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Abstract

Protein Direct Coupling Analysis (DCA), which predicts residue-residue contacts based on

covarying positions within a multiple sequence alignment, has been remarkably effective.

This suggests that there is more to learn from sequence correlations than is generally

assumed, and calls for deeper investigations into DCA and perhaps into other types of cor-

relations. Here we describe an approach that enables such investigations by measuring, as

an estimated p-value, the statistical significance of the association between residue-residue

covariance and structural interactions, either internal or homodimeric. Its application to thirty

protein superfamilies confirms that direct coupling (DC) scores correlate with 3D pairwise

contacts with very high significance. This method also permits quantitative assessment of

the relative performance of alternative DCA methods, and of the degree to which they detect

direct versus indirect couplings. We illustrate its use to assess, for a given protein, the bio-

logical relevance of alternative conformational states, to investigate the possible mechanis-

tic implications of differences between these states, and to characterize subtle aspects of

direct couplings. Our analysis indicates that direct pairwise correlations may be largely dis-

tinct from correlated patterns associated with functional specialization, and that the joint

analysis of both types of correlations can yield greater power. Data, programs, and source

code are freely available at http://evaldca.igs.umaryland.edu.

Author summary

The success of Direct Coupling Analysis (DCA) for protein structure prediction suggests

that multiple sequence alignments implicitly contain more structural information than

had previously been realized, and prompts deeper investigations of the sequence correla-

tions uncovered by either DCA or other approaches. To aid such investigations and

thereby broaden the utility of and improve DCA, we describe an approach that measures

the statistical significance of the association between DCA and either 3D structure or cor-

related patterns associated with functional specialization. This approach can be used to

evaluate the relative performance of DCA methods, their ability to distinguish direct from
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indirect couplings, and the potential biological relevance and mechanistic implications of

alternative conformations and homodimeric interactions.

This is a PLOS Computational BiologyMethods paper.

Introduction

Contacts among residues largely determine a protein’s three-dimensional structure. For pro-

teins sharing a common structure, such contacts generally produce correlated substitution pat-

terns between residue pairs. Over evolutionary time substitutions at one residue position often

result in compensating substitutions at other positions in order to maintain critical interac-

tions. This allows the prediction of protein structural contacts based upon multiple sequence

alignment (MSA) covariance analysis. Early approaches were only partially successful, with a

major shortcoming the confounding effect of indirect correlations: When residues at positions

i and j correlate, as do those at positions j and k, then residues at positions i and kmay also cor-

relate even though they fail to interact directly. Direct Coupling Analysis (DCA) and related

methods [1–8] have overcome this problem by disentangling direct correlations from indirect

coupling effects. As used here, the term DCA refers to all such approaches. DCA constitutes a

major breakthrough in protein structure prediction and is currently being applied successfully

on a large scale [9].

DCA programs employ a variety of algorithmic strategies, including sparse inverse covari-
ance estimation (PSICOV) [4], pseudo-likelihood maximum entropy optimization (EVcou-

plings-PLM) [5, 6] (CCMpred) [10] andmultivariate Gaussian modeling (GaussDCA) [11].

DCA methods are evaluated by comparing those residue pairs with the highest direct coupling

(DC) scores to residue-to-residue contacts within protein structures. Currently this involves

using, for example, ROC curves [11], the Matthews correlation coefficient [12], F1 scores, or

often the positive prediction value (PPV). Such measures are applied by labeling data points

according to a binary classification scheme; for DCA, those residue pairs that are a specified

distance apart within a benchmark structure (e.g.,� 5 Å) are labeled as positives and other

pairs as negatives. However, there are reasons to criticize such measures in particular circum-

stances [13]. In particular, it is not clear how to assess the significance of such measures when

comparing different proteins or distinct structures. To standardize such comparisons, it is

desirable to obtain a measure of statistical significance, which also provides insight into how

surprised we should be with a given result. As illustrated here, one can use such a measure to

determine whether it is better to base DC scores on an MSA of more closely related proteins

rather than on an entire superfamily MSA.

Given a set of structures for a protein superfamily, a significance measure can help identify

those of greatest interest: Direct couplings between pairs of residues presumably are due to

selective constraints maintaining functionally important structural interactions. Hence, those

protein structures that exhibit the most biologically relevant interactions should achieve the

highest level of significance. One could therefore use a significance measure to select among

alternative structural models generated by homology or by ab initio structure prediction meth-

ods. One may also adapt such a measure to evaluate the degree to which high DC scores are

associated with properties other than 3D structural contacts. As illustrated here, for example,

one may determine whether those residues most distinctive of a particular protein family are

overrepresented among the highest DC-scoring residue pairs.

Statistical investigations of protein residue direct couplings
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Here we describe a method to estimate, in various contexts, the statistical significance of the

correspondence between DC scores and either protein structural contacts or other protein

properties. Unlike the current practice of selecting for analysis an arbitrary number of the

highest scoring pairs (e.g., 1.5 times the MSA length [14]), our approach determines the opti-

mal number of such pairs automatically based on a statistical criterion, while adjusting auto-

matically for the number of multiple hypotheses tested. Unlike binary classification schemes,

our approach takes into account both the order of each residue pair based on DC scores and

their ranks based on 3D pairwise distances; hence, it treats the structurally closest residue pairs

having high DC scores as of higher biological relevance than such pairs having low DC scores.

By providing a quantitative measure of significance, our approach can detect subtle yet impor-

tant features of the data that qualitative measures would fail to distinguish from background

noise.

We illustrate this approach by investigating: the relative performance of alternative meth-

ods; the biological relevance of alternative structures; subtle structural changes associated with

the transition state of Ran GTPase; the contribution of homo-oligomer interfaces to aggregate

DC scores; DCA’s dependence on the sequences included in the input MSA; and the corre-

spondence between DCA pairwise correlations and correlated patterns associated with protein

functional specialization.

Results

Statistical models

Abstractly, given an array of elements ordered by a primary criterion (e.g., as used here, DC

scores), we ask how well it agrees with a secondary criterion (e.g., 3D pairwise distances) that

distinguishes and ranks a subset of the elements. More specifically, we seek to identify an opti-

mal initial cluster of elements of the array (defined by a cut), as measured by a relevant p-

value. Our approach is based upon Initial Cluster Analysis (ICA) [15]; see Methods. For refer-

ence, Table 1 provides a summary of the variables used below. ICA answers the question:

Given a random array of length L, containing D ’1’s (representing distinguished elements),

and L—D ’0’s, what initial cluster, consisting of elements up to and including a cut point X,

contains the most surprising number d of ’1’s, and what is its probability of occurring? (Below,

we call the d ’1’s in an initial cluster “left-distinguished elements.”) For L = 18 and D = 7, for

example, one such array is “101101100000010001”, with optimal cut point X = 7 (underlined),

yielding d = 5. Here we note that, in practice, to distinguish elements within our array, we fre-

quently rank all the elements, and distinguish those with rank� D. We then might denote our

example array as “401603200000070005” with digits > 0 denoting the ranks of distinguished

elements. ICA ignores these ranks when choosing the optimal X, whereas we would prefer the

d distinguished elements to the left of X to have superior ranks (i.e., lower numbers) than

those to the right.

To generalize ICA to exploit ranking information we incorporate a ball-in-urn model

to calculate a ranking specific p-value Pb. For a specific cut point X that yields d left-distin-

guished elements, we imagine first coloring red, among all D distinguished elements, those d
elements with superior ranks (e.g., with the smallest pairwise distances); and then recording

the number R that are red among the left-distinguished elements. Ideally, all the left-distin-

guished elements will outrank the remaining distinguished elements, yielding R = d, but more

generally higher values of R are better; in the example of the previous paragraph, D = 7, d = 5

and R = 4. Given the null hypothesis that rankings are random, we may then use the cumulative

hypergeometric distribution to calculate the probability Pb that� R of the left-distinguished

Statistical investigations of protein residue direct couplings
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elements are red:
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This corresponds to drawing d balls from an urn containing D balls, of which d are red; note

that the number of balls drawn here equals the number colored red. A low value of Pb is

reported for a cut with a surprising number, among its d left-distinguished elements, having the

d smallest pairwise distances.

Before it corrects for optimizing over all possible cuts, ICA can be understood as calculating

a p-value Pa for finding d distinguished elements to the left of a cut point X. Because the calcu-

lation of Pa ignores ranking information, it will be independent of Pb, and these two p-values

may therefore be combined to yield a joint p-value PJ [16–19] using the formula

PJ ¼ PaPbð1 � lnPaPbÞ:

Low values of PJ may arise from low values of Pa, or Pb, or of both. PJ can provide a statistically

stronger measure than Pa alone of the congruence of two orderings, here derived from DC

scores and 3D distances. The p-values P we report in this paper correspond to PJ, after it has

been corrected for optimization over the multiple cut points X considered, as described in

[15]. One may wish to optimize as well over various values of D, but in the current application

larger values of D are then almost always preferred, due to the indirect couplings considered

below. We therefore choose a fixed D, based upon a maximum allowed 3D distance within a

reference structure.

To summarize, in order to apply the theory above to the question of how well DCA actually

uncovers direct contacts within proteins, we proceed as follows. Given an MSA, a method to

calculate DC scores for all column pairs, and a reference structure corresponding to one of the

Table 1. List of variables.

Symbol Definition

L Total number of column pairs in the ICA array

r Maximum 3D distance used to define contacting residue pairs (default: 5 Å)

D Number of contacting pairs, i.e. distinguished elements

X Optimum cut point (as defined by the ICA algorithm) for partitioning an array of length L
d Number of left-distinguished elements, i.e. contacting pairs to the left of the cut point X (inclusive)

m Minimum sequence separation between residue pairs in a query protein of known structure

Pa Estimated p-value for finding d distinguished elements to the left of X in the array

R The number, among the d elements with smallest pairwise distances, that occur to the left of X (used for

calculating Pb)
Pb The probability, based on the cumulative hypergeometric distribution, of R being at least the value

observed

PJ Estimated joint p-value

S -log10 P, where P corresponds to PJ after correcting for multiple tests

x Constant cut point (used instead of an optimized cut point X)

ℓ The length of the input MSA

F Numerical factor defining the constant cut point as x = F × ℓ
Px The probability, based on the cumulative hypergeometric distribution, of d being at least the number

observed up to constant cut point x
PF Estimated joint p-value that combines Pb and Px, where x = F × ℓ
SF -log10 PF

https://doi.org/10.1371/journal.pcbi.1006237.t001
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sequences in the MSA, we consider only those pairs of MSA columns separated by�m inter-

vening positions within the reference sequence, withm = 5 by default. Ordering these column

pairs by descending DC score yields our array of elements, of length L. We then distinguish

those D elements whose 3D distance per the reference structure is� r Å, with r = 5 by default,

and rank them by increasing distance. (This distance is defined as the minimum between side-

chain atoms, including hydrogens, of the paired residues. For glycine, Cα and its attached

hydrogen serve as the sidechain atoms.) ICA’s original Pa depends only upon the specification

of these pairs as distinguished, whereas PJ takes account as well of their rankings, through the

ball-in-urn derived Pb. As we will show below, for this application Pa is, in general, far smaller

than Pb. However, we have found PJ to provide, in general, greater statistical power than Pa for

analyzing protein sequence-structural relationships, and our focus in this paper is to illustrate

its use.

Defining Px and PF
Currently DCA performance is often evaluated using the positive prediction value (PPV),

defined as the percentage of observed reference-structure 3D contacts corresponding to a fixed

number x (e.g., x = 100 [11, 20]) of the highest DC-scoring column pairs. In contrast, the cut

point X is not fixed but chosen to optimized significance. Because the number of column pairs

grows with increasing MSA length ℓ, x is often chosen, using a parameter F, as x = F × ℓ. Typi-

cal values of F range from 0.5 to 1.5 [10, 14]. Since we propose the S-score as a replacement for

PPV, we compare these two metrics below in several ways. To aid these comparisons, we

define Px as the probability, based on the cumulative hypergeometric distribution, of d being

at least the value observed for a constant value of x = F × ℓ. We define PF as the estimated joint

p-value that combines Pb and Px:

PF ¼ PxPbð1 � lnPxPbÞ ¼ PF�‘Pbð1 � lnPF�‘PbÞ:

Implementation and availability. We implemented these algorithms and statistical models in

C++ as the STARC (Statistical Tool for Analysis of Residue Couplings) program, which, along

with the source code, is freely available at http://evaldca.igs.umaryland.edu.

Simulations

Here and below, for an estimated or theoretical p-value P we define a corresponding s-score as

S = −log10 P. Our theory should yield accurate p-values and s-scores for randomly generated,

or shuffled arrays. However, in the present application many column pairs within an MSA are

interrelated (e.g., {i,j}, {j,k} and {i,k}), possibly affecting their DC scores as well as the corre-

sponding distances derived from a structure. To test whether computed p-values remain valid

given such interrelationships we generated, based on randomization of each of six MSAs with

six corresponding structures, sets of random p-values, as described in Methods. We define Ŝ,

as a function of S, to be -log10 of the proportion of observed (simulation-based) s-scores that

are greater than or equal to S. If our p-value calculations are accurate, Ŝ should equal S to

within stochastic error. In Fig 1 we plot, for S from 2 to 5, the Ŝ obtained from 100,000 p-values

for MSAs in which the residues in each column and the order of the columns for each MSA

were randomly permuted (termed column-permuted MSAs). This operation retains the distri-

bution of column relative entropies observed in the original MSA. For comparison, we plot as

well the Ŝ obtained from an equivalent number of shuffled DC arrays (see Methods). These

arrays abolish interrelationships among DC-scores, and so conform better to theory. The

straight, solid line represents the agreement of Ŝ with theory, and dashed curves represent
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error ranges of two standard deviations. As can be seen, within stochastic error, Ŝ agrees well

with theory for the shuffled arrays. (Because we can generate p-values rapidly for shuffled

arrays, we have confirmed the accuracy of Ŝ in this case for S� 8.)

For the MSA with the largest number of sequences (146,217) among the six used for col-

umn-permuted simulations, and corresponding to structure 1wznA, the values of Ŝ deviate

consistently below the error bounds corresponding to slightly inflated s-scores. When we ran-

domly removed all but 5,117 (3.5%) of the sequences in this MSA, however, this effect was

essentially eliminated (see 1wznA plot in Fig 1). Values of Ŝ for the other column-permuted

MSA simulations exhibit less of a tendency to deviate outside of the error bounds. Based on

these examples, it appears that for large alignments, s-scores may be slightly inflated, but it is

not clear why this is so.

We cannot be sure that values of Ŝ for randomized MSAs will conform to theory beyond

the range tested. However, we may apply s-scores in a manner similar to that of Z-values. A Z-

value is the distance between a raw score and the population mean in units of standard devia-

tion. One may convert a Z-value into a p-value under the assumption (based on the Central

Limit Theorem) that the variables are drawn from a normal distribution. Although this

assumption is typically invalid for raw scores far away from the mean, Z-values still provide a

Fig 1. Empirical values of Ŝ as a function of S yielded by randomly shuffled 100,000 DCA arrays (blue dots connected by lines), and by 100,000 DCA arrays

derived from column-permuted MSAs, where the order of the columns and of the residues within each column were randomly permuted (red triangles connected

by lines). Solid straight lines represents agreement of Ŝ with S, and the dashed curves represent an error range of two standard deviations. Results are shown for six of

the domains listed in Table 2, designated by their corresponding pdb identifiers 3fhkF, 1ijxA, 4cmlA, 1olzA, 1k30A, 1wznA, ordered by increasing numbers of sequences

in their corresponding MSAs. For 1wxnA, the additional data points (faint red triangles connected by a dashed line) corresponds to an MSA of 5,117 sequences

randomly drawn from the original MSA.

https://doi.org/10.1371/journal.pcbi.1006237.g001
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useful metric for assessing significance. Extreme s-scores likewise provide a useful measure of

statistical significance even though the true distribution may depart from the theoretical distri-

bution used here.

Application: Comparisons among DCA methods

We ran the STARC program on the output from four DCA programs, EVcouplings (EVC) [5,

6], GaussDCA with Frobenius norm ranking (GSF) [11], PSICOV (PCV) [4], and CCMpred

(CCM) [10], each applied to thirty protein domain MSAs with reference 3D contacts� 5 Å
(Table 2). For a given MSA, better performing programs should typically generate more signif-

icant results, and thus generally higher s-scores.

Table 2. S calculated with and without Pb for thirty superfamilies using residue pairwise 3D distances� 5 Å and a minimum of 5 intervening residues.

Query Resolution Query Description Number of S a S without Pb

(Å) length sequences CCM EVC GSF PCVb CCM EVC GSF PCV

1ayaA 2.05 101 tyrosine phosphatase SH2 domain 12,208 55 54 60 43 56 55 62 44

1b5oA 2.20 382 aspartate aminotransferase 105,741 862 810 774 606 860 805 768 601

1el3A 1.70 315 aldose reductase 67,824 612 588 514 502 607 582 509 499

1k30A 1.90 234 glycerol-3-phosphate acyltransferase 12,225 110 114 90 77 110 112 90 78

1b23P 2.60 184 elongation factor Tu 78,839 167 135 109 101 167 134 109 102

1olzA 2.0 481 Sema4D 5,453 187 245 185 92 184 240 183 91

1wznA 1.90 155 SAM-dependent methyltransferase 146,217 169 156 159 154 164 152 155 149

1z0kC 1.92 164 Rab4 GTPase 64,211 212 181 202 178 209 180 201 175

1zp9A 2.00 258 Rio1 serine kinase 24,076 105 110 91 86 106 111 92 87

2b61A 1.65 357 homoserine transacetylase 47,508 294 290 284 274 294 290 284 275

3ex7H 2.30 241 DEAD-box ATPase eIF4AIII 98,478 254 239 173 157 251 237 173 156

4ag9A 1.76 165 glucosamine-6-phosphate acetylase 107,738 167 174 173 163 164 171 170 163

5dfiA 1.63 318 apurinic-apyrimidinic endonuclease 36,297 293 317 244 193 291 313 242 193

5hf7A 1.54 227 thymine DNA glycosylase 7,588 125 126 72 66 126 125 73 66

5m4pA 2.30 164 pyruvate dehydrogenase kinase 1,651 33 34 37 23 34 36 38 24

1ijxA 1.90 127 cysteine-rich domain of sFRP-3 3,224 24 25 19 20 25 25 20 21

2nrlA 0.91 147 myoglobin 9,514 98 95 68 58 97 94 69 58

4cmlA 2.30 313 INPP5B 4,724 244 247 266 177 242 242 264 176

1jw9B 1.70 249 molybdopterin synthase MoeB 23,170 331 318 272 243 325 312 269 242

3fhkF 2.30 147 disulfide isomerase 1,042 61 64 67 49 61 64 68 49

3h7uA 1.25 335 plant stress-response enzyme Akr4c9 67,652 589 573 502 481 577 565 494 473

1g9rA 2.00 311 galactosyltransferase LgtC 10,575 283 264 281 212 275 254 274 208

4em8A 1.95 148 ribose 5-phosphate isomerase B 7,217 184 181 160 146 173 175 153 138

1i6mA 1.72 328 tryptophanyl-tRNA synthetase 20,731 321 312 198 166 316 309 194 165

3f1lA 0.95 252 oxidoreductase, Ycik 99,991 454 448 433 397 446 439 426 393

1jr3A 2.2 373 bacterial DNA clamp loader γ subunit 24,739 377 373 258 245 373 365 258 245

1nnlA 1.53 225 human phosphoserine phosphatase 130,332 136 133 111 91 137 131 111 93

1frwA 1.75 194 E. coli MobA 79,445 193 179 213 168 194 180 212 169

1bqbA 1.72 301 Aureolysin metalloproteinase 5,289 333 336 254 190 325 331 252 190

2ovdA 1.8 182 human complement protein C8γ 6,874 62 75 53 42 63 75 53 41

average: 245 240 211 180 242 237 209 179

For each query the optimal S among competing methods is shown in bold. Shaded scores indicate the query for which the optimal method changes when Pb is excluded.
aHydrogen atoms were added using the Reduce program [21], except for 3f1lA for which hydrogens were already present in the pdb coordinate file.
bPSICOV version 2.4 using the recommended –p and –d 0.03 options.

https://doi.org/10.1371/journal.pcbi.1006237.t002
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Optimal cut points and contact predictions. The s-scores reported in Table 2 confirm

that DC scores correlate with 3D pairwise contacts with very high significance: for most DCA

methods, S is > 200 on average. Table 2 also shows the corresponding S-scores computed

without the Pb component. Omitting this component changes the S scores, on average, by 1–3

units, corresponding to changes of 1–3 orders of magnitude in p-values. In only three cases

this changed the rankings between methods, all three of which had similar S-scores. Therefore,

including the Pb component provides significant additional information without substantially

influencing comparisons among methods, which we explore in the next section. (For the com-

plete set of data for Table 2, including values of L, X, D, d and R, see S1 dataset and S2 dataset.)

Comparisons among DCA methods. To evaluate the relative performance of various

DCA methods we applied to the data in Table 2 the two-tailed Wilcoxon signed-rank test [22],

which is a non-parametric statistical hypothesis test for comparing two matched samples. We

used this test to determine whether there is a significant tendency for one DCA method’s s-
scores to be higher than those of another DCA method. We first normalized each s-score

through division by the total number of residue pairs for its input MSA; the resulting normal-

ized s-scores approximately follow a Gaussian distribution (see Methods). Since this test is

based on thirty pairs of s-scores, the sum of the Wilcoxon signed ranks tend to follow a

Gaussian distribution. The Wilcoxon test returns a Z-value for each pair of methods and a cor-

responding two-tailed p-value (Table 3). For the S-score, this test ranked CCMpred as per-

forming only marginally better than EVcouplings (p = 0.09); EVcouplings significantly better

than GaussDCA (p = 0.001); and GaussDCA significantly better than PSICOV (p = 2×10−6).

For individual MSAs, the contribution of Pb to PJ varied, for CCMpred, from insignificant to

highly significant (e.g., Pb = 6.3×10−17 for 3h7uA) with a geometric mean of Pb = 4.6×10−7, but

the exclusion of Pb did not substantially affect the Wilcoxon test p-values comparing the meth-

ods. The superior performance of both CCMpred and EV-couplings is not surprising, as both

are based on pseudo-likelihood maximization (PLM), which was first introduced as GREM-

LIN [23] and which was later shown [24, 25] to be more accurate than newer, faster methods

such as PSICOV [4].

Indirect couplings. Ideally, as their name indicates, DC scores should correspond to

direct correlations between pairs of columns in an MSA. However, if a DCA method generates

output inconsistent with this assumption, by picking up indirect couplings, our approach may

yield significant p-values (i.e., high S) arising from pairs of residues distant in the 3D structure.

Ideally, in the absence of indirect couplings, DC scores corresponding to distant pairs alone

should not be significant. Note, however, that high S for large distances may be due in part to

pairs directly coupled in an alternative conformation, or indirectly coupled via functional

interactions mediated by other molecules or by a homo-oligomeric interface. Indirect cou-

plings may also be due to phylogenetic correlations among closely related proteins.

Table 3. Wilcoxon Signed Rank 2-tailed tests for the 30 analyses in Table 2.

Comparison S-score S without Pb SF = 1.5 SF = 1.0

method 1 method 2 Z-value p-valuea Z-value p-value Z-value p-value Z-value p-value

CCM EVC 1.70 9×10−2 1.82 7×10−2 2.76 6×10−3 4.00 6×10−5

CCM GSF 3.71 2×10−4 3.67 2×10−4 3.98 7×10−5 4.56 5×10−6

CCM PCV 4.78 2×10−6 4.78 2×10−6 4.70 3×10−6 4.72 2×10−6

EVC GSF 3.22 1×10−3 3.16 2×10−3 3.28 1×10−3 3.10 2×10−3

EVC PCV 4.76 2×10−6 4.78 2×10−6 4.47 8×10−6 4.10 4×10−5

GSF PCV 4.76 2×10−6 4.70 3×10−6 3.53 4×10−4 2.34 2×10−2

aNote that p-value estimates below ~10−4 are unreliable.

https://doi.org/10.1371/journal.pcbi.1006237.t003
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In Fig 2 we present bar plots for S, averaged over the thirty superfamilies of Table 2, based

on various distance ranges used to define residue pairs as discriminating. (Note that we dis-

carded from the DCA array all pairs corresponding to 3D distances below each specified

range.) The high values of S we obtained for distant pairs suggests that all four methods are

detecting couplings well beyond a residue-to-residue distance of 5 Å—EVcouplings more so

than the other methods. For example, in the 2–3 Å range, S for CCMpred is significantly

higher on average than for EVcouplings (Z-value = 3.57; p = 4×10−4), but in the 7–8 Å and

9–10 Å ranges, S for EVcouplings is significantly higher (Z = 2.89, p = 0.004 and Z = 3.24,

p = 0.001, respectively).

S- and SF-scores versus PPV. To properly compare our scoring approach with PPV and

to apply it to a fixed number of the highest DC-scoring pairs, rather than as a global metric

based on all pairs, we define the alternative s-score SF = −log10 PF. We computed SF = 1.5 and

SF = 1.0 scores for the proteins in Table 2 (S2 dataset). These analyses retain the same Wilcoxon

rankings as for S (Table 3), though at different levels of significance. S-scores are optimized

over values of X and thus of F. For the 30 analyses in Table 2, the median value of F was 3.2

with a range of 0.6 to 18.4 (S1 dataset). Thus, the optimized F tends to be higher than conven-

tional fixed values of F based on ad hoc criteria. An optimized F = 18.4 was obtained for

Sema4D (pdbid: 1olzA), which is a large, irregularly shaped domain containing seven β-pro-

peller structural repeats and for which artifactual correlations between repeats may cause DCA

to mis-assign residue pairs leading to a high F. This elevated F also may be due, in part, to the

tendency for large, elongated domains to have a lower percentage of internal contacts (1.1% in

this case).

Fig 3 shows, for each of five protein domains, how S, SF and PPV depend on a range of

structures for each protein, where F = 1.5, 1.0 or 0.5 for SF and PPV. These include domains in

four human proteins: the SH2 domain of Syp tyrosine phosphatase, Ran GTPase, the bromo

domain of BRD4, and α-hemoglobin; and one bacterial protein: Thermus thermophilus RNA

Fig 2. S as a function of 3D distance ranges defining distinguished residue pairs. See discussion in text. A. The s-scores obtained for distance ranges spanning zero to

16 Å. Column pairs corresponding to residue-to-residue distances below the indicated range were excluded from the analysis. B. Detailed plot of the span 2 to 5 Å. Each

distance range covers 0.25 Å and is labeled by its upper limit.

https://doi.org/10.1371/journal.pcbi.1006237.g002
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Polymerase α. Ran and Syp SH2 appear to span a broader range of conformational states than

do the other proteins, which may explain the high variability in their S, SF and PPV scores. For

a given F, ranking of the four methods using SF is similar to ranking them using PPV. For

some proteins, however, when using either SF or PPV the ranking of methods changes among

values of F. For the Syp SH2 domain, GSF ranks 1st, 2nd and 4th for F = 1.5, 1.0 and 0.5, respec-

tively. In contrast, for Ran GTPase, GSF ranks 3rd, 4th and tied for 1st for F = 1.5, 1.0 and 0.5,

respectively. Hence, it seems unlikely that any one method will be consistently preferred for

either small or large F. For each of the five analyses, Fig 3 shows the mean values of X and of F
for the S-score plots and the values of x for F = 1.5, 1.0 and 0.5. Giving each of the five analyses

equal weight, for S-scores the mean value of F equals 1.76.

For the α subunit of T. thermophilus RNA polymerase, S, SF = 1.5 and SF = 1.0 scores com-

puted using any of the methods tested are considerably higher for a crystal structure of the

class II transcription activation complex (pdb_id: 5i2d) [26] than for other structures: the

right-most spikes in the Fig 3 plots for this protein correspond to these elevated scores. A simi-

lar spike in the PPV score for this structure is clearly evident only for the CCM method with

F = 1.5. This complex consists of two α subunits and six other protein subunits bound to pro-

moter DNA and a ribotetranucleotide primer and thus is likely to be more relevant biologically

than other structures of this protein. This suggests that S and SF scoring may be useful for

assessing the biological relevance of structural conformations. In the next section, we further

investigate using S-scores in this way.

Application: Quantifying a structure’s biological relevance

We have studied, through the score S, the correspondence between a multiple alignment’s DC

scores and the pairwise distances implied by the structure for a particular sequence in the

alignment. However, to calculate S, there are typically many structures to choose among, and

these may differ in important particulars. Recent studies [27–32] have demonstrated that high

DC scoring pairs that are distant in certain benchmark 3D structures may come into contact

within alternative conformations or across homo-oligomer interfaces, and have thereby pro-

vided insight into protein biophysical and dynamic properties. Other studies [33, 34] have

combined DCA with correlation analyses involving larger groups of structurally and/or func-

tionally correlated residues, thereby generating further insight. Here we illustrate the applica-

tion of our method to these sorts of studies.

To the degree to which DC scores capture the pairwise correlations imposed by the func-

tional requirements common to a protein family, we expect the S yielded by a particular struc-

ture to reflect the degree to which that structure exhibits critical interactions characteristic of

the family. In other words, Smay measure the degree to which a specific structural conforma-

tion is biologically relevant. To investigate this, we consider three cases—human Ran GTPase,

Gna1 N-acetyltransferase from C. elegans, and the bacterial (E. coli) clamp loader complex.

Using available structures for each of these, we add hydrogen atoms using the Reduce program

[21] to better discriminate among residue-to-residue contact distances. A previous DCA anal-

ysis [31] found that the heavy atom distance distribution for directly coupled residue pairs

exhibited local maxima at 2.8 Å and 3.7 Å, which were interpreted as corresponding to the

donor-acceptor distance of hydrogen bonds and to hydrophobic interactions, respectively.

Fig 3. S, SF and PPV scores as a function of various 3D structural coordinates for each of five protein domains.

Structures are ordered by the average of their scores over four methods: CCM (black lines), EVC (cyan lines), GSF (red lines)

and PCV (green lines). Below the name for each domain are shown both the mean value of F and of the optimal cut points X
for the S-scores. The constant cut point values of x = F × ℓ are shown between the PPV and SF plots. The value of r (the

maximum 3D distance defining contacting pairs) is 5 Å.

https://doi.org/10.1371/journal.pcbi.1006237.g003
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Here we choose to focus on hydrogen bond interactions. Since our analyses explicitly model

hydrogen atoms, we calculate S using a maximum structural distance of 2.6 Å, which, based on

the sum of the van der Waals radii for hydrogen plus either nitrogen or oxygen [35], corre-

sponds to an upper bound on the hydrogen-acceptor distance of hydrogen bonds.

Ran GTPase. Ran GTPase is required for the translocation of proteins and RNA through

the nuclear pore complex. Ran exists in both GTP- and GDP-bound forms. Ran-mediated

hydrolysis of GTP to GDP, which is believed to drive transport of cargo from the nucleus into

the cytoplasm, involves the combined action of Ran GTPase activating protein (RanGAP),

which activates Ran’s intrinsic GTPase activity, and of the Ran-binding proteins RanBP1 [36].

The nucleotide exchange factor RCC1 converts Ran-GDP back into Ran-GTP.

Two crystal structures of the Ran-RanBP1-RanGAP ternary complex are available [37]: one

in the ground state (i.e., bound to a non-hydrolysable GTP analog) and another in a transi-

tion-state mimic. For each crystal structure, the unit cell contains four tertiary complexes

whose Ran subunits are labeled as chains A, D, J and G. Each chain yields an S for each of the

two structures, as shown in Table 4, and, on average, the S for the transition-state exceeds that

for the ground state by 24 based on the R4 family MSA described below. (Note that, for Ran,

we find no correspondence between S and crystal structure resolution, as shown in Fig 4.)

This average difference in S, corresponding to greater than 24 orders of magnitude in P, indi-

cates that the transition state has more functionally relevant interactions than does the ground

state. A detailed investigation of the transition state interactions absent from the ground state

may provide insight into this key step in Ran-mediated nuclear transport. We investigate this

possibility in Fig 5A by showing those residues participating in pairs that, for all four Ran sub-

units within the crystal structure unit cell: (1) are among the left-distinguished pairs for the

transition state, but not for the ground state; and (2) are closer by at least ⅓ Å in the transition

state than in the ground state. These residues appear to form allosteric pathways between

Ran’s active site and its sites of interaction with RanBP1 and with RanGAP. The latter site

includes a salt bridge, between Lys130 of Ran and Asp225 of RanGAP, that contributes to the

stimulation of GTP hydrolysis by RanGAP [37]. In contrast, residues that participate in pair-

wise interactions that are relatively stable among diverse conformational forms occur in

regions adjacent to these putative pathways (Fig 5B). Notably, Phe90, which forms a stabilizing

interaction with Gly121 in the guanine binding loop [38], and Val14 are the only residues that

participate (based on our criteria) in both transition-state-specific and stable interactions, and

therefore may function as pivot points. This analysis illustrates how one may use our approach

to investigate structural changes of potential functional relevance, thereby aiding experimental

studies regarding catalytic mechanisms, substrate recognition, allostery, drug design, and pro-

tein engineering.

Table 4. S for Ran GTPase in the transition state complexa and in the corresponding ground state complexb.

Input MSA: number of transition state Sc ground state S ΔS
seqs Ad D J G avg A D J G avg avg

GTPase superfamily 274,681 53.9 53.7 54.9 53.9 54.1 42.7 42.2 45.1 41.5 42.9 11.2

R4 familye 27,571 95.0 96.4 94.5 93.2 94.8 70.0 71.1 72.7 69.3 70.8 24.0

Ran subfamily 507 5.4 5.3 5.3 5.6 5.4 6.9 6.9 6.9 6.9 6.9 -1.5

aRan-GDP-AlFx-RanBP1-RanGAP; pdb: 1k5g; 3.1 Å.
bRan-GppNHp-RanBP1-RanGAP; pdb: 1k5d; 2.7 Å.
cThe s-scores are based on CCMpred DC scores with L = 12,090, onm = 5, and on r = 2.6 Å.
dThe letters A, D, J and G correspond to the chain designations for each of four Ran subunits within the crystal structure unit cell.
eThe R4 family is composed of multiple subfamilies; this includes Rab, Rho, Ras and Ran GTPases.

https://doi.org/10.1371/journal.pcbi.1006237.t004
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Higher S for a Ran subgroup of P-loop GTPases. To examine the dependence of S on

the sequences included in the input MSA, we used Bayesian Partitioning with Pattern Selection

(BPPS) [39] to classify the aligned sequences into three nested sets consisting of all P-loop

GTPases, of Rab, Rho, Ras and Ran (termed R4) GTPases, and of Ran GTPases. We calculated

S from the DC scores for each of these MSAs based on the Ran subunit of the Ran-RanB-

P1-RanGAP transition and ground state structures (Table 4). On average, S based on the R4

family exceeded S based on the GTPase superfamily by 41 and 28 for the transition and ground

states, respectively. This suggests that proteins within the R4 subgroup share pairwise con-

straints and mechanistic similarities that other P-loop GTPases lack.

Complementarity of DCA and BPPS analyses of Ran. Like DCA, BPPS identifies corre-

lations among MSA columns, but unlike DCA it focuses on detecting family-specific sequence

patterns associated with functional specialization rather than on pairwise correlations. There

can be some overlap between the patterns of correlation detected by the two approaches, but

such overlap is typically fairly weak. For illustrative purposes, we consider the DCA array

used for the analysis of the R4 family in Table 4. As shown in S1A Fig, when pairs of positions

separated by� 5 Å are distinguished, the optimal initial cluster, highlighted in yellow, is highly

significant (S = 230); 64% of the pairs in this cluster are distinguished, and 54% of all distin-

guished pairs are in the cluster. These high percentages reflect DCA’s success in detecting

directly interacting residues. BPPS defines the R4 family by recognizing positions having dis-

tinctive residue patterns, and, for comparison to S1A Fig, we distinguish in S1B Fig the ele-

ments of the DCA array corresponding to pairs of these positions. Again there is a significant

(S = 6.2) initial cluster, highlighted in yellow. However, only 6% of the pairs in this cluster are

Fig 4. Regression analysis of S for 60 Ran GTPase structures versus their crystal structure resolutions. The

coefficient of determination is R2 = 0.00005, indicating that crystal structure resolution fails to explain the variability of

S around its mean. The same R4 family MSA and parameters were used here as for the analyses in Table 4.

https://doi.org/10.1371/journal.pcbi.1006237.g004
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distinguished, and only 16% of all the distinguished pairs are in the cluster. Thus, while there

is a weak tendency for pairs of positions recognized by BPPS as characterizing the R4 family to

receive high DC scores, a sizable majority of these pairs do not. In general, DCA and BPPS

often recognize correlations of a complementary character. BPPS, in focusing on positions

whose residue patterns are distinctive of a particular family, often recognizes correlations

among positions on the protein’s surface or far removed spatially, and whose interaction is not

direct but rather linked through common function [39].

Homodimeric Gna1 N-acetyltransferase. For the preceding analysis, we examined spa-

tial contacts only within single protein subunits, whereas correlated mutations are also associ-

ated with contacts at homo-oligomer interfaces. To consider such contacts as well, we applied

our approach to the homodimeric structure of glucosamine-6-phosphate N-acetyltransferase

(Gna1) [40], a GCN5-like N-acetyltransferase (GNAT) [41] that transfers an acetyl group from

coenzyme A (CoA) to glucosamine-6-phosphate to produce N-acetyl-D-glucosamine-6-phos-

phate (GlcNAc-6P). (In a previous study [42], we found that the residues most characteristic

of the GNAT family to which Gna1 belongs are contributed by both subunits to form the active

site at the homodimeric interface. This contrasted with the GNAT superfamily’s most charac-

teristic residues, which are remote from the homodimeric interface.) To study the influence on

S of including homodimeric interface contacts, either in Gna1 bound to CoA or in Gna1

bound to both CoA and the reaction product GlcNAc-6P, we computed pairwise distances

based either solely on contacts internal to each subunit or on both internal and interface con-

tacts. In the latter case, we used the shorter of the two contact distances to rank each residue

Fig 5. Residues in Ran involved in interacting pairs within the transition state structure (pdb: 1k5g) [37].

Sidechains of residues in RanBP1 contacting Ran are labeled in (A) and shown in magenta with dot clouds. The

sidechain of Ran Lys130, which plays a role in the stimulation of GTP hydrolysis by RanGAP [37], is indicated. The

GTP transition state analog and sidechains of Ran’s catalytic (active site) residues are represented as cyan and red

sticks, respectively. A PyMOL session file corresponding to this figure is available at our website. A. Sidechains of

residue pairs contributing to the higher S for Ran in the transition state than in the ground state (pdb: 1k5d). These

residues are represented as yellow spheres, except for the pivot point residues Phe90 and Val14, which are shown as

bright blue spheres, and for two of the unlabeled catalytic residues shown in red (Thr24 and Thr42). B. Ran residues

forming pairs whose interactions remain stable over diverse conformational forms (shown as orange and bright blue

spheres). These diverse forms include the Ran-RanBP1-RanGAP transition (pdb: 1k5g) and ground (pdb: 1k5d) states;

Ran bound to its exchange factor, RCC1 (pdb: 1i2m); Ran bound to GDP (pdb: 3gj0); Ran bound to Ntf1 and GDP

(pdb: 1a2k); and Ran bound to RanBP1 and CRM1 (pdb: 4hb2).

https://doi.org/10.1371/journal.pcbi.1006237.g005
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pair. The inclusion of trans-homodimer contacts significantly increased S both for the prod-

uct-bound complex (ΔS = 11.5 and 13.1), and for the unbound complex (ΔS = 8.7 and 11.6)

(Table 5). This suggests that homodimerization plays an important role in substrate binding

or catalysis or both. Note that binding of product yielded little or no increase in S based either

on internal contacts only or on internal plus trans-homodimer contacts.

Because the homodimeric interface includes many pattern residues characteristic of the

Gna1 family [42], we also considered to what extent the DCA and BPPS analyses are comple-

mentary (Table 6). Unlike for Ran GTPase, the highest DC scoring residue pairs correspond,

with high significance (S = 27.9), to pairs of the 25 highest BPPS-scoring residues characteristic

of the Gna1-family. Thus, the degree of complementarity between DCA and BPPS is protein-

specific. Note, however, that the overlap between Gna1-family BPPS pairs and either DCA or

3D contacting pairs is far from optimal (S2 Fig), suggesting that, in this case as well, pairs of

the highest BPPS-scoring residues are fairly distinct from residue pairs with the highest DC

scores and the shortest 3D distances.

DNA clamp loader complex. To further explore the possible relationship between a

structure’s biological relevance and its score S, we examined subunits of the bacterial DNA

clamp loader complex. This complex forms a spiral-shaped semicircle of two inactive subunits,

δ and δ’, and three γ ATPase subunits arranged in the order: δ-γ-γ-γ-δ’. The last two γs and δ’

each functionally interact with the ATP-binding site of the preceding γ subunit. This complex

loads a sliding clamp onto primer template DNA. The ψ protein binds to the clamp loader,

thereby coupling it to single-stranded DNA-binding protein. Upon binding to DNA and ATP,

ψ promotes the clamp-loading activity of the complex by stabilizing it in a spiral-shaped con-

formation consistent with recognition of both RNA and DNA primers [43].

We analyzed two different clamp loader structures: one of the unbound clamp loader com-

plex (pdb_id: 1jr3) [44] and another of the clamp loader bound to primer template DNA and

Table 5. S as a measure of biological relevance for the N-acetyltransferase Gna1 bound either to coenzyme A (CoA) (pdb: 4ag7; 1.55 Å) or to both CoA and N-ace-

tyl-D-glucosamine-6-phosphate (GlcNAc-6P) (pdb: 4ag9; 1.76 Å).

structural state distance-based S
Aa A:Bb ΔS Ba B:Ab ΔS

Gna1 + CoA 48.6 57.3 8.7 46.5 58.1 11.6

Gna1 + CoA + GlcNAc-6P 43.4 54.9 11.5 45.0 58.1 13.1

ΔS -5.2 2.4 -1.5 0.0

The s-scores are based on CCMpred DC scores, using the corresponding MSA from Table 2, on r = 2.6 Å and onm = 5.
aThe letters A and B correspond to the chain designations for the individual subunits; S in these columns is based solely on internal contacts.
bS in these columns is based on internal and homodimeric contacts; the letter to the right of the colon represents the subunit from which trans-homodimer pairwise

distances were obtained.

https://doi.org/10.1371/journal.pcbi.1006237.t005

Table 6. S as a measure of the overlap between pairs of BPPS pattern residues and the highest DC scoring pairs for the N-acetyltransferase Gna1 bound to both

CoA and N-acetyl-D-glucosamine-6-phosphate (GlcNAc-6P) (pdb: 4ag9; 1.76 Å).

characteristic pattern pattern-based S pattern residue positionsa

GNAT superfamily 2.2 153,116,83,118,154,103,31,121,113,24,106,82,

108,117,145,149,137,25,148,73,36,122,79

Gna1 family 27.9 135,90,92,104,68,95,93,44,141,136,43,102,105,

134,40,58,36,101,98,94,35,116,89,54,61

ΔS 25.7

aPattern residues were determined in [39, 42]; positions are ordered by decreasing BPPS score.

https://doi.org/10.1371/journal.pcbi.1006237.t006
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to the ψ protein and with an analog of ATP bound to each of the γ subunits (pdb_id: 3gli) [43].

First, using jackhmmer [45], we created one MSA for each of the subunits: δ, γ and δ’, and

used CCMpred to generate an ordered DCA array from each MSA. Second, we calculated val-

ues of S for each array using corresponding structures for the δ, γ and δ’ subunits (Table 7).

Note that in the bound form, there are two clamp loader complexes in the unit cell of the crys-

tal structure, yielding two distinct structures for each of the five subunits. The difference

between the s-scores for the bound and unbound forms, ΔS, ranges from 3 to 58 with a mean

of 26, which is highly significant. This conforms to the expectation that the biologically more

relevant bound conformation will yield higher S than the unbound form, and further illustrates

how S can be used to evaluate a structure’s biological relevance. However, unlike for Gna1, the

inclusion of contacts between adjacent γ subunits decreases S, suggesting that, in this case,

homo-oligomer interactions fail to impose detectable constraints. Finally, we explored for

clamp loader subunits the putative contributions to direct couplings of hydrogen bond interac-

tions (pairwise distances� 2.6 Å; Table 7) versus hydrophobic interactions (pairwise

distances� 3 Å and� 5 Å; Table 8). This comparison suggests that the biologically relevant

clamp loader state favors presumably more geometrically specific hydrogen bond interactions

over presumably less specific hydrophobic interactions.

Table 7. S as a measure of structural biological relevance for the bacterial DNA clamp loader complex based on a maximum distance of 2.6 Å.

subunit # aligned L Unbounda bound to ψ + “ATP” + DNAb

seqs S S ΔS S ΔS S-adjacentc

δ-γ-γ-γ-δ’ 8,765 47,914 135.4 153.8 18 157.5 22 n.a. n.a.

δ-γ-γ-γ-δ’ 24,739 43,694 148.0 172.1 24 172.6 25 168.3 165.5

δ-γ-γ-γ-δ’ @ @ 146.5 162.7 16 167.9 21 156.0 158.4

δ-γ-γ-γ-δ’ @ @ 154.3 157.5 3 169.0 15 155.1 164.9

δ-γ-γ-γ-δ’ 23,512 32,439 65.2 122.8 58 118.9 54 n.a. n.a.

These analyses are based on CCMpred DC scores withm = 5.
aBased on a 2.7 Å structure (pdb: 1jr3), for which the subunits δ, γ1, γ2, γ3 and δ’ are labeled as chains D, C, A, B and E, respectively.
bBased on a 3.5 Å structure (pdb: 3gli) that contains τ instead of γ, which is a shorter variant of τ. The two S and two ΔS columns correspond to two clamp loader

complexes within the crystal structure unit cell. For the first complex the subunits δ, γ1, γ2, γ3 and δ’ are labeled as chains A, B, C, D and E, respectively, and for the

second complex as chains F, G, H, I and J, respectively.
cS based on contacts both internal to each γ and with adjacent γ subunit(s); n.a. = not applicable.

https://doi.org/10.1371/journal.pcbi.1006237.t007

Table 8. S as a measure of structural biological relevance for the bacterial DNA clamp loader complex based on a minimum distance of 3 Å and a maximum of 5 Å.

subunit # aligned Unbounda bound to ψ + “ATP” + DNAb

seqs L S L S ΔS L S ΔS
δ-γ-γ-γ-δ’ 8,765 47,669 120.4 47,647 107.9 -12.5 47,653 110.4 -10.0

δ-γ-γ-γ-δ’ 24,739 43,447 160.1 43,428 128.4 -31.7 43,429 130.5 -29.6

δ-γ-γ-γ-δ’ @ 43,440 151.5 43,432 130.4 -21.1 43,433 136.6 -14.9

δ-γ-γ-γ-δ’ @ 43,438 127.6 43,436 135.5 7.8 43,442 145.4 17.8

δ-γ-γ-γ-δ’ 23,512 32,240 109.7 32,198 91.0 -18.7 32,201 92.1 -17.6

This analysis is based on CCMpred DC scores withm = 5, and focuses on putative hydrophobic interactions as opposed to the focus in Table 7 on putative hydrogen

bond interactions. Note that, for these, L decreases slightly by the number of pairs less than 3 Å apart for each structure, therefore each S is based on a different value of

L
aSee footnote a in Table 7.
bSee footnote b in Table 7.

https://doi.org/10.1371/journal.pcbi.1006237.t008
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Discussion

STARC-computed s-scores quantify a DCA method’s ability to detect 3D residue-to-residue

contacts. When used in combination with the Wilcoxon signed rank test, they yield a signifi-

cance measure of the performance of one method versus another and can quantify, as well, a

method’s tendency to detect indirect couplings. Larger domains tend to yield higher s-scores

due to enhanced statistical power. However, this is not a confounding factor when s-scores are

used to compare different DCA methods applied to the same MSA and 3D structure or to

compare alternative structures based on the same DCA method and MSA.

The following advantages of S-scores over SF-scores and PPV may be noted: S-scores are

not biased toward any particular method, but rather correspond to the optimal value of F for

each method and reference structure under consideration; this may reveal important features

that would otherwise be overlooked. S-scores avoid ranking inconsistencies due to one’s choice

of fixed values of F. S-scores can tap into additional information regarding each structure’s

possible biological relevance, as illustrated here. S-scores take into consideration not only the

number and arrangement of (false negative) contacting residue pairs to the right of a potential

cut point, but also the ordering of those pairs based on their 3D distances within a reference

structure. And, unlike PPV, S-scores provide a measure of statistical significance. Of course,

researchers also have the option of computing SF, thereby obtaining both a measure of signifi-

cance and an assessment of program performance as functions of F.

We could further develop the STARC statistical model by considering the arrangement of

the d distinguished pairs before X. A pair with a higher DC score should be more likely than

one with a lower DC score to correspond to a 3D interaction. Ideally, the d pairs should thus

be arranged in order of decreasing DC score. To measure how closely a DCA method’s output

comes to achieving this configuration, we may first define a permutation π by ranking the d
distinguished pairs based on 3D distance, with smaller distances receiving superior ranks (i.e.,

lower numbers), and then define tðpÞ ¼ 1

2

Xd

i¼1

ðp½i� � iÞ2. One may show that τ is an integer

function that for random permutations is symmetrically distributed about its mean μ =

(d3−d)/12, with standard deviation s ¼ m=
ffiffiffiffiffiffiffiffiffiffiffi
d � 1
p

. For d� 16 one may compile exact p-values

for τ by exhaustive enumeration, and for d> 16 estimate them using either a Gaussian approx-

imation or Monte Carlo simulation. However, it is unclear whether these p-values are indepen-

dent of Pa and Pb, and whether there is biological benefit to including this order in our

statistical model. We plan to investigate these questions.

An important potential application of our approach, which is beyond the scope of this study,

is the evaluation of MSA accuracy without the need for benchmark alignments, which typically

contain a relatively small number of sequences and whose accuracy may be uncertain [46]. Our

proposed approach would proceed on the assumption that, given available structures, more

accurate MSAs will yield higher values of S. We are developing this approach, which should

benefit from the large amount of sequence and structural data becoming available.

Our analysis of Ran, Gna1 and the DNA clamp loader complex suggests that Smay be use-

ful for evaluating the biological relevance of alternative structural conformations of the same

protein and for characterizing the nature of conformation-specific interactions. Viewing direct

couplings as functionally imposed constraints and proteins as molecular machines, Smay

measure the degree to which a particular crystal structure captures a protein in a mechanisti-

cally important state. If so, then analyzing in what ways various residue pairs contribution to S
may provide mechanistic clues. Likewise, comparative analyses among MSAs corresponding

to a protein’s subfamily, family and superfamily may provide mechanistic clues regarding

functional specialization. Our analysis here also suggests that one may use STARC to search
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for the most biologically relevant among the many structures often available for a major pro-

tein superfamily.

Methods

Protein structural coordinates

For the thirty STARC analyses in Table 2, we obtained high quality crystal structures from the

Protein Data Bank (PDB) (www.rcsb.org/pdb). The pdb and chain identifiers are given in col-

umn 1 of Table 2. Likewise, the coordinates for the Ran, Gna1 and DNA clamp loader analyses

were obtained from the PDB; their pdb identifiers are given in Tables 4, 5 and 6, respectively.

For all analyses, hydrogen atoms were added using the Reduce program [31], except for the

pdb coordinate file for 3f1lA in which hydrogens were already present. Hence, residue-to-resi-

due distances are based on any two atoms, including hydrogens, albeit ignoring main chain to

main chain interactions. This allows better discrimination among hydrogen bond interactions

based on subtle differences in contact distances.

DCA methods

EVcouplings (EVC) was run over the EVfold website (http://evfold.org) using the pseudo-likeli-

hood maximization (PLM) option with default settings. For each analysis, taking as input the

sequence corresponding to the reference structure as the query, EVcouplings uses jackhmmer

[45] to create an MSA, from which it then computes the DC scores. The score file and the corre-

sponding PDB coordinates serve as the input to STARC. We also used the jackhmmer align-

ment as input to the other programs. The GaussDCA program was run with Frobenius norm

ranking (with default parameters); this was done interactively under Julia (www.julialang.org).

PSICOV version 2.4 was run using the author recommended –p and –d 0.03 options and the

jackhmmer alignment reformatted by the fasta2aln program, which is included with the PSI-

COV package (http://bioinf.cs.ucl.ac.uk/downloads/PSICOV). CCMpred version 0.3.2 (https://

travis-ci.org/soedinglab/CCMpred) was run with default settings again using the reformatted

alignment. Note that the output from GaussDCA, CCMpred and PSICOV does not include the

query sequence, which, along with the DC scores, were provided as input to STARC.

Simulations

We performed two types of simulations for each of the six MSAs in Fig 1, which are labeled by

their corresponding pdb identifiers, 3fhkF, 1ijxA, 4cmlA, 1k30A, 1olzA, 1wznA, and which corre-

spond to analyses in Table 2. These MSAs vary substantially in their numbers of aligned columns

(127 to 481) and aligned sequences (1,042 to 146,217), and in the degree of shared sequence simi-

larity. For the first type of simulation, we randomly shuffled the DC score array for each of 100,000

runs. This simulation corresponds to the theory behind the ICA algorithm, which is described in

the next section. The second type of simulation corresponds more closely to a STARC analysis by

computing a DC score array from a simulated MSA. For each MSA, we first randomly permuted

the residues in each aligned column and then randomly permuted the order of the columns in the

MSA (termed a column-permuted MSA). Next, using these simulated MSAs as input to the

CCMpred program [10], DC scores were computed for each of 100,000 runs. Finally, for each run,

STARC was applied using as input the DC scores and the corresponding protein structure.

Initial Cluster Analysis

We describe Initial Cluster Analysis (ICA) in detail elsewhere [15], but summarize the

approach briefly here. ICA seeks to determine whether a set of distinguished elements within a
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linear array is clustered significantly near the start of the array and, if so, what is the most sig-

nificant initial cluster of these elements. Abstractly, given a linear array of length L containing

D ’1’s (the distinguished elements) and L-D ’0’s, it considers a generative model in which the

’1’s occur with particular and differing probabilities before and after a cut point X in the array.

For any particular X it is relatively easy to calculate a likelihood LðXÞ of the array of data, and

one may optimize LðXÞ by simply evaluating it for all possible X. However, the values of LðXÞ
for close values of X are highly correlated, dependent upon a calculable "density of indepen-

dent trials" ρ(X). Because ρ(X) is not constant but rather grows approximately as the reciprocal

of X’s distance from 0 or L, simply optimizing LðXÞ inherently favors, a priori, small or large

values of X. Therefore, if one’s application suggests no such bias, choosing to optimize

LðXÞ=rðXÞ rather than LðXÞ for a given array of ’0’s and ’1’s may be a better strategy. This is

referred to in [15] as using "flattened priors", and is the approach we take here. ICA estimates

the effective total number of independent trials implicit in either optimization, which it uses in

calculating a p-value for the optimal X from its corresponding Pa. This provides a mathemati-

cally principled way to define an optimal initial cluster of distinguished elements, balancing

the claims of very short and dense clusters with those of longer but sparser clusters.

We have extended ICA here by taking account not only of distinguished elements within

an array, but of a ranking assigned to these elements as well. Thus we seek here initial clusters

not only with a high density of distinguished elements, but clusters in which these elements

have relatively better rankings. Our s-score may be understood as providing a measure of the

congruence between two orderings, as well as, simultaneously, an assessment of statistical

significance.

Wilcoxon signed rank test

We evaluated the performance of alternative DCA methods using the Wilcoxon signed-rank

test [22], first dividing each S by the total number of residue pairs L. For CCMpred, EV-cou-

plings and GaussDCA, these normalized s-scores then approximately follow a Gaussian

distribution, as indicated by the Shapiro-Wilk test statistic [47] (p = 0.52, 0.60, and 0.09,

respectively). For PSICOV the Shapiro-Wilk test score corresponded to p = 0.04, which is

slightly below the acceptance threshold of p> 0.05.

The STARC algorithm

The STARC program uses a modified version of the Initial Cluster Analysis (ICA) algorithm

[15] to find the optimal score S, as described above. Alternatively, as an option, it will calculate

SF given a specified F. STARC converts PSICOV and GaussDCA formatted DC score files into

EVcouplings format automatically; this requires as input the query sequence in fasta2aln for-

mat. We modified the CCMpred source code and recompiled the program to generate PSI-

COV-formatted DC score files. The source code for STARC is freely available at: http://

evaldca.igs.umaryland.edu/.

BPPS analysis

BPPS [39, 48] partitions the sequences in a superfamily MSA into families and subfamilies. It

uses Markov chain Monte Carlo (MCMC) sampling to stochastically move sequences between

subgroups, while modifying each subgroup’s characteristic pattern. BPPS also identifies and

removes unrelated or aberrant sequences. We applied BPPS here to generate both family and

subfamily MSAs for sequences of interest. Here we also use STARC to assess the correspon-

dence between pairs of BPPS-defined pattern residues and high DC-scoring pairs.
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Supporting information

S1 Table. Protein structural coordinates used for the Ran GTPase analysis in Fig 4.

(PDF)

S1 Fig. Distinguished residue pairs within an array of length L = 12,090, ordered by DC

scores for Ran GTPase (pdb: 1k5g), as computed by CCMpred using the R4 MSA (see

Table 4). Distinguished pairs are represented by black and red blocks, the latter indicating

pairs common to panels A and B; the remaining pairs are represented by dots. The region up

to each cut point X is highlighted in yellow. A. Distinguished elements are those pairs sepa-

rated by� 5 Å in chain A of 1k5g. ICA results: S = 230; D = 346; X = 291; d = 186; 54% of the

distinguished pairs (d/D) occur in the initial 2.4% of the array (X /L). B. Distinguished ele-

ments are pairs of the 25 residues found by the BPPS program to be most distinctive of R4

GTPases. ICA results: S = 6.2; D = 281; X = 772; d = 46; 16% of the distinguished pairs occur in

the initial 6.4% of the array. Note that because no ranking is available for the distinguished

pairs in panel B we calculate S for both panels without the ball-in-urn component Pb and using

only Pa [14].

(PDF)

S2 Fig. Distinguished residue pairs within an array of length L = 8,534, ordered by DC

scores for Gna1 (pdb: 4ag9), as computed by CCMpred using the MSA for the correspond-

ing analysis in Table 2. Distinguished pairs are represented by black and red blocks, the latter

indicating pairs common to panels A and B; the remaining pairs are represented by dots. The

region up to each cut point X is highlighted in yellow. A. Distinguished elements are those

pairs in 4ag9 separated by� 5 Å within chain A or between chains A and B (whichever is

shorter). ICA results: S = 91; D = 260; X = 663; d = 144; 55% of the distinguished pairs (d/D)

occur in the initial 7.8% of the array (X /L). B. Distinguished elements are pairs of the 25 resi-

dues found by the BPPS program to be most distinctive of the Gna1 family. ICA results:

S = 27.9; D = 263; X = 1,238; d = 114; 43% of the distinguished pairs occur in the initial 14.5%

of the array. Note that because no ranking is available for the distinguished pairs in panel B we

calculate S for both panels without the ball-in-urn component Pb and using only Pa [14].

(PDF)

S1 Dataset. Excel file containing the S-score data for the analyses in Table 2.

(XLSX)

S2 Dataset. Excel file containing the SF-score data for the analyses in Table 2.

(XLSX)
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