation
hallmark of ovarian cancer; KLK7 is associated with negative characteristics of ovarian cancer, but is not
considered an independent prognosticator for the disease; a combined panel of KLK6, KLK13, and
MUC16/CA125 affords improved sensitivity in the detection of early stage ovarian cancer than MUC16/CA125
alone; KLKs have recently been shown to be subject to posttranscriptional control by multiple miRNAs which
can be exploited in the differential diagnosis of ovarian cancer and as a molecular targeting opportunity.

[60, 346–365]

AGR2

This is a mucinous metastasis-inducing protein detectable in the plasma of ovarian cancer patients; elevated
AGR2 levels in ovarian cancer patients are associated with disease stages II and III in both serous and nonserous
tumors; AGR2 is thought to promote cell proliferation and migration; it is currently being validated for its
diagnostic and prognostic significance in ovarian cancers.

[67, 366–368]
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Table 1: Continued.

Biomarker†Molecular basis for biomarker targeting in ovarian cancer References

HDACs

Posttranslational modification of histones by HATs results in acetylation of the histone structure which exposes
chromatin of transcriptionally active genes; the acetylation status of histones governs access of transcription
factors to DNA and determines levels of gene expression; HDACs catalyze the removal of acetyl groups from
histone tails and thus suppress transcription; accordingly, homeostatic control of HATs and HDACs activities is
essential for maintaining nuclear and genomic stability; HDACs also act on various other transcription factors
such as p53, Rb, and E2F1; HDACs are often activated or mutated in human cancers; in ovarian tumors,
type-specific overexpression and roles for these enzymes have been delineated; for example, HDAC1 promotes
cell proliferation whereas HDAC3 induces cell migration by downregulating E-cadherin; HDACs have become
critical drug targets for cancer therapy and HDACi shows tremendous promise in preclinical and clinical trials
(www.clinicaltrials.gov); SAHA (vorinostat, Zolinza) has been approved by the FDA for treatment of cutaneous
T-cell lymphoma; HDACi promotes cell cycle arrest by inducing CDK inhibitor p21 (WAF1/CIP1); moreover,
HDACi has pleiotropic actions, including the upregulation of proapoptotic proteins of Bcl-2 family (Bim, Bmf,
Bax, Bak, and Bik) and downregulation of antiapoptotic proteins of Bcl-2 family (Bcl-2, Bcl-XL, Bcl-w, Mcl-1)
and XIAP and survivin which may be significant in apoptosis targeting approaches [369, 370]; HDACi, such as
NaB, SAHA, and TSA, enhanced in vitro ovarian cancer cell killing with concomitant increased mRNA
expression of MDR1 but decreased mRNA expression of MRP1 and MRP2; the novel hydroxamic acid-derived
HDACi, MHY218, has been shown to be more potent than SAHA in suppressing ovarian tumor cell viability
and transplanted tumor growth in an in vivo tumor carcinomatosis model; MHY218 also raised expression
levels of the cell cycle inhibitor, p21WAF1/CIP1, induced apoptosis via caspase-3 activation, and increased
release of cytochrome c and Bax/Bcl-2 ratio; previously, similar results have been reported for another novel
HDACi, apicidin; in view of the above, it is clear that HDACi is an emerging molecular-targeted approach to the
management of ovarian cancer, but prudent forethought should be given to specific targeting of different
HDAC family members, for example, HDAC1 and HDAC2 coregulator complexes, and more especially since
acetylated HDAC1 can transregulate HDAC2 through heterodimerization.

[327, 371–
386]

miRNAs‡

MicroRNAs belong to a family of endogenous, small RNAs (∼22 nucleotides); these noncoding, yet functional
RNAs are key regulators of coding genes in the human genome; microarray analysis of altered expression of
miRNAs provides useful information on the ontogeny and differentiation status of various cancers; genomic
and epigenetic modifications are known to deregulate miRNA expression in human EOC; a recent study
showed that several miRNAs (let-7e, miR-30c, miR-125b, miR-130a, and miR-335) were differentially expressed
and upregulated in paclitaxel- and cisplatin-resistant ovarian cancer cell lines and concluded that the
development of drug resistance in ovarian cancer may be linked to distinct miRNA fingerprints that could be
used as biomarkers to monitor disease prognosis; deregulation of miRNA-27a may correlate with the
development of drug resistance by regulating the expression of MDR1/P-glycoprotein targeting HIPK2 in
ovarian cancer cells; deregulation of miR-214, miR-199a, miR-200a, and miR-100 has also been demonstrated
to occur in ovarian cancers; miR-214 promotes cell survival and cisplatin resistance by targeting the PTEN/Akt
pathway; lack of miRNA-31 expression has been linked to a defective p53 pathway in serous ovarian cancer
patients, raising hopes that treatment with miRNA-31 may offer an efficacious strategy in the management of
such patients; miRNA-125a is a negative regulator of EMT since it induces reversion of highly invasive ovarian
cancer cells from a mesenchymal to an epithelial histotype; this finding represents a landmark in ovarian cancer
therapeutics since overexpression of EGFR is coupled to EMT in ovarian cancer cells which correlates with poor
prognosis; the expression of miRNA-200 family members in ovarian tumors obtained from patients correlated
with raised levels of β-tubulin and poor PFS to paclitaxel-based treatment; some miRNAs have been identified
as putative tumor suppressor genes in ovarian tumors; thus specific miRNA signatures may be exploited as
biomarkers for progression and recurrence of advanced stage ovarian carcinoma patients, and as molecular
targets in ovarian cancer.

[68, 387–396]

†
Granulocyte/macrophage-colony stimulating factor (G/M-CSF); hepatocyte nuclear factor-1β (HNF-1β); human epididymis protein 4 (HE4); osteopontin

(OPN); mesothelin (MES); haptoglobin-α (HP-α); Bikunin (BIK); phosphoinositide-3-kinase (PI3K); transforming growth factor-beta (TGF-β); tumor
necrosis factor (TNF); urokinase plasminogen activator and its receptor (uPA/R); hyaluronan-binding protein (HBP); extracellular matrix (ECM); folate
receptor alpha (FRα); transthyretin (TTR); inter-α-trypsin inhibitor (IαI); C-reactive protein (CRP); prostasin (PRSS); claudin/s (CLDN/s); matrix
metalloproteinase-2 (MMP-2); interferon (IFN); apoliprotein A1 (APOA1); high-density lipoprotein (HDL); lysophosphatidic acid (LPA); G-protein coupled
receptors (GPCRs); receptor tyrosine kinase (RTK); periostin (POSTN, also called osteoblast specific factor 2, OSF2); kallikrein/s (KLKs); human anterior
gradient 2 (AGR2); histone acetyltransferase/s (HAT/s); histone deacetylase/s (HDAC/s); histone deacetylase inhibitors (HDACi); suberoylanilide hydroxamic
acid (SAHA); sodium butyrate (NaB); trichostatin A (TSA); multidrug-resistant protein (MDR1, P-glycoprotein); multidrug resistance-associated proteins
1 and 2 (MRP1/2); microRNAs (miRNAs); extracellular matrix (ECM); homeodomain-interacting protein kinase-2 (HIPK2); glycosylphosphatidylinositol
(GPI). All these biomarkers are used in various multimodal combinations in the screening/detection of ovarian cancer in high risk women.‡For more
information, see (http://www.sanger.ac.uk/Software/Rfam/mirna/).
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bikunin (BIK) or upregulating BIK gene expression in these
cells significantly attenuated PI3K/p85 gene expression, and
decreased their urokinase-type plasminogen activator- (uPA-
) dependent invasive potential in nude mice [292]. Therefore,
the molecular targeting of multiple signaling pathways such
as EGFR, VEGFR, HIF-1, and PI3K/PTEN/AKT/mTOR may
improve responses in recurrent and resistant ovarian cancers
[4, 83, 92, 203, 205, 399–403].

3.7. ATP-Binding Cassette (ABC) Drug Transporters. Despite
the encouraging response rates of ovarian cancer patients to
a combination regimen of carboplatin and paclitaxel, most
will experience recurrence and/or relapse. Disease recurrence
is mostly associated with the development of multidrug
resistance (MDR) which is mediated by the overexpression
of tumor ATP-binding cassette (ABC) drug transporters.
In ovarian cancer cells, the ABCB1 (MDR1) gene encodes
P-glycoprotein, which targets to the luminal surface and
actively effluxes a wide array of anticancer drugs, includ-
ing carboplatin and paclitaxel [404–406]. P-glycoprotein
expression has been shown to be a predictor of unfavorable
response (recurrence) and poor survival in uniformly treated
and followed cohorts of advanced ovarian cancer patients
[407–409]. Reversal of MDR in ovarian cancer cell lines
is possible with siRNA knockout of ABCB1 (MDR1) and
ABCB4 (MDR3) genes [410, 411], combination drug treat-
ments [412, 413], chitosan/pshRNA plasmid nanoparticle
targeting of MDR1 genes [414], and perturbation of P-
glycoprotein N-glycosylation [415]. The prognostic value of
ABCB1 gene polymorphisms in ovarian cancer patients is
conflicting, for example, whereas a recent study found that
ABCB1 G2677T/A and ABCB1 C3435T gene polymorphisms
did not correlate with survival and prognosis in Caucasian
women with ovarian cancer [416, 417], another study
found such a relationship [418]. Analogous earlier reports
concluded that although MDR1 expression profiles may
be closely related to histologic subtype of ovarian cancer,
they were not accurate predictors of survival [419, 420].
Remarkably, elevated expression of MDR-1 in tumor tissue
sampled after first cytoreductive surgery was associated with
a higher risk of brain metastases in women with epithelial
ovarian, fallopian tube, or peritoneal cancer [421]. Note-
worthy also is the observation that chemoresistance induced
by IL-6R signaling correlated with enhanced expression of
MDR genes (MDR1 and GSTpi), antiapoptotic proteins (Bcl-
2, Bcl-xL, and XIAP), and upregulation of Ras/MEK/ERK
and PI3K/Akt signaling [259]. Undoubtedly, more research
is required to unravel the complex expression of the MDR
phenotype in ovarian cancers.

4. Candidate Ovarian Cancer Biomarkers
as Molecular Targets

Candidate biomarker profiles and the molecular basis for
their targeting in ovarian cancers are summarized in Table 1.

5. Conclusion

This aim of this review was to present a broad overview
of how improved diagnostic and prognostic specificity and
sensitivity of tumor biomarkers and signaling molecules
can be translated into more efficacious molecularly targeted
therapies that will prevent resistance, recurrence, and relapse
in ovarian cancer patients. The different types of ovarian
cancers variously express the major hallmarks of cancer such
as genomic instability, gain of oncogenes, loss of tumor
suppressors, immeasurable self-renewal potential, epithelial-
to-mesenchymal transition, and reversed mutational capaci-
ties, autocrine signaling and self-sufficiency in growth factor
requirements, host immune co-option, escape from immune
surveillance and natural killer cell mediated oncolysis, apop-
tosis evasion, increased DNA repair mechanisms, sustained
angiogenesis, invasion, and metastatic spread. The rapid
increase in our understanding of the molecular processes
that regulate cancer signatures in general has raised an
equally strong desire to eradicate ovarian cancer before
resistance, recurrence, and relapse can set in and claim
more lives. It is becoming increasingly evident that tradi-
tional approaches to ovarian cancer management such as
surgical debulking and carboplatin-paclitaxel chemotherapy
will have to be complemented with molecularly targeted
and personalized treatment approaches to impact positively
on PFS and OS rates. The molecular therapeutic targeting
paradigm and the concept of synthetic lethality as exem-
plified by BRCA1/2 mutations and PARP inhibition offer
profound opportunities for ovarian cancer drug develop-
ment and discovery. The targeting of multiple signaling
pathways such as VEGFR, EGFR, IL-6R-JAK-STAT3/NF-κB,
PI3K/AKT/mTOR, and ABC drug transporters in ovarian
cancer may be an auspicious start to favourable PFS and
OS outcomes. The Wnt/β-catenin signaling pathway should
not be overlooked since it has recently been implicated in
regulating the immunoreactivity and chemosensitivity to
anticancer drugs in ovarian cancer cells, which may be a
useful prognostic indicator in patients with ovarian cancer
[422]. The interaction between MUC16 and MES should
be seen as an opportunity to block intra- and extraperi-
toneal metastasis of highly aggressive ovarian cancers and
to develop effective antibodies and vaccines against this
type of cancer which is a major contributor to the high
mortality rate among women worldwide. Finally, candidate
or emerging biomarkers, especially HDACi and miRNAs, and
their molecular interactions with cancer signaling pathways
should be translated into cross-spectrum and individualized
therapies for the different histological subtypes of ovarian
cancer.
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