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Abstract 

Background: Although kidney transplantation improves patient survival and quality of life, long‑term results are 
hampered by both immune‑ and non‑immune‑mediated complications. Current biomarkers of post‑transplant com‑
plications, such as allograft rejection, chronic renal allograft dysfunction, and cutaneous squamous cell carcinoma, 
have a suboptimal predictive value. DNA methylation is an epigenetic modification that directly affects gene expres‑
sion and plays an important role in processes such as ischemia/reperfusion injury, fibrosis, and alloreactive immune 
response. Novel techniques can quickly assess the DNA methylation status of multiple loci in different cell types, 
allowing a deep and interesting study of cells’ activity and function. Therefore, DNA methylation has the potential to 
become an important biomarker for prediction and monitoring in kidney transplantation.

Purpose of the study: The aim of this study was to evaluate the role of DNA methylation as a potential biomarker of 
graft survival and complications development in kidney transplantation.

Material and Methods: A systematic review of several databases has been conducted. The Newcastle–Ottawa scale 
and the Jadad scale have been used to assess the risk of bias for observational and randomized studies, respectively.

Results: Twenty articles reporting on DNA methylation as a biomarker for kidney transplantation were included, all 
using DNA methylation for prediction and monitoring. DNA methylation pattern alterations in cells isolated from dif‑
ferent tissues, such as kidney biopsies, urine, and blood, have been associated with ischemia–reperfusion injury and 
chronic renal allograft dysfunction. These alterations occurred in different and specific loci. DNA methylation status 
has also proved to be important for immune response modulation, having a crucial role in regulatory T cell definition 
and activity. Research also focused on a better understanding of the role of this epigenetic modification assessment 
for regulatory T cells isolation and expansion for future tolerance induction‑oriented therapies.

Conclusions: Studies included in this review are heterogeneous in study design, biological samples, and outcome. 
More coordinated investigations are needed to affirm DNA methylation as a clinically relevant biomarker important 
for prevention, monitoring, and intervention.
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Background
Kidney transplantation is the treatment of choice for 
patients undergoing end-stage renal failure [1] and 
improves survival and quality of life. A clear amelioration 
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in short-term outcomes has been observed in the last 
decades, while a proportional improvement in long-
term results is still missing because of the immune- and 
non-immune-mediated complications that affect these 
outcomes [2–8]. Efforts have been made to improve pre-
ventive measures and optimize treatment. Along with 
this, the identification of patients with a higher risk of 
post-transplant complications is of great importance. 
Current biomarkers of post-transplant complications 
and survival include epitope mismatch [9] and anti-HLA 
antibodies [10]. Their predictive value is suboptimal, rais-
ing the need to explore novel approaches for the manage-
ment of transplant patients [11–13].

Epigenetic modifications get a lot of interest as a 
novel biomarker in transplantation. These modifica-
tions are reversible changes to the genome that occur 
without any alteration in the DNA sequence. The three 
main epigenetic modifications are histone modification, 
DNA methylation, and nucleosome positioning [14]. 
DNA methylation consists in the formation of a cova-
lent bond between a methyl group and a cytosine almost 
exclusively in the context of cytosine-phosphate-guanine 
(CpG) dinucleotides, often clustered in regions called 
CpG islands [15] that are associated with about 60% of 
human genes promoters [16]. DNA methylation is gen-
erally associated with gene silencing, primarily affect-
ing transcription [15]. Epigenetic mechanisms play an 
important role in multiple biological events involved in 
post-transplant complications development, such as the 
alloreactive immune response [17–21], ischemia/reper-
fusion injury (IRI) [22–24], and kidney graft fibrosis [7, 
25–30]. DNA methylation assessment of specific loci is 
also crucial for the evaluation of biological or epigenetic 
age (DNAmAge) using epigenetic clocks [31–33].

Considering the central role that big data analysis is 
having in every research field and the new methylation-
wide assessment technologies that have been developed, 
DNA methylation has the potential to become an impor-
tant biomarker for prediction and monitoring in kidney 
transplantation, and its use could become pivotal for the 
development of new therapeutic strategies [7, 34, 35]. 
Therefore, we performed a systematic review to evaluate 
the status of research concerning the role of DNA meth-
ylation as a biomarker in kidney transplantation.

Materials and methods
This systematic review was performed according to the 
guidelines for observational studies as described in the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) statement [36, 37]. The data 
extraction and results exposition of this review have been 
organized into two major topics:  I ischemia–reperfu-
sion injury, fibrosis, and long-term complications-related 

studies and II immune response modulation-related 
studies.

Search strategy
With the help of a clinical librarian, we searched 
EMBASE, Medline ALL Ovid, Web of Science, Cochrane 
CENTRAL Register of Trials, and Google Scholar data-
bases. The search terms for the other databases have been 
created starting from the EMBASE database search. The 
search included the following terms: DNA methylation, 
hypermethylation, hypomethylation, demethylation com-
bined with kidney, renal transplantation, graft, allograft, 
allotransplantation, fibrosis, recipient, failure, reperfu-
sion, and insufficiency. The databases have been searched 
from inception to September 30, 2021. For all the articles 
reaching the full-text-reading phase of the selection, ref-
erences have been manually checked. Detailed search 
strategies are included in Additional file 1: Table S1.

Study selection
The studies were initially reviewed, screening title and 
abstract, by two independent reviewers (IC and TAG). 
The following inclusion criteria were applied: original 
articles (not reviews, editorials, or conference abstracts); 
English language; working on human samples; study 
focused on DNA methylation in kidney donors or  kid-
ney transplant recipients; at least one DNA methylation 
assessment performed. No restrictions have been used 
for study designs, population characteristics, and the 
number of included subjects. Important exclusion cri-
teria have been used: not focusing on transplantation; 
focusing on general transplantation or combined trans-
plantation with no possibility to extrapolate kidney-spe-
cific data; working only with samples of animal origin; 
not assessing DNA methylation. Disagreements were 
discussed between both reviewers and, when necessary, 
with a third party (RCM).

Risk of bias assessment
For non-randomized trials, the Newcastle–Ottawa scale 
[38, 39] has been used to assess the risk of bias. For clini-
cal trials, the expanded six-point version of the Jadad 
scale [40] has been used to assess appropriate randomi-
zation, blinding, and management of withdrawals and 
dropouts.

Risk of bias has been assessed by two independent 
reviewers (IC and TAG), and disagreements were dis-
cussed between them and, when necessary, with a third 
party (RCM).

Data collection and extraction
A data extraction sheet has been developed, and the fol-
lowing features have been extracted from each study: 
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research group, year of publication, country, study 
design, study’s aim, study population, results, sample tis-
sue, extent of the methylation assessment, bisulfite con-
version, methylation assessment method, methylation 
outcome, statistical tests, and statistical thresholds.

Results
A total number of 4455 potentially relevant studies 
were identified. Figure 1 presents the PRISMA flow dia-
gram. Twenty studies met the inclusion criteria and 
were included in the qualitative synthesis. The char-
acteristics of the included studies are summarized in 
two tables (Tables 1, 2) divided into the two major top-
ics: I ischemia–reperfusion injury, fibrosis, and long-
term complications-related studies; II immune response 

modulation-related studies. The methodology, the sta-
tistical analysis, and the identified candidate genes of 
the included studies are summarized in Table 3. Figure 2 
represents an overview of the summarization strategy 
and the main findings of this systematic review. The 
included studies were conducted between 2006 and 2021 
in ten different countries. Study sample size ranged from 
9 to 188, with a mean size of 72.3 (in two studies, only 
the number of biopsies was provided). Fourteen studies 
worked on blood samples, five studies used kidney biop-
sies, and urine has been used by a single study. For what 
concerns DNA methylation analysis design, six stud-
ies performed only genome-wide analysis, 11 studies 
performed only candidate genes analysis, among which 
eight studies investigated the methylation status of the 

Fig. 1 Flow diagram of the systematic literature search
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Treg-specific demethylated region (TSDR), while three 
studies performed epigenome-wide analysis as a first step 
and then investigated the methylation status of candidate 
genes.

I. Ischemia–reperfusion injury, fibrosis, and long-term 
complications
A total of six studies focused on IRI, fibrosis, and long-
term complications; one study analyzed urine samples, 
four studies analyzed kidney biopsies, and one study ana-
lyzed blood samples. Detailed information on the individ-
ual studies is displayed in Tables 1 and 3. Briefly, aberrant 
hypermethylation of calcitonin-related polypeptide alpha 
(CALCA) gene in urine samples was significantly more 
likely to occur in kidney transplant recipients compared 
to healthy individuals [41]. Four studies investigated 
potential associations between the methylation state of 
different loci in kidney transplant biopsies and various 
clinical conditions that may occur at different time points 
after transplantation. In the first study, DNA methylation 
pattern alterations have been associated with early clini-
cal conditions such as delayed graft function (DGF) [43]. 
The other three studies investigated DNA methylation in 
relation to ischemia, aging (evaluating DNAmAge), and 
fibrosis development to show relationships between these 
phenomena and the development of long-term compli-
cations [42, 44, 45]. The final more recent study investi-
gated DNAmAge in peripheral blood mononuclear cells 
(PBMCs) samples and showed associations with post-
transplant infection occurrence [46].

II. Immune response modulation
Fourteen studies reported on DNA methylation 
involved in immune-response modulation after kidney 
transplantation; one analyzed kidney biopsies, the other 
13 focused on blood samples. Detailed information on 
the individual studies is displayed in Tables  2 and 3. 
Various T cell populations are involved in the allospe-
cific immune response. Cytotoxic  CD8+ T cells account 
for most of the adaptive immune response against the 
graft. Antigen-naïve  CD8+ T cells are characterized 
by high methylation of effector genes, which are then 
demethylated after antigen recognition triggering effec-
tor genes expression and, consequently, the immune 
response activation. Among  CD4+ T cells, regulatory T 
(Treg) cells are a subset of cells constitutively expressing 
high levels of the transcription factor FOXP3 along with 
the IL-2 receptor α chain CD25. These cells are crucial 
in the process of acceptance/tolerance of an allograft, 
considering their ability to suppress immune activation 
in an antigen-specific manner [62]. It is possible to iden-
tify stable Treg cells by measuring the methylation sta-
tus of the TSDR as a demethylated TSDR characterizes 

Treg cells, while this region is methylated in other cells. 
Among the included studies, eight studies investigated 
DNA methylation patterns in Treg cells associated with 
different clinical conditions related to kidney transplan-
tation [51], such as subclinical rejection [47], tolerance 
[49, 60], stable graft function [52, 53], acute rejection 
[58, 59], and chronic rejection [60]. Three studies inves-
tigated the feasibility of Treg cells ex vivo expansion for 
therapeutic purposes in patients undergoing immuno-
suppressive treatment [48, 54, 57]. The final three stud-
ies investigated DNA methylation patterns associated 
with the development of cutaneous squamous-cell car-
cinoma (cSCC) [50, 55, 56], a long-term complications 
of kidney transplantation that is related to the immu-
nosuppressive regime that kidney transplant recipients 
must follow.

Quality of evidence
According to the Newcastle–Ottawa scale, the quality of 
all studies was considered moderate to good. The New-
castle–Ottawa scale assessment can be found in Addi-
tional files 2–4: Tables S2–S4. The overall Jadad score is 
good for randomized studies (Additional file 5: Table S5).

Purpose of DNA methylation analysis in the included 
studies
In Table  4, the included studies have been categorized 
into prediction, monitoring, and decision-making/inter-
vention to assess for which purpose DNA methylation 
generally is studied.

Discussion
This systematic review on the application and value of 
DNA methylation as a biomarker in kidney transplanta-
tion shows heterogeneous and fragmented results. DNA 
methylation is a more accessible biomarker due to its 
low sensitivity to tissue handling compared with RNA or 
proteins and its analysis can even be performed on DNA 
isolated from small amounts of fixed tissue [63]. This bio-
marker could have an important role in different time 
points of the transplantation procedure and the subse-
quent short- and long-term follow-up. DNA methylation 
already proved, as other epigenetic mechanisms did, its 
role in the multiple biological events involved in post-
transplant complications development [64, 65], with both 
the recipient and the donor organ continuously undergo-
ing dynamic epigenetic modifications.

DNA methylation pattern alterations have already been 
associated in the past with IRI occurrence [23, 66–68]. 
The included studies showed how these alterations could 
be found in the urine of kidney transplant recipients [41] 
and could be related to perfusion state and DGF occur-
rence [43]. In the future, methylation assessment in 
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different biological samples (kidney biopsy, urine, and 
blood) could be considered as an important early bio-
marker of acute kidney injury (AKI) during kidney trans-
plantation, but further research is needed for a better 
understanding of its role in prediction, monitoring, and 
targeted therapy. Following the acute insult, fibrosis is the 
final common pathway of irreversible kidney transplant 
dysfunction. Its complex pathogenesis is triggered by an 
injury-induced fibroblast activation and matrix deposi-
tion that progresses even after the injury has disappeared. 
Evidence suggests that DNA methylation could in part be 
responsible for this process, acting through pro-fibrotic 
genes expression [7, 28, 69]. The included studies showed 
how DNA methylation pattern changes induced by oxi-
dative stress and inflammatory setting could lead to this 

long-lasting fibroblast activation even in the context of 
kidney transplantation [42, 44] and how age-associated 
DNA methylation alterations at the time of the transplan-
tation procedure could predict future injury [45]. Consid-
ering this, DNA methylation is a promising biomarker for 
the prediction of the development of chronic renal allo-
graft dysfunction (CRAD) and could be used in the future 
for organ evaluation, prevention, and early intervention. 
As a consequence of this, preventing acute-injury-related 
DNA methylation alterations with modern preservation 
techniques could improve outcomes. The effect of nor-
mothermic machine perfusion on these biomarkers could 
be assessed and compared to that of static cold storage 
since this technique already proved to be able to recover 
previously discarded organs [70]. Moreover, these 

Fig. 2 Overview of the summarization strategy. Abbreviations: cSCC, Cutaneous squamous cell carcinoma; DGF, Delayed graft function; DNAm, 
DNA methylation; KA, Kidney allograft; KTR, Kidney transplant recipient; IRI, Ischemia–reperfusion injury; TSDR, Treg‑specific demethylated region
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biomarkers could be used to optimize machine perfusion, 
acting on fluid compositions or operative parameters. 
Direct intervention on the markers through the perfusion 
fluid itself could also be an interesting opportunity in the 
future. The peculiar viable and isolated organ status typi-
cal of normothermic machine perfusion could allow the 
administration of demethylating agents and other addi-
tives while avoiding systemic side effects in the recipient. 
For a better understanding of the pathological processes 
leading to graft failure, and for an important role in mon-
itoring and prediction of long-term complications, we 
recommend further investigations confirming the already 
established and promising associations, but also taking 
advantage of new high-resolution epigenome-wide DNA 
methylation assessment technologies to find new rel-
evant loci and new associated patterns. The utilization of 
modern AI-based algorithms, for example, could help in 
integrating the massive amount of data provided by these 
new technologies to make accurate predictions, as will be 
described later.

DNA methylation could also have an important effect 
on long-term kidney function and development of fibro-
sis taking part in the recipient’s immune system modu-
lation. DNA methylation is involved in the regulation 
of activation pathways [71], in the determination of cell 
plasticity [2], as well as in the control of the transcrip-
tional profiles and functions of memory T cells [72] 
and NK cells [73–75] and therefore could influence the 
strength of the allospecific immune response. Various 
T cell populations are involved in this response and the 
included studies showed how DNA methylation pat-
tern alterations occurred after kidney transplantation in 
PBMCs [58] and different T cell types [51], highlighting 
a possible involvement of DNA methylation in these pro-
cesses even in the context of kidney transplantation. A 
better understanding of these dynamics could be useful 
in the future for the evaluation of the recipient response 
against the graft. Among  CD4+ T cells, Treg cells are a 
 CD4+  CD25+ T cell subset able to regulate inflammatory 
and immune responses [76, 77]. This subset was charac-
terized by stable expression of FOXP3, a transcription 
factor that is essential for Treg cells function [78–80]. 
Stable expression of FOXP3 is obtained thanks to DNA 
demethylation of FOXP3 TSDR [81–84]. Treg cells can 
suppress the allograft-specific response using differ-
ent mechanisms, ranging from suppressive cytokines to 
metabolite consumption [85]. Some of the included stud-
ies focused on the research of specific DNA methylation 
patterns associated with tolerance or other transplant-
related conditions in order to understand them and to 
be able to predict long-term complications [47, 49, 52, 
60]. These studies show how DNA methylation assess-
ment might be crucial for Treg cell characterization and 

highlight the possible role of DNA methylation as a bio-
marker for post-transplant outcome prediction. A deeper 
understanding of the associations of specific DNA meth-
ylation patterns with post-transplant complications could 
also lead to the development of therapies based on epige-
netic modifying agents.

Treg cells are central in the under-development toler-
ance-inducing cellular therapy. This therapy consists of 
the injection or implantation of living cells into a patient, 
with the potential to overcome the limitations of tradi-
tional drug treatment and to gain a deeper understanding 
of immune tolerance mechanisms [86]. Treg cell char-
acterization through DNA methylation assessment is a 
crucial phase of these procedures, and TSDR methylation 
pattern has been studied in different kinds of patients to 
assess the suitability of these therapies. Kidney transplant 
recipients must undergo immunosuppression, a treat-
ment that could impair Treg cell function as well as other 
immune cells function. For these reasons, the suitability 
of Treg cell-based therapy in transplant recipients has 
been studied by many researchers, focusing on the effect 
of different induction therapies [48] and different main-
tenance regimes [54, 57]. In one of the included stud-
ies, long-term treatment with belatacept showed better 
results in terms of the percentage of FOXP3 demethyl-
ated cellular populations compared to other maintenance 
therapies [54]. However, the same research group proved 
later that these expanded cellular populations may 
require the use of epigenetic modifying agents to stabi-
lize the TSDR demethylated status [57]. Further investi-
gations are needed to understand the potential effect of 
the most commonly used medications, such as tacroli-
mus, prednisone, and basiliximab. Direct intervention on 
TSDR methylation status already proved to stabilize Treg 
cells for adoptive cell therapy [87, 88], but further stud-
ies are needed to clarify this aspect in the context of kid-
ney transplantation and to improve current isolation and 
expansion techniques. Tolerance induction through Treg 
cells administration appears to be one of the most prom-
ising research topics trying to solve the organ deficiency 
problem and TSDR demethylation status assessment 
could be crucial for the characterization, ex vivo expan-
sion, and stabilization of allospecific autologous Treg cell 
populations.

Table 4 Studies categorization based on DNA methylation main 
use

Category References

Prediction [44–47, 55, 56, 58]

Monitoring [41–44, 47–60]

Decision making/intervention None
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For the property of influencing and directing the 
immune response, DNA methylation appears also to be 
involved in the development of other complications than 
graft failure. Several studies focused on DNA methyla-
tion’s predictive value for complications such as cSCC 
[50, 55, 56] and infections [46], underlining the possible 
role of DNA methylation as a biomarker for other com-
plications development and prediction. Although prom-
ising candidates with prognostic values significantly 
associated with survival and complications occurrence 
have already been identified, none of them is ready to be 
transferred into clinical practice because of the high het-
erogeneity of the studies [89].

Research in the field of kidney transplantation should 
be more focused on the predictive feature of DNA meth-
ylation modifications. Identifying patients at high risk 
for rejection or long-term complications through DNA 
methylation assessment would be a suited tool to guide 
clinical decision-making. As shown in Table  4, most of 
the research groups focused on prediction and monitor-
ing, while currently, not a single study used DNA meth-
ylation for intervention or decision making. With the 
progress of tolerance induction therapy research, this 
could change, giving DNA methylation a central role in 
direct intervention and therapeutic strategies.

The growing interest for less invasive procedures to 
detect organ damage, the so-called liquid biopsies, raised 
the interest of the research community for DNA meth-
ylation analysis to quantify cell-free DNA (cfDNA). 
DNA methylation assessment is crucial for cfDNA ori-
gin identification [90]. After solid organ transplantation, 
donor-derived cfDNA (ddcfDNA) is released into the 
circulation, and the amount of ddcfDNA is representa-
tive of graft integrity. Dd-cfDNA can be distinguished 
from cfDNA originating from the recipient thanks to 
the genomic differences between donor and recipi-
ent typical of organ transplantation [91]. Nevertheless, 
tissue-specific DNA methylation patterns of cfDNA 
also provide the opportunity to identify the tissue ori-
gin of the detected genetic material [92]. An increase 
in ddcfDNA in blood plasma, either detected based on 
genomic differences or tissue-specific methylation pat-
terns [93], has been reported to identify acute rejection 
[94, 95]. Moreover, methylated cfDNA in urine is one of 
the markers included in the Kidney Injury Test (KIT) to 
diagnose kidney injury as well as kidney allograft rejec-
tion [96, 97].

The problem of the heterogeneity of the studies con-
cerning DNA methylation as a biomarker for kidney 
transplantation should be addressed. Designs of the 
included studies were mainly retrospective and covered 
mostly empirical evidence from case series. In conse-
quence, the patient populations were also heterogeneous 

with a large variation in assessed epigenetic modifica-
tions, outcomes, and study designs. For what concerns 
phenotypes, more standardized definitions should be 
adopted. Allograft rejection, CRAD, IRI, kidney fibro-
sis, and DGF, for instance, are all phenotypes that can be 
defined with slight differences that can prevent compari-
son in a statistically valid meta-analysis. Despite common 
phenotype definitions, studies can also differ in other 
characteristics of the analyzed populations. For example, 
different duration of end-stage renal disease, time points 
of DNA methylation analysis, and purposes for DNA 
methylation analysis, albeit of potential scientific inter-
est, are hampering the comparability of different studies 
in this early research phase. Analog considerations can 
be made for primary endpoints, with little agreement 
between study groups and the adoption of outcomes that 
might drastically complicate logistics, such as graft sur-
vival or recipient survival [98]. Moreover, the included 
studies adopted different DNA methylation analysis strat-
egies, for example, different experimental approaches 
such as gene-specific or genome-wide analyses (summa-
rized in Table  3) and even within similar experimental 
approaches, different technologies for DNA methylation 
analysis have been adopted. Furthermore, almost none 
of the studies report validation of their findings with 
another technique like pyrosequencing or biological vali-
dation as in variation in mRNA or protein expression.

Overall, the high number of confounders and the vari-
ety of arrays and protocols that have been used to assess 
common DNA methylation patterns prevent these stud-
ies from producing common statistically valid knowl-
edge. An international clear consensus among the active 
research groups in this field should be discussed to des-
ignate important endpoints and produce more compa-
rable results that could stimulate further research and 
generate new knowledge through the use of scientifically 
valid meta-analyses. Future studies should try to adopt 
prospective designs, with DNA methylation assessments 
performed before kidney transplantation and at specific 
time points after the procedure. Specific endpoints, DNA 
methylation analysis, and biological validation protocols 
should be adopted by different groups. This will not only 
enhance the comparability of these studies but will also 
lead to more cost-effective research. Here in this review, 
we provide insight on some of the previously discussed 
heterogeneities and on other potential implementations 
to help create a discussion that one day, hopefully, might 
lead to the development of DNA-methylation-based clin-
ical tools to support decision-making in the kidney trans-
plantation field.

In the last ten years, technology in the field of DNA 
methylation assessment quickly advanced, supported 
by the exponential growth of computational techniques 
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for big data analysis. DNA methylation profiling tech-
niques can be grouped based on the properties that are 
used to discriminate between methylated and unmethyl-
ated sites, namely enzyme digestion, affinity enrichment, 
and bisulfite conversion [99]. Due to their low resolution 
and to the quick development of bisulfite-conversion-
based assays, enzyme-based (i.e., comprehensive high-
throughput arrays for relative methylation, CHARM 
[100]) and affinity-based assays (i.e., methylated DNA 
immunoprecipitation, MeDIP [101]) are scarcely adopted 
in recent times and therefore will not be discussed in this 
manuscript [99]. In bisulfite-conversion-based meth-
ods, methylation-dependent changes are generated as 
bisulfite deaminates unmethylated cytosines into uracils, 
while methylated cytosines remain unchanged. These 
techniques, including methylation arrays, whole-genome 
bisulfite sequencing (WGBS), and reduced-represen-
tation bisulfite sequencing (RRBS), are characterized 
by single-base resolution and are among the most com-
monly used assays to study genome-wide methylation. 
Among methylation arrays, Illumina’s Infinium Human-
Methylation450 BeadChip® (450  K array) and the 
updated version Illumina’s Methylation EPIC BeadChip® 
(EPIC array) are the most commonly used technologies 
to investigate the whole methylome [102]. These assays 
combine bisulfite conversion with amplification and 
hybridization of the converted DNA to arrays with pre-
defined probes to assess the methylation status of around 
450,000 and 850,000 methylation sites, respectively [103]. 
These technologies are characterized by high cost-effec-
tiveness and by the need for low amounts of input DNA. 
However, their coverage is dependent on the array design, 
i.e., the selection of the predefined probes [99]. In WGBS, 
DNA is fragmented through sonication, repaired, added 
of an adenine base on the 3’ end, and successively ligated 
to methylated adapters. After size selection, bisulfite 
conversion is applied and the resulting genetic material 
is amplified and sequenced [104]. The great advantage 
of this technique is its ability to evaluate the methylation 
state of almost every CpG site in the genome. However, 
WGBS is expensive and impaired by DNA degradation 
after bisulfite treatment [99]. RRBS integrates restric-
tion enzyme digestion, bisulfite conversion, and next-
generation sequencing to analyze only specific fragments 
covering more than 85% of CpG islands while decreas-
ing cost [105]. Nevertheless, RRBS focuses on promoters 
and areas close to the restriction site with low coverage 
of intragenic and distal regulatory elements [99]. Het-
erogeneous experimental approaches have been applied 
in the selected studies, introducing multiple confounders 
that impair comparability (summarized in Table  3). For 
instance, nine studies included in this review investigated 
DNA methylation on a whole-epigenome-scale all using 

bisulfite-conversion-based techniques, but the efficiency 
of bisulfite conversion was mostly not examined, while 
it represents a potential confounder. Methylation array 
was the most represented technique, accounting for eight 
out of nine studies, while only one study adopted WGBS. 
Considering the low cost and the need to increase the 
amount of available comparable data, we believe that 
the use of methylation arrays might be ideal in this early 
phase of research. Among methylation arrays, the 450 K 
array was the most common assay adopted in the stud-
ies included in this review while its updated version, the 
EPIC array, is being adopted by more and more research 
groups in recent times. The EPIC array contains over 
850,000 probes, covering more than 90% of the probes of 
the 450  K array, but also covering sites in distal regula-
tory regions such as enhancer regions, overcoming one of 
the 450 K array’s main limitations [106]. Considering the 
better performances, the low price, and the compatibil-
ity with the 450 K array data shown by the very high per-
sample correlation between the results of the two assays 
performed over the same samples [107], we recommend 
the use of the EPIC array for epigenome-wide DNA 
methylation assessment to take advantage of this solid 
technology as a research community, to produce com-
parable results, and to accelerate the process that might 
bring DNA methylation assessment into clinical practice.

After DNA methylation analysis, appropriate data anal-
ysis pipelines should be adopted to optimize the quality 
of the collected data. For instance, Wang et al. proposed 
an analysis framework for data collected with the 450 K 
arrays that, with the appropriate adaptations, is valid 
for the updated EPIC array [108]. Moreover, epigenetic 
data seems to be optimally suitable for machine learning, 
thanks to the stability over time of epigenetic modifica-
tions [109] and to the increasing availability of large-scale 
repositories [110–112]. As reviewed by Rauschert et al., 
different machine learning methods have been applied to 
epigenomic datasets for the development of diagnostic 
systems, frequently using supervised learning methods 
[113]. Even though in the above-mentioned review the 
most adopted algorithm was random forest, we believe 
that deep learning algorithms [114] might have a big 
impact in the discovery of clinically useful epigenetic 
biomarkers for kidney transplantation thanks to the cur-
rently available high computational power and their capa-
bility to process highly dimensional datasets and identify 
complex patterns. However, we believe that a coordi-
nated effort from the research community to make large 
epigenetic datasets publicly available and to elaborate 
standardized preprocessing pipelines is needed. These 
pipelines should include standardized normalization and 
imputation methods to increase data compatibility. These 
efforts would be crucial for a successful development and 
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implementation of deep-learning-based tools in a clinical 
context.

An ideal study setting for the discovery of clinically rel-
evant biomarkers should collect data from a purposely 
designed multicenter international clinical trial. Since 
different DNA methylation patterns of multiple CpG sites 
between people of different ethnicity have been reported 
in the past [115], a high number of participants of differ-
ent ethnicities and from different international centers 
would improve generalizability and tackle overfitting, 
one of the most common issues that accompany modern 
algorithms. In this early phase, analyzing pre-transplant 
kidney biopsies would be convenient considering the less 
invasive approach that minimizes the risk for complica-
tions. DNA methylation analysis should be performed 
on an epigenome-wide scale in order to identify new bio-
markers that might associate with the outcome of inter-
est. We believe that at this stage the research community 

should support the use of methylation arrays, i.e., the 
EPIC array, in order to produce comparable data with an 
accurate, widely available, and relatively cheap technol-
ogy. Bisulfite conversion is a potential confounder, and 
its efficiency should be reported and taken into account 
during data analysis. For what concerns the investigated 
outcome, traditional clinical biomarkers of transplant 
outcome such as graft survival or recipient survival are 
characterized by low rates, requiring problematic sample 
sizes and follow-up periods. For this reason, the use of 
surrogate and composite endpoints, such as the estimated 
glomerular filtration rate (eGFR) slope, might improve 
data quality and speed up the implementation of DNA-
methylation-based biomarkers into clinical practice [98, 
116]. Data preprocessing should be handled in a stand-
ardized way, paying particular attention to quality control 
and within-array normalization. For this purpose, R [117] 
packages such as Minfi [112] and methylumi [118] might 

Fig. 3 Overview of the proposed biomarker discovery pipelines. a Workflow of a proposed DNA methylation analysis pipeline for the discovery of 
differentially methylated regions associated with eGFR slope for the development of a limited panel that could be the base of a potential clinical 
tool. b Workflow of a proposed DNA methylation analysis pipeline for the development of a deep‑learning‑based prediction system. Abbreviations: 
DMR: Differentially methylated regions; eGFR: Estimated glomerular filtration rate; KT: Kidney transplantation
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be the most suitable solution. Since the EPIC array uses 
two different types of probes, correction of probe design 
bias is also of uttermost importance. Multiple strate-
gies have been elaborated to tackle this issue and solu-
tions like Beta Mixture Quantile normalization (BMIQ) 
[119] or Regression on Correlated Probes (RCP) [120] 
should be appropriate. Two different approaches might 
then be followed (summarized in Fig. 3). A first approach 
(Fig. 3a) would be to use the normalized data to identify 
differentially methylated probes/differentially methylated 
regions using R packages like Minfi. Afterward, biological 
interpretation and gene ontology term enrichment analy-
sis might then be performed with the R package missMe-
thyl [121]. The detected differentially methylated regions 
might then be considered as candidate biomarkers for 
the selected outcome, and their association might be 
validated on other datasets. Validating these biomarkers 
might be of great value not only for monitoring and prog-
nosis but also to better understand the processes under-
lying unfavorable post-transplant outcomes to elaborate 
novel therapeutic strategies. Successively, a panel com-
posed of the eventually discovered biomarkers might 
be elaborated, leading to the development of easier and 
cheaper DNA methylation analysis pipelines of candi-
date genes based on bisulfite pyrosequencing that could 
enter the clinical practice. A second approach (Fig.  3b) 
would be based on the use of deep learning to produce 
surrogate endpoint predictions. Unfortunately, the most 
important features for these predictions would not be 
known, making the use of the whole EPIC array neces-
sary even for the eventually developed clinical tool. How-
ever, the characteristics of epigenomic data, with the high 
number of probes and the multiple relationships between 
them, make it ideal to exploit the potential of deep learn-
ing to produce accurate predictions, making a big step 
toward the development of a clinical tool to support deci-
sion making. For that purpose, the use of the novel deep 
learning method MethylNet would be ideal to handle this 
type of data, considering its ability to construct embed-
dings, make predictions, and capture nonlinear interac-
tions [122].

Conclusions
DNA methylation is involved in acute ischemic injury, 
CRAD, and immune response modulation. So far, studies 
included in this review are heterogeneous in study design, 
DNA methylation analysis protocol, biological samples, 
and outcomes. DNA methylation analysis is increas-
ingly being used in the field of kidney transplantation, 
but it is too early to affirm DNA methylation as a clini-
cally relevant biomarker important for prevention, moni-
toring, and intervention. The studies described in this 
review highlighted its potential, especially considering 

the newest epigenome-wide methylation assessment 
technologies and novel discoveries in the field of big data 
analysis. An international agreement on study settings is 
needed to stimulate further research and achieve the first 
milestones in the quest for clinically useful biomarkers.
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