
Fine-Scale Population Recombination Rates, Hotspots, and
Correlates of Recombination in the Medicago truncatula
Genome

Timothy Paape1,2,*, Peng Zhou3, Antoine Branca4, Roman Briskine3,5, Nevin Young3, and Peter Tiffin1

1Department of Plant Biology, University of Minnesota
2Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
3Department of Plant Pathology, University of Minnesota
4Institute for Biodiversity and Evolution, Westfälische Wilhelms-Universität, Münster, Germany
5Department of Computer Science, University of Minnesota

*Corresponding author: E-mail: tim.paape@ieu.uzh.ch.

Accepted: 26 April 2012

Abstract

Recombination rates vary across the genome and in many species show significant relationships with several genomic

features, including distance to the centromere, gene density, and GC content. Studies of fine-scale recombination rates have

also revealed that in several species, there are recombination hotspots, that is, short regions with recombination rates 10–

100 greater than those in surrounding regions. In this study, we analyzed whole-genome resequence data from 26

accessions of the model legume Medicago truncatula to gain insight into the genomic features that are related to high- and

low-recombination rates and recombination hotspots at 1 kb scales. We found that high-recombination regions (1-kb

windows among those in the highest 5% of the distribution) on all three chromosomes were significantly closer to the

centromere, had higher gene density, and lower GC content than low-recombination windows. High-recombination
windows are also significantly overrepresented among some gene functional categories—most strongly NB–ARC and LRR

genes, both of which are important in plant defense against pathogens. Similar to high-recombination windows, recombination

hotspots (1-kb windows with significantly higher recombination than the surrounding region) are significantly nearer to the

centromere than nonhotspot windows. By contrast, we detected no difference in gene density or GC content between hotspot

and nonhotspot windows. Using linear model wavelet analysis to examine the relationship between recombination and

genomic features across multiple spatial scales, we find a significant negative correlation with distance to the centromere across

scales up to 512 kb, whereas gene density and GC content show significantly positive and negative correlations, respectively,

only up to 64 kb. Correlations between recombination and genomic features, particularly gene density and polymorphism,
suggest that they are scale dependent and need to be assessed at scales relevant to the evolution of those features.
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Introduction

Characterizing genome-wide patterns and rates of re-

combination are fundamental to understanding how

chromosomes evolve, where recombination occurs most

frequently, and how genes are distributed. Traditionally,

estimating recombination rates was accomplished through
genotyping the progeny of experimental crosses (reviewed

in Mezard 2006). Cross-based approaches provide direct

estimates of recombination but are limited by the number

of recombination events that occur in a generation, thereby

limiting the scale of resolution to hundreds of kilobase or

megabases (Nordborg et al. 2002; Anderson et al. 2004; Gore

et al. 2009). Coalescent-based methods allow estimation of

the population-scaled recombination rates (q 5 4 Ner, where

Ne is the effective population size and r is the recombination

rate) from genome-wide single-nucleotide polymorphism

(SNP) data from a sample of individuals within a species

(Fearnhead and Donnelly 2002; McVean et al. 2002; Stumpf

and McVean 2003; Fearnhead 2004). These approaches

provide recombination estimates at a much finer scale than
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map-based estimates and are able to capture the species wide
recombination history.

Recombination rates often show broad patterns across

genomes, though these patterns differ among species.

For example, recombination rates are positively correlated

with distance from the centromere in Drosophila (Begun

and Aquadro 1992), maize (Anderson et al. 2004; Gore

et al. 2009; Schnable et al. 2009), wheat (Akhunov et al.

2003), and rice (Wu et al. 2003) but show no correlation
with distance from the centromere in Arabidopsis (Mezard

2006; Kim et al. 2007) and are positively correlated with dis-

tance from the centromere in Medicago truncatula at the

100 kb scale (Branca et al. 2011). Recombination rates

are also positively correlated with gene density in several

species, including humans (Freudenberg et al. 2009), rice

(Tian et al. 2009; Flowers et al. 2011), and maize (Anderson

et al. 2005; Gore et al. 2009). Although broad patterns can
be detected, recombination rates are highly heterogeneous

and can vary widely between adjacent 5- and 10-kb regions

(Morrell et al. 2006; Buckler and Gore 2007; Kim et al.

2007). As such, patterns at coarse scales may not accurately

reflect relationships between recombination and genomic

features at finer scales.

Recombination hotspots, defined as short intervals where

the local recombination rate greatly exceed recombination
in surrounding regions, can only be identified by examining

at scales finer than the 50- to 100-kb window scale that is

typical of genomic analyses (Drouaud et al. 2006; Kim et al.

2007; Kulathinal et al. 2008) or using genetic maps. Because

recombination hotspots may delineate regions that are

inherited as linkage blocks, they may provide important

insight into the processes that result in the considerable var-

iation in linkage disequilibrium (LD) that is observed in most
genomes. Moreover, because a large portion of the recom-

bination that occurs may occur in hotspots (i.e., ;60% of

humanmeiotic events appear to occur within identified hot-

pots, Coop et al. 2008), uncovering the genomic organiza-

tion of hotspots may provide insight into the recombination

landscape of a genome. Recombination hotspots have been

less thoroughly investigated in plant species than in humans,

where there are an estimated 25,000 1- to 2-kb hotspot re-
gions (Jeffreys et al. 2001;McVean et al. 2004;Winckler et al.

2005), other mammals (Kauppi et al. 2004; Baudat et al.

2009), Drosophila (Stevison and Noor 2009) or yeast

(Gerton 2000; Birdsell 2002). Nevertheless, analyses of the

progeny of experimental crosses have shown evidence for re-

combination hotspots in maize (Dooner and Martinez-Ferez

1997; Fu et al. 2001), Arabidopsis thaliana (Drouaud et al.

2006), and wheat (Saintenac et al. 2010).
Our goal in this study is to characterize the recombina-

tion landscape in the model legume M. truncatula. Specif-
ically, using whole-genome resequencing data for three

chromosomes from a range-wide collection of 26 individ-

uals, we estimated population-scaled recombination rates

at the resolution of 1-kb windows and identified the loca-
tions of recombination hotspots at 2-kb resolution with

1-kb overlap. Next, to identify the features of the genome

that may explain high recombination, we examine how

recombination rates and hotspots vary among chromo-

some arms, chromosomal location, GC content, gene

density, and gene functional categories. The relationship

between recombination rates and distance to the centro-

mere differs across species (reviewed in Marais et al. 2001;
Nachman 2002; Jensen-Seaman et al. 2004; Drouaud et al.

2006; Mezard 2006; Gaut et al. 2007) with the most com-

mon pattern being suppressed recombination immediately

near the centromere and a gradient of increasing

recombination toward telomeres. GC content is positively

correlated with recombination in many organisms (Galtier

et al. 2001; Jensen-Seaman et al. 2004; Meunier and Duret

2004; Duret and Arndt 2008), particularly outcrossing
species (Marais 2003), but others show no correlation

(Drouaud et al. 2006; Mezard 2006). Studies in humans

and Arabidopsis (Myers et al. 2005; Horton et al. 2012)

show that recombination appears highest within intergenic

regions, but there is also evidence of elevated recombina-

tion rates in tandemly arrayed genic (TAG) regions in plants

(Rizzon et al. 2006; Gaut et al. 2007), and positive corre-

lations between recombination and gene density have
been reported for rice, maize, and wheat (Liu et al.

2009; Saintenac et al. 2010; Flowers et al. 2011). Finally,

because the relationships between recombination esti-

mates and genomic features may be highly dependent

upon the scale at which they are examined, we apply wave-

let analysis (Spencer et al. 2006; Thurman et al. 2007) to

examine how correlations between recombination rates

and genomic features vary with spatial scale. We focus
our analyses on three of the eight M. truncatula chromo-

somes that have fairly high sequence coverage (Branca

et al. 2011), show variation in recombination rates at

100 kb scales, and differ in their gene content and

organization (Young et al. 2011).

Materials and Methods

We estimated population-scaled recombination rates

q 5 4 Ner (where Ne is the effective population size and r
is the recombination rate) and locations of recombination

hotspots using sequence data for three chromosomes from

a range-wide collection of 26 accessions of the model

legume M. truncatula. Population-scaled estimates of

q are affected by the nature of the sample where ours

was a range-wide sample and thus may not accurately cap-
ture effective recombination within local subpopulations,

the effective population size, and actual numbers of

recombination events occurring within a region. In brief,

the data were obtained using the Illumina sequencing plat-

form to sequence each individual to 15� mean aligned
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depth. Paired-end 90 bp reads were aligned to a reference
genome sequence (Young et al. 2011), and variants were

identified if a base differed from the reference at�2 or more

uniquely aligned reads and .70% of total reads called the

base. BecauseM. truncatula is naturally highly self-fertilizing
(selfing rates are estimated to be .98%, Ronfort et al.

2006) and the lines we sequenced were selfed for more

than three generations prior to DNA extraction, we did not

call any sites as heterozygous (preliminary analyses indicated
heterozygous sites were very rare). Prior to estimating recom-

bination rates, we removed all sites segregating more than

three bases, had a minor allele frequency,0.1, or were pres-

ent in fewer than 20 of the 26 sequenced individuals. Further

details about these data are in Branca et al. (2011). After

applying these filters, there remained 473,502 SNPs across

101,794,000 Kb of the three chromosomes we analyzed.

Estimate of 4Ner (r)

To estimate the population-scaled recombination rate, q, we

used the ‘‘interval’’ program in the LDhat package (McVean

et al. 2002; http://www.stats.ox.ac.uk/;mcvean/LDhat).

This coalescent-based composite likelihood approximation

method can efficiently handle large amounts of data (Auton

and McVean 2007), allows direct implementation of fine-

scale recombination rate estimates and hotspot detection

(McVean et al. 2004; Myers et al. 2005; Winckler et al.
2005), and considers spatial autocorrelation in recombina-

tion rate estimates (Smith and Fearnhead 2005). We ran the

MCMC algorithm implemented in LDhat interval on 100-kb

nonoverlapping sliding windows for 1,000,000 generations

sampling every 2,000 generations after a 15,000 generation

burn-in. To estimate the recombination rates at 1 kb scales,

we estimated q for each pair of SNPs and averaged them

within each 1-kb window. To evaluate the goodness of fit
of the recombination model, a custom likelihood lookup ta-

ble was created for our system parameterized using 26 ge-

nomes considered haploid due to complete homozygosity

through selfing and using a mean genome-wide estimate

of diversity measured as hW 5 0.006 bp�1 (Branca et al.

2011). We did not include windows with less than five SNPs

per window because the accuracy of q estimatesmay be low

when estimated using few SNPs. We also excluded esti-
mates from windows with more than 25 SNPs because of

the possibility that these highly polymorphic windows re-

flect errors in SNP variant calling, leaving a remaining

34,356 windows. Because this filtering may affect correla-

tions and include comparisons of 1 kb filtered and unfiltered

data set, correlations are presented in supplementary table

S1 (Supplementary Material online).

Hotspot Detection

To identify windows with recombination rates significantly

higher than mean background rates, that is, recombination

hotspots, we used the sequenceLDhot program (Fearnhead
2006; http://www.maths.lancs.ac.uk/;fearnhea/Hotspot/).

The estimate of recombination hotspots is a model-based

maximum likelihood estimate that compares local recombi-

nation rates with surrounding q using a null model (H0: re-

combination rate in putative hotspot region 5 background

rate) where the background rate (estimated from LDhat) of

recombination within a window is equal to the estimated

hotspot recombination rate (q hat q^). Using a likelihood
ratio (LR) test, we compare the alternative model (HA) which

states that the recombination rate in a putative hotspot

region is 10–100 times the background rate using the LR

statistic K 5 (�2[ln H0 /ln HA]). We ran the program for

500,000 generations over 2-kb sliding windows (1-kb

overlap), sampling every 100th generation, and the default

setting of seven SNPs to estimate q for each window. To

evaluate the goodness of fit of the model to the data,
we used a likelihood lookup grid that was specified to have

an absolute range of r from 0.5 to 40 kb�1, a range that

included the range of values estimated from LDhat to esti-

mate mean background rates among windows, we used

a LR test to test whether recombination rate in a putative

hotspot region is significantly greater than the background

rate. The mean background rate was implemented into se-

quenceLDhot using the previously estimated interval data.
We considered windows with LR scores in the highest

5% of all scores (corresponding to LR �21, P 5 0.0005)

as hotspots. Under the assumption that hotspots are deter-

mined by short chromosomal regions (Fearnhead 2006;

Auton and McVean 2007) when adjacent 1-kb windows

possessed LR scores �21, only the putative hotspot with

the highest LR was kept for further analyses (Fearnhead

P, personal communication).

Statistical Analyses

We used logistic regression to determine whether genomic

features, high-recombination windows, defined as those

windows with q estimates among the highest 5%, and
low-recombination windows, defined as those windows

with estimates of q below the genome-wide median esti-

mate (fig. 2), were differentially distributed among chromo-

some arms or were significantly related to GC content, gene

density, nucleotide polymorphism (estimated as was esti-

mated as Watterson’s diversity estimator, hW) or distance
to the centromere for each 1-kb window. Logistic regression

was conducted using the glm function in R, and the statis-
tical significance of each explanatory variable was evaluated

using type III sums of squares (i.e., each factor was evaluated

after removing variation attributable to other factors in-

cluded in the model). For these analyses, we identified

GC content as the proportion of 1-kb window with GC,

gene density as proportion of coding sequence (coding re-

gion only; no introns or untranslated regions) in 1 kb, and
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relative distance to the centromere (divided by the length
of each chromosome arm) where centromere positions

are defined in Young et al. (2011). Similar analyses were

conducted to test whether windows identified as recombi-

nation hotspots were differentially distributed among chro-

mosome arms or were significantly related to GC content,

gene density, hW, or distance to the centromere.

To test whether high-recombination windows are non-

randomly distributed on each arm, we calculated the me-
dian distance between adjacent high-recombination

windows and compared this distance with the median

of 100 randomly selected windows of the same number

from each arm. This was done similarly for hotspots. Next,

to determine whether genes of different function catego-

ries were overrepresented in high-recombination regions

or hotspots, we used a v2 test to determine whether genes

that are assigned to different functional categories were
nonrandomly distributed between these regions. For these

analyses, we considered only gene functional categories

for which .30 genes were found in the windows that

we had recombination estimates. Assignment of genes

to functional categories was based on annotation by the

International Medicago Genome Annotation Group

(medicago.org/genome/IMGAG/). Similar analyses were used

to test whether hotspots were nonrandomly distributed on
each chromosome arm or gene functional categories.

We tested for significant linear relationships between q
and genomic features using Pearson’s correlations. Because

1-kb windows are not independent from one another, due

to spatial autocorrelation in the data (Hahn 2006), we eval-

uated the significance of these correlations by comparing

the calculated correlations with those from 1,000 permuted

data sets in which the linear order of each of the two
variables was kept intact (Nordborg et al. 2005).

Wavelet Correlations

We used wavelet analysis as described in Spencer et al.
(2006) and Thurman et al. (2007) to examine the relation-

ship between recombination and genomic features (dis-

tance to the centromere, GC content, and gene density)

at different spatial scales along each of the six chromosome

arms. In brief, wavelet analysis creates a series of coeffi-

cients from a transformed sequence of observations, such

as recombination rate and gene density across 2n window

sizes. The coefficients describe variation at successively
increasing scales (i.e., 2 kb up to 512 kb), which can

then be implemented into a smoothed linear model anal-

ysis. Smoothed correlations are essentially the averages of

coefficients between similar window sizes. Although we

estimated coefficients for windows from 2 to 2048 or

4096 kb depending on the chromosome arm length, win-

dows larger than 512 kb have few data, and thus were

dropped from further analyses. Linear models of smoothed
detail coefficients (recombination ; GC þ gene density þ

distance to centromere � 1) were estimated using
modified R scripts from Spencer et al. (2006). The linear

model is a multiple linear regression with the intercept

forced through the origin where significance of each term

is evaluated after accounting for variance attributed to

other factors in the model. Prior to analyses, q estimates

were log transformed to meet the assumption of normally

distributed residuals. Because missing data creates exces-

sive gaps along chromosomes, for the wavelet analyses, we
did not remove windows with either low or very high SNP

density as in previous analyses.

Results

Across the six chromosome arms, we estimated a mean
q 5 0.0026 recombination events per base pairs per gener-

ation with each chromosome showing considerable hetero-

geneity in q (fig. 1). The distribution of qwas highly skewed

toward low values where nearly half of the windows had

estimated recombination rates ,0.00093 bp�1 (fig. 2)

consistent with most recombination events occurring in only

a small portion of the entire genome. The q value in the

upper 5% tail is roughly three to four times the mean
and approximately 10 times the median value for each

arm (table 1). Recombination rates differed significantly

among chromosome arms (analysis of variance, F 5 254.34,

df 5 5, P , 0.0001) with the recombination rate on the left

arm of chromosome 3 (Chr3L) significantly higher than

recombination rate on any of the other five arms. Logistic

regression revealed that high-recombination windows,

relative to low-recombination windows, were significantly
closer to the centromere, had higher gene density and

nucleotide diversity, and lower GC content than low-

recombination windows (fig. 3; table 2A). On each of the

six arms, high-recombinationwindowsmore spatially clustered

than expected by chance with the median distance between

adjacent high-recombination windows smaller than the

median distance than each of 100 random samples taken

for each chromosome arm.
High-recombination windows were also nonrandomly

distributed among functional gene categories with five func-

tional categories significantly overrepresented among the

high- compared with low-recombination windows and inter-

genic regions significantly underrepresented (table 3). The

two families with the greatest overrepresentation are NB–

ARC’s (NB: nucleotide binding; ARC: apoptotic protease-

activating factor-1, R protein, and CED-4) and leucine-rich
repeats (LRRs), both components of known disease resistance

genes (NBS–LRR) in plants (Meyers et al. 1999; DeYoung and

Innes 2006). Members of these families are often clustered

(Meyers et al. 2003) and are found at particularly high density

along the left arm of chromosome 3 (Ameline-Torregrosa

et al. 2007; Young et al. 2011) and the right arm of chromo-

some 5 where clusters of LRR’s are present in high-
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recombination regions (fig. 1). These are the two arms with

highest recombination rates and greatest variance in q (table
1). We also found that intergenic regions were significantly

overrepresented among low-recombination windows.

Recombination Hotspots

Using sequenceLDHot (Fearnhead 2006), we identified 1902

windows with as recombination hotspots as significant

(i.e., the recombination rate is 10–100 times greater than

the estimates of recombination in region). Note that recom-
bination hotspots and high-recombination windows are not

synonymous—recombination hotspots are detected relative

to background rate of recombination, whereas high-

recombination windows are those with high rates relative

to the surrounding genomic background rate. Of these

1902 recombination hotspot windows, 466 were adjacent

to other hotspot windows. For these adjacent windows,

we kept only the window with the highest statistical support
for subsequent analyses, leaving 1669 hotspot windows

(fig. 1). The windows identified as recombination hotspots

are clearly distinct from the high-recombination windows,

with only 94 windows identified as both high-recombination

windows and recombination hotspots.

Unlike high-recombination regions, we detected no sig-

nificant relationship between hotspots windows and GC

content (P 5 0.49) or gene content (P 5 0.95; table 2).
By contrast, hotspot windows were significantly closer to

the centromere than nonhotspot windows (P , 0.001),

and hotspot windows had significantly greater diversity than

nonhotspots for all chromosome arms. Both these patterns

are similar to what was seen with high- compared with low-

recombination windows. We also find a significant effect of

polymorphismwith hotpots using logistic regression (table 2)

where hotspots had significantly greater diversity than
FIG. 2.—Distribution of q across chromosomes 2, 3, and 5. Red is

0 median (lower 50% tail), and blue is upper 5% tail.

FIG. 1.—Plot of q per kilobase along chromosomes 2, 3, and 5 (dark gray) shows variation between the left and right arms (black vertical line is

unsequenced centromeric region) as well as distinct variation across chromosomes. Red dots are �log10 of P-values calculated from sequenceLDhot LR

scores where LR of 21 is the cutoff for significance. Blue triangles represent NB–ARC genes containing windows with significant hotspot LR scores, and

green triangles (Chr3L and Ch5R only) are LRR’s windows with significant LR scores.
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nonhotspots for all chromosome arms. We do however see

significantly higher mean GC content for hotspots than for

high q windows for Chr3L (fig. 3). Also, unlike high-q
windows, hotspots show less evidence of being spatially

clustered; the median distance between adjacent hotspot

windows was smaller than 95% of resampled windows

only for Chr2R and Chr5R. This however could be an
artifact of the LR cutoff used to define hotspots. When

the cutoff is reduced to LR 5 12 (P 5 0.0005), a value

used in several human hotspot studies (Fearnhead 2006)

andmedian distances between hotspots for all chromosome

arms except Chr3L are always less than 100 resampled

distances. Also, unlike the high-recombination windows,

hotspot windows are not significantly overrepresented in

particular regions and in fact are significantly underrepre-

sented among NB–ARC’s genes (v2 5 4.21, P 5 0.042)

and no other functional gene categories show significant

overrepresentation (P-values between 0.11 and 0.86), for

which high-recombination windows were the most signifi-

cantly overrepresented.

Correlates of Recombination and Wavelet Analysis

Pairwise correlation coefficients calculated using data from
each 1-kb window reveal that for each of the six chromo-

some arms, qwas negatively correlated with the distance to

centromere, positively correlated with gene density, nega-

tively correlated with GC content, and positively correlated

with nucleotide polymorphism (table 4, supplementary

Table 1

Mean, Standard Deviation (SD), and Quantile Values for q on Each Chromosome Arm and the Number of (N) 1-kb Windows and Total Length in Base

Pairs

Chromosome arm Mean SD Median 95% Cutoff Maximum N Windows Length (bp)

Chr2L 0.0019 0.0036 0.0008 0.0088 0.0372 4,477 15,870,317

Chr2R 0.0016 0.0030 0.0007 0.0064 0.0463 4,350 16,118,084

Chr3L 0.0042 0.0064 0.0017 0.0176 0.0500 3,494 12,626,695

Chr3R 0.0020 0.0037 0.0008 0.0085 0.0496 6,953 31,531,826

Chr5L 0.0024 0.0040 0.0010 0.0103 0.0476 7,761 21,581,903

Chr5R 0.0035 0.0057 0.0012 0.0156 0.0497 7,330 21,200,016

FIG. 3.—Mean comparisons of gene density (a), distance to centromere (b), GC content (c), and hw (d) between regions of high q (upper 5% tail5

blue), lower 50% tail (red), and estimated hotspots (green). Error bars represent 95% standard errors.
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table S1, Supplementary Material online). Although most of

these correlations with recombination rates are statistically

significant, the magnitude of the correlations is generally

small, and correlation coefficients are greater than 0.1 (or
�0.1) for distance to the centromere only. Although gene

density appears to be generally weakly (though

significantly) correlated with recombination in Pearson

correlations, with Chr3L showing the strongest positive

correlation with gene density (supplementary table S1, Sup-

plementary Material online), this is supported by the results

of figure 3 where this arm had the highest mean gene

density. Weak negative correlations are occasionally seen
when using the unfiltered data set but not significantly so

(supplementary table S1, Supplementary Material online).

Most importantly, although we found previously in Branca

et al. (2011) and in the current analysis, correlations
between q and gene density are negative for all arms (sup-

plementary table S2, Supplementary Material online).

However, because of spatial autocorrelation of variables

along the genome, 1-kb windows are not independent of

one another, and therefore, Pearson’s correlation coefficients

based on the number of 1-kb windows and their statistical

significance should be viewed with caution (Hahn 2006).

Smoothed correlations from wavelet analysis provide in-
sight into correlations across multiple spatial scales while

also removing the nonindependence between variables.

Because distance to the centromere is included in these

multiple linear regressions, the effects of spatial autocorre-

lation are removed before examining the relationships

between recombination and gene density and GC content.

With the exception of two chromosome arms (Chr2R and

Chr3L), the smoothed linear wavelet models show signifi-
cant negative correlations between recombination and

distance from centromeres at scales up to 512 kb (fig. 4).

For Chr3L, negative correlations between recombination

and distance to centromere are found up to 128 kb but

disappear at greater scales reflecting different patterns

across the short and long arms of this chromosome. Signif-

icant positive correlations between recombination and gene

density for wavelet models are found only on Chr3L and
Chr5R but only at short scales (2–16 kb); these are the

two chromosome armswith the highest mean q. We find sig-

nificant negative correlations between recombination and

GC content at small to intermediate scales (up to 64 kb)

on all arms except Chr3L (fig. 4). The loss of significant cor-

relations at larger scales is likely due to smaller sample sizes

and thus less statistical power, and typically, a reduction in

magnitude at large scales is likely due to averaging across het-
erogenous regions contained in the larger windows.

Table 2

Results from Logistic Regression Testing Whether (A) Low- and High-q
Windows and (B) Hotspot Versus Nonhotspot Windows Differ

between Chromosome Arms and Distance to Centromere, GC

Content, and Gene Density

Genomic Category Df v2 P-Value

(A) Low versus high q

GC content 1 120.8 .0.001

Gene density 1 227.8 .0.001

Distance to centromere 1 1219.4 .0.001

hw 1 153.5 .0.001

Chromosome arm 5 112.6 .0.001

Residuals 19,369

(B) Hotspot versus nonhotspot

GC content 1 7.14 0.49

Gene density 1 0.47 0.95

Distance to centromere 1 0.004 0.007

hw 1 35.55 .0.001

Chromosome arm 5 3.99 0.55

Residuals 34,356

Table 3

Functional Categories Overrepresented in High-Recombination Windows

IMGAG Function

Low r High r

P-ValueExpected Actual Expected Actual

Intergenic 6,643 6,841 664 588 0.011

NB–ARC 209 122 21 49 ,0.0001

Protein kinase 224 204 22 24 0.60

LRR 101 74 10 27 0.0007

Zinc finger 220 238 22 26 0.77

Cyclin-like F-box 177 181 18 26 0.26

2OG-Fe(II) oxygenase 49 32 5 12 0.018

Glycoside hydrolase 113 104 11 10 0.93

Pentatricopeptide repeat 81 99 8 10 0.98

UDP-glucosyl-transferase 46 34 5 10 0.067

Cytochrome P450 83 51 8 9 0.26

Cellulose synthase 18 10 2 7 0.023

Lipolytic enzyme 34 17 3 7 0.042

Pectinesterase inhibitor 18 11 2 7 0.030

NOTE.—Functional categories are ordered according to number found in high-recombination (upper 95% tail) regions. Bold are genes that are significantly overrepresented in

upper 5% tail.
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Discussion

In a previous analysis of recombination in this same sample

of M. truncatula, we found LD decay decreases within

5 kb on average across the genome (Branca et al. 2011).

This rate of decays suggests that 100 kb scales, which we

used previously when characterizing nucleotide diversity

and recombination may be too coarse to characterize the
genomic features that shape recombination. For this reason,

we examined recombination rates at the 1 kb scale along

three of the eight M. truncatula chromosomes. A compar-

ison of high-recombination windows (those in highest

5% of the distribution) with low-recombination windows

(those in the lowest 50% of the distribution) revealed that

high-recombination windows are more likely to be closer to

the centromere, have higher GC content, and found in
regions of higher gene density. High-recombination win-

dows also are significantly overrepresented among a subset

of common gene families, particularly NB–ARC’s and LRR’s.

Finally, we found stronger relationships between recombi-

nation rates and genomic features at smaller than larger

scales of resolution—this is likely due to larger windows

averaging across smaller scales at which recombination

rates and GC, gene content, and diversity vary.
The genomic features associated with high-recombination

regions inM. truncatula appear to differ from those found in

several other organisms. For example, in Medicago, we find

higher recombination rates nearer centromeric regions which

is opposite to what has been shown for every nonplant sys-

tem, including Caenorhabditis elegans, Drosophila (Marais

et al. 2001), mice, rats (Nachman 2002, Jensen-Seaman

et al. 2004), and humans (Freudenberg et al. 2009), andmost
plants (Mezard 2006; Gaut et al. 2007). This negative gradi-

ent in recombination is in stark contrast to wheat and maize,

both of which show clear patterns of recombination increas-

ing with relative distance from the centromere (Lukaszewski

and Curtis 1993; Akhunov et al. 2003; Gore et al. 2009). By

contrast, A. thaliana shows highly variable levels of recombi-

nation along each chromosome (Kim et al. 2007; Horton

et al. 2012) with no significant centromere–telomere
gradient (Drouaud et al. 2006; Mezard 2006). In wheat,

Lukaszewski and Curtis (1993) also found a stronger gradient

of increasing recombination along short chromosome arms

relative to long ones.

Our results also reveal that gene density is greater in high-

recombination than low-recombination regions of the

genome. This pattern is particularly strong on Chr3L, a chro-
mosome arm that includes several NB–ARCs and LRRs, as
well as shorter nodule cysteine-rich peptides and defensin-like

proteins (Young et al. 2011), many of which are found as

highly TAG clusters (Graham et al. 2004; Silverstein et al.

2005; Ameline-Torregrosa et al. 2007). We find resistance-

related genes in general to be significantly overrepresented

in M. truncatula for high-recombination regions consistent

with what has been shown for human immune loci (Jeffreys

et al. 2001; McVean et al. 2004; Winckler et al. 2005) and
with recent findings for disease resistance genes showing

high recombination in A. thaliana (Horton et al. 2012).

Among the 60 annotated NB–ARC’s on Chr3L in this data

set, 18 are found in the upper 5% q tail, and we are there-

fore not surprised to find high recombination and gene

density to be correlated when these genes are present.

High-recombination rates in TAG regions are also found

in A. thaliana (Zhang and Gaut 2003), rice (Rizzon et al.
2006), and wheat (Akhunov et al. 2003). However, the

overrepresentation of high-q windows (q 5 Ner) among

members of NB–ARCs and LRRs may be due to elevated

Ne rather than higher r; members of these gene families

having significantly elevated levels nucleotide diversity

M. truncatula (Branca et al. 2011).

InM. truncatula, we find a weak correlation between re-

combination and GC content at the 1 kb scale in pairwise
correlations and negative but decreasing in magnitude and

significance at increasing scales. This is similiar to the neg-

ative correlation between recombination and GC content

found in A. thaliana by Drouaud et al. (2006); yet, when

we use means over 100 kb scales in pairwise correlations

(supplementary table S2, Supplementary Material online),

the correlations are generally positive. Positive correlations

are found between recombination and GC for most
outcrossing animals (Marais et al. 2001; Jensen-Seaman

et al. 2004; Duret and Galtier 2009) and recent comparative

studies in selfing and outcrossing plants confirm that re-

duced GC bias is predicted by mating system (Muyle

et al. 2011; Qiu et al. 2011). Drouaud et al. (2006) indicated

that GC and recombination may not be correlated with one

another in highly selfing species because selfers do not form

heteroduplex DNA during recombination because of high
homozygosity (Marais et al. 2004), but the lack of hetero-

duplex formation does not explain a significant negative cor-

relation between q and GC. Because we see a consistent

negative correlation between GC content and using regres-

sion and linear models for all chromosomes, this appears to

Table 4

Full Correlation of 1-kb Windows between Recombination Rate (q)
and Gene Density, GC Content, and Distance to the Centromere

Chromosome Arm

2L 2R 3L 3R 5L 5R

Gene density 0.045 0.043 0.126 0.078 0.05 0.05

P-value 0.015 0.025 0.001 ,0.001 0.008 0.005

GC content 20.046 20.08 20.046 20.05 20.08 20.08

P-value 0.06 0.031 0.017 0.009 0.005 0.004

Distance to the

centromere

20.28 20.15 20.13 20.21 20.22 20.145

P-value 0.003 0.339 0.31 0.038 0.007 0.259

hw 0.063 0.071 0.032 0.094 0.05 0.02

P-value 0.04 0.03 0.096 0.018 0.06 0.17

NOTE.—Pearson’s correlation coefficients are in bold, P-values , 0.05 are in italics.
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be a genome-wide pattern in M. truncatula but more pro-

nounced at scales between 2 and 64 kb (fig. 4) suggesting

potential effects of gene density covariation.

The fine-scale (1 kb) analyses of recombination rates re-

ported here are largely consistent, although not always

identical with previous analyses that examine recombination

in 100-kb windows reported in Branca et al. (2011). There
are however two differences; the previous analyses detected

a significant genome-wide negative correlation between

population-scaled recombination rate and gene density,

whereas at the 1 kb scale, we detect slight positive correla-

tions, and the correlation between recombination and diver-

sity is weaker at the 1 kb than 100 kb scales (table 4;

supplementary table S2, Supplementary Material online).

There are two aspects of the data that may be responsible

for the different relationships seen at different scales of anal-

yses. First, for the 1-kb analyses, we excluded low-diversity

windows because of the expectation that these windows

would harbor little information for accurately estimating re-

combination rates. In fact, correlations calculated using the
full data set are generally weaker and less often significantly

different from zero than those calculated using the filtered

data (supplementary table S1, Supplementary Material on-

line). The second possible reason is that the larger windows

average across heterogenous genome regions; this certainly

appears to contribute to the differences given that even at

FIG. 4.—Smoothed wavelet correlations between recombination (q), relative distance to the centromere, gene density, and GC content. Red

indicates positive linear relationship and blue indicates negative linear relationship (using t-tests to determine �log10 of P-values). Magnitude of the

color is proportional to the level of significance.

Paape et al. GBE

734 Genome Biol. Evol. 4(5):726–737. doi:10.1093/gbe/evs046 Advance Access publication May 3, 2012

http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs046/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs046/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs046/-/DC1
http://www.gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evs046/-/DC1


100-kb resolution, the correlation between recombination
and gene density differs among chromosome arms (positive

correlations on some arms and negative on others). Regard-

less of the reasons, it is clearly important to consider scale

when most genome-wide studies of recombination in

plants have been observed at 100 kb or greater (reviewed

in Flowers et al. 2011).

Recombination Hotspots

Windows with high levels of r are clearly distinct form those

identified as recombination hotspots, which are defined as

having recomibination rates that are 10–100 times greater

than surrounding regions. Unlike high-q windows, hotspot

windows do not differ significantly from nonhotspot win-

dows in GC content or gene density. We do however find

that hotspots are significantly closer to the chromosome and

have significantly greater nucleotide diversity than nonhot-
spot windows. Higher nucleotide diversity in hotspot than

nonhotspot windows has also been reported for human

data (Spencer et al. 2006). This relationship between hot-

spots and diversity indicate recombination hotpsots may

be important in shaping diversity even if they are not stable

enough to shape interspecific divergence (Winckler et al.

2005; Spencer et al. 2006; Baudat et al. 2009).

Wavelet Analyses

Wavelet analyses provide an analytical approach to examine

relationships between a response variable (q) and explana-

tory variables (distance to centromere, GC content, and

gene density) vary with different scales of analyses. The

wavelet analyses we implemented, the same as applied

by Spencer et al. (2006) to examine recombination in the

human genome, uses linear regression that also removes
variation due to other explanatory factors in the analyses.

In other words, it looks at the relationships between

recombination and an explanatory variable after accounting

for variation due to other variables in the model. As such,

wavelet analyses may reveal scale-dependent patterns that

could be missed when conducting analyses with fixed-sized

windows. The results from the wavelet analyses indicate

that aside from the significant negative correlation between
recombination and distance to the centromere across all

three chromosomes at scales up to 512 kb, other correlates

of recombination show the significance of such correlations

disappear around 64 kb or smaller (fig. 4)—this change in

statistical significance appears to be due to both loss of

statistical power and weaker correlations. In no cases, do

we find that correlations switch from positive to negative

or vice versa, only in magnitude. The other interesting result
from the wavelet analyses is that because it incorporates

a multiple linear regression to identify genomic features that

are related to recombination rates, it removes colinearity

among potential explanatory variables. Removing this colin-

earity reveals that gene density has only a very weak effect

on recombination rate after one accounts for GC content
and distance from centromere (supplementary table S1,

Supplementary Material online).

Conclusion

Population-scaled recombination rates estimated at 1 kb

in M. truncatula appear correlated with several genomic

factors, including distance to the centromere, gene density,

and gene organization. Recombination hotspot regions
are also consistently associated with higher diversity across

all three chromosomes, a finding that has rarely been dis-

cussed for plants. Further insight into recombination rates

and hotspots including the genomic features that shape

recombination rates could be gained both by examining

recombination rates and LD within local subpopulations

and combining sequence-based physical maps with high-

resolution genetic maps. Most importantly, we find that
when analyzing correlated genomic features, scales at

which these variables are estimated can produce different

results—an important consideration when interpreting

results where data are only available at a single or very broad

scale.

Supplementary Material

Supplementary tables S1 and S2 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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