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Abstract

Motivation

Intrinsically disordered regions of proteins play an essential role in the regulation of various

biological processes. Key to their regulatory function is often the binding to globular protein

domains via sequence elements known as molecular recognition features (MoRFs). Devel-

opment of computational tools for the identification of candidate MoRF locations in amino

acid sequences is an important task and an area of growing interest. Given the relative

sparseness of MoRFs in protein sequences, the accuracy of the available MoRF predictors

is often inadequate for practical usage, which leaves a significant need and room for

improvement. In this work, we introduce MoRFCHiBi_Web, which predicts MoRF locations in

protein sequences with higher accuracy compared to current MoRF predictors.

Methods

Three distinct and largely independent property scores are computed with component pre-

dictors and then combined to generate the final MoRF propensity scores. The first score

reflects the likelihood of sequence windows to harbour MoRFs and is based on amino acid

composition and sequence similarity information. It is generated by MoRFCHiBi using small

windows of up to 40 residues in size. The second score identifies long stretches of protein

disorder and is generated by ESpritz with the DisProt option. Lastly, the third score reflects

residue conservation and is assembled from PSSM files generated by PSI-BLAST. These

propensity scores are processed and then hierarchically combined using Bayes rule to gen-

erate the final MoRFCHiBi_Web predictions.

Results

MoRFCHiBi_Web was tested on three datasets. Results show that MoRFCHiBi_Web outper-

forms previously developed predictors by generating less than half the false positive rate for

the same true positive rate at practical threshold values. This level of accuracy paired with
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its relatively high processing speed makes MoRFCHiBi_Web a practical tool for MoRF

prediction.

Availability

http://morf.chibi.ubc.ca:8080/morf/.

Introduction
Intrinsically disordered regions (IDRs) are protein segments that do not adopt a unique 3D
structure under physiological conditions [1–3]. Of particular interest to many researchers are
relatively short segments within IDRs that can undergo disorder-to-order transitions during
binding, which are known as molecular recognition features (MoRFs), a term that had only
been coined a decade ago but had quickly gained recognition [4–8]. Interactions mediated by
MoRFs are important and play key roles in regulatory processes and in signal transduction [3],
as their structural flexibility grants MoRFs the ability to mold into a precise fit for a given bind-
ing surface and, thereby, achieve high interaction specificity, which is often desirable for pro-
tein interactions in signaling pathways [9]. Furthermore, long MoRFs form large interaction
surfaces with their partners, which contain many specificity-enhancing electrostatic interac-
tions [10]. Alternative splicing is another mechanism of regulating protein interactions that
involves MoRFs. Exons that are alternatively spliced in a tissue specific manner are enriched
with MoRFs [11], which allow protein interaction networks to be rewired by altering the avail-
ability of MoRF motifs in protein isoforms, and thus modulate the signal–integrating
pathways.

Given the properties and functional importance of MoRFs, their identification has become
an important computational challenge and several computational methods have been devel-
oped in recent years for that purpose, including the programs ANCHOR [12], MoRFpred [13],
MFSPSSMpred [14], and DISOPRED3 [15]. ANCHOR and MoRFpred are among the most
used MoRF predictors. ANCHOR, a downloadable and fast predictor, makes predictions based
on the estimation of interaction energies between the residues in the protein sequence.
ANCHOR searches for sequences in IDRs that have low stabilization energy on their own but
have the propensity to interact with globular proteins. On the other hand, the web-based pre-
dictor MoRFpred predicts MoRFs using a linear kernel SVM-based approach to combine vari-
ous properties extracted from the protein sequence, including physicochemical properties of
amino acids, conservation of residues, predicted solvent accessibility of residues, and scores
from five IDR predictors. MFSPSSMpred is a web-based predictor employing a SVMmodel
with a radial basis function (RBF) kernel that utilizes sequence properties and conservation.
The currently available prediction engine for MFSPSSMpred was trained on almost all known
MoRF sequences, which limits the data available for external evaluation. However, an unre-
leased version of MFSPSSMpred that was trained and evaluated using the same training and
test datasets used by MoRFPred showed a performance that was approximately equal to that of
MoRFpred in terms of AUC, with a slight underperformance at low false positive rates (FPRs)
[14]. DISOPRED3, just like MFSPSSMpred, is a web-based SVM-RBF model that was trained
on all known MoRF sequences. In addition to sequence property and conservation, DIS-
OPRED3 also relies on disorder predictions generated independently by a neural network
model.
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We recently introduced MoRFCHiBi, a downloadable predictor for identifying MoRF
sequences of length between 5 and 25 residues using windows with up to 40 residues in size
[16]. Conveniently, MoRFCHiBi’s exclusive reliance on local physicochemical properties of
amino acids and the lack of dependence on any external component predictors makes it a good
candidate for incorporating into a more complex predictor for high precision MoRF
identification.

In this work, we introduce MoRFCHiBi_Web, the most accurate computational method to
date for the prediction of MoRFs in protein sequences. MoRFCHiBi_Web utilizes Bayes rule to
combine the output of MoRFCHiBi with the output of an intermediate predictor, MoRFDC, con-
structed from protein disorder and conservation information. The integration of disorder and
conservation information resulted in significant improvements in the prediction quality of
MoRFCHiBi_Web that is reflected in its ability to predict short MoRFs of up to 30 residues in
length with an AUC of 0.87.

Methods
Three distinct and largely independent sources of information are used in MoRFCHiBi_Web

(Fig 1).
A) Sequence similarity and contrast in amino acid composition: In addition to sequence simi-

larities between MoRFs, one can also exploit the fact that the amino acid composition of
MoRFs is different from that of the general protein population [12, 13, 16] and contrasts most
with the MoRFs’ flanking sequences (Flanks). MoRFCHiBi predicts MoRFs using two SVM
models with two different noise tolerant kernels, SVMS and SVMT. SVMS, with a sigmoid ker-
nel, extracts information related to the general contrast in amino acid composition between
MoRFs and their Flanks. On the other hand, SVMT relies on a RBF kernel to identify sequence

Fig 1. MoRFCHiBi_Web structure. The three components used by MoRFCHiBi_Web are MoRFCHiBi predictions, predictions of disorder by ESpritz with the
DisProt option, and conservation predictions using PSI-BLAST. These three components are combined by using Bayes rules at multiple levels.

doi:10.1371/journal.pone.0141603.g001
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similarities between regions in a query sequence and MoRFs of the training set. Thus, in this
work, MoRFCHiBi is used to generate a MoRF propensity score based on these two features.

B) Disorder: The residue composition of MoRFs is more similar to structured domains than
to their surrounding disordered regions [7, 12, 13, 16]. As MoRFCHiBi relies solely on local
sequence information, some of its identified MoRFs do not lie within disordered protein
regions. Therefore, MoRFCHiBi_Web utilizes information on the level of protein disorder over
longer regions encompassing putative MoRFs to improve its prediction accuracy. However,
identifying such long stretches of disorder sequences requires disorder predictors that are
designed for that purpose. Most disorder predictors are designed to identify short disorder seg-
ments and therefore generate low propensity scores at MoRF sites; in other words, their predic-
tion scores dip in the vicinity of MoRFs [17]. Disorder predictors that target long disorder
segments generate disorder propensity scores that do not dip at MoRF locations, so they tend
to identify the entirety of a MoRF-harbouring IDR as disordered (more on this in Methods sec-
tion: Selecting an appropriate disorder predictor).

C) Conservation: As functional elements, MoRF residues are more conserved on average
than IDR residues [18, 19]. Furthermore, we assumed that the conservation is more pro-
nounced for the subset of MoRF residues that are directly involved in binding and are part of
the interaction interfaces (we documented the validation of this assumption in the Methods
section “Binding residues and conservation“). Under this assumption, a MoRF consists of
some highly conserved residues that are interspersed among less conserved residues. However,
MoRFs would be computationally easier to identify if the high conservation scores extend
throughout the entire MoRF sequence. Thus, we generated aMoRF conservation propensity
score,mcs, such that the higher conservation scores of putative MoRF residues are extended to
their neighboring residues (more on this in Methods section “Conservation propensity”).

These three sources of information–sequence similarity/contrast in amino acid composi-
tion, disorder, and conservation–are used in two steps to construct MoRFCHiBi_Web. First, an
intermediate predictor, MoRFDC, utilizes Bayes rule to integrate disorder and conservation
information into MoRF propensity scores. Then, Bayes rule is used again to combine the pro-
pensity scores of MoRFDC and MoRFCHiBi into the final MoRFCHiBi_Web scores.

In general, accumulating probabilities with Bayes rule should not be preceded by data pro-
cessing. However, when Bayes rule is used to combine different propensities that do not reflect
real probabilities, unjustified extreme values close to zero or one tend to dominate the predic-
tion outcome. To reduce this effect, we transformed each set of input propensity scores from
its unknown distribution into a Gaussian distribution with no extreme values (more on this in
the Methods section: “Transforming data to normality”).

Datasets
Disfani et al. [13] collected a large set of structures containing protein-peptide interactions
from the Protein Data Bank (PDB) deposited during or before March 2008 and filtered them
on a number of principles to identify a set of 840 protein sequences. Each of these sequences
includes a single peptide region with 5 to 25 residues presumed to be a MoRF. They divided
these 840 sequences into a training set (TRAINING) with 421 sequences and the first test set
with 419 sequences. Using similar criteria, Disfani et al. also collected a second test set from
more recent PDB entries deposited between January 1st and March 11th, 2012. It consists of 45
sequences. All test sequences have less than 30% identity to those in TRAINING. We decided
to use the same training set (TRAINING) used by Disfani et al. and Malhis and Gsponer [16]
so that the performance of our predictor could be directly compared to theirs. TRAINING has
a total of 245,984 residues including 5,396 MoRF residues. We evaluated our predictor using
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three test sets. The first test set, TEST464, includes all of the 464 sequences of the first and sec-
ond test sets collected by Disfani et al. with a total of 296,362 residues including 5,779 MoRF
residues. Although TEST464 is composed of sequence sets that have previously been used to
test the performance of MoRF predictors [13, 14, 16], it may not be ideal for the task for two
main reasons; Firstly, TEST464 is not free of redundancy as more than a third of its sequences
share 90% or more identity with at least one other sequence in the set. Secondly, the selection
procedure used by Disfani et al. does not verify that the identified peptides are disordered
when alone in solution, i.e. that they are bona fideMoRFs. Therefore, we assembled an addi-
tional test set (EXP53) that includes only sequences that have been experimentally validated
for their disordered properties in isolation. This second test set contains 53 non-redundant
sequences that are sourced from four datasets consisting of MoRFs that have been experimen-
tally validated to be disordered in isolation: First, a set of 8 sequences collected by Disfani et al.
[13]. Second, a set of 40 sequences with short MoRFs of 30 residues or less which was used to
train ANCHOR [12]. Third, a set of 26 sequences with long MoRFs of more than 30 residues
that was also collected by Mészáros et al. [12]. And finally, a set of 21 sequences that was col-
lected by Jones et al. [15]. We combined these four sets, and then removed sequences with
more than 30% identity to those in TRAINING and redundant sequences with more than 30%
identity with each other. We removed one additional sequence (Q51918|PDB:1YMH_E)
because we could not find evidence for a disordered state in separation, its PDB structure
resembles a globular domain, and the chain in the PDB structure, 1YMH_E, matched poorly to
the protein sequence. Overall, EXP53 has 25,186 residues including 2,432 MoRF residues,
which can be divided into 729 from sections with up to 30 residues identified as MoRF residues
based one or more PDB structures and 1,703 from sections longer than 30 residues (please see
“S2 Text”). The third test set, EXP9, consists of 9 sequences with experimentally validated
MoRFs that were collected by Jones et al. These sequences are not homologous to any
sequences used in the training of MFSPSSMpred, MoRFpred and ANCHOR. Hence, these 9
sequences do not overlap with our training data either, since we used the same training set as
MoRFpred. EXP9 contains a total of 2,209 residues, including 12 MoRF regions with 163
MoRF residues. This third test set is used to compare prediction quality with MFSPSSMpred
and DISOPRED3.

Selecting an appropriate disorder predictor
Several computational tools are available to predict the locations of disordered segments in
proteins, including DISOPRED [20], ESpritz [21], IUPred [22, 23], and SPINE-D [24]. We
evaluated the above disorder predictors on their performance in distinguishing MoRFs from
non-MoRF residues by calculating the AUCMoRF (area under the ROCMoRF curve). As men-
tioned before, we require a disorder predictor that identifies MoRF residues as disordered. Our
selection was made based on two measures: a high AUCMoRF value and a high true positive rate
(TPR) at the lower left corner of ROCMoRF, which together represent high confidence predic-
tions. Based on the ROCMoRF curves and AUCMoRF values generated by the above IDP predic-
tors on TRAININIG (Fig 2A and 2B), ESpritz_D (ESpritz with the DisProt option) was
selected because it provides the highest overall AUCMoRF (0.675) and the highest TPR at the
lower left corner of the ROCMoRF curve.

Conservation propensity scores
First, three different conservation propensity scores from the PSI-BLAST [25] position specific
scoring matrix (PSSM) files were calculated and tested for their ability to identify MoRFs: (1)
the information per position (IPP), (2) the relative weight of gapless real matches to
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pseudocounts (RWGRMP), and (3) the weighted observed percentage of the query sequence
residue rounded down (WOP). Alignment databases and PSI-BLAST parameters were selected
to maximize AUCMoRF on TRAINING for each of the three scores independently (i.e. IPP,
RWGRMP, and WOP). We tested the NCBI non-redundant, UniRef90, and UniProtKB/Swiss-
Prot databases with and without filtering out coiled-coil and transmembrane regions using the
program Pfilt [26]. We used three different amino acid substitution matrices (i.e. BLOSUM45,
BLOSUM62, and BLOSUM80) in combination with a number of alignment iterations between

Fig 2. ROCMoRF curves of multiple prediction tools. Vertical axis is the true positive rate (TPR) and horizontal axis is the false positive rate (FPR).
AUCMoRF values are in parentheses next to each label. (A) ROCMoRF curves of seven IDP predictors: DISOPRED (in black), ESpritz with the DisProt option
(ESpritz_D in blue), ESpritz with the X-Ray option (ESpritz_X in yellow), ESpritz with the NMR option (ESpritz_N in green), IUPred with the long option
(IUPred_l in brown), IUPred with the short option (IUPred_s in red), and SPINE-D (in light green). (B) The lower left corner of the ROCMoRF curves for the
seven IDP predictors. (C) ROCMoRF curves of IPP (in blue), WOP (in gray), RWGRMP (in yellow) and its complement (Complement, in red). The Initial
conservation propensity score, ics, (in green) was generated by joining IPP, Complement andWOP using Bayes rule. (D) ROCMoRF curves of ESpritz_D (in
blue), ics (in green) andmcs (in red).mcs values are generated by processing ics.

doi:10.1371/journal.pone.0141603.g002
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2 and 5. Note that when an AUCMoRF was less than 0.5, we used the propensity score’s comple-
ment. Thus, our selection criterion was to maximize the absolute value of |AUCMoRF—0.5|. For
IPP and WOP, we selected UniRef90, BLOSUM62, and 2 alignment iterations, which resulted
in AUCMoRF values of 0.586 and 0.604 respectively. For RWGRMP, the non-filtered Uni-
ProtKB/Swiss-Prot, BLOSUM62, and 2 alignment iterations resulted in an AUCMoRF of 0.422,
which is equivalent to 0.578. These three scores were normalized and combined using Bayes
rule to generate the initial conservation propensity score, ics (Fig 2 (C)). Although these three
conservation values resulted from the alignment to two different databases, they are still highly
related. Nonetheless, the ics generated from integrating these three scores provided a higher
AUCMoRF than any of its subcomponents, and ics performs more consistently over various
query sequences.

Next, theMoRF conservation propensity score,mcs, was determined. Its conception is based
on the assumption that binding residues are the most conserved in MoRFs (see Methods:
“Binding residues and conservation” for validation). The idea is to have a smooth conservation
score such that disordered segments with an average disorder score> disorder1 and more con-
served residues than a certain minimum number (i.e. with ics> Conservation1) are given high
mcs scores (scenario 1). In addition, structured segments with an average disorder scores< dis-
order2 and all their residues’ ics< Conservation2 are given lowmcs scores (scenario 2). The
appropriate window sizes and thresholds for these scenarios were learned by testing many pos-
sible permutations and selecting those that generate the highest weighted AUCMoRF on
TRAINING [16] (Fig 2 (D)). As a result,mcs is calculated in the two scenarios as follows: In
scenario 1, if a residue r is at the center of a disordered window of 7 residues with an average
normalized predicted disorder score> 0.45 and the window includes 3 or more conserved resi-
dues with an ics> 0.45, then this residue’smcs is assigned to be equal to the average ics of the
conserved residues. Furthermore, for every extra conserved residue above 3 in that window, a
square root function is applied twice to further increasemcs. In scenario 2, if a residue r is at
the center of a structured window of 15 residues with an average normalized predicted disorder
score< 0.45 and no residue within the window has an ics> 0.60, then this residue’smcs is
assigned to be equal to its icsmultiplied by the window’s average normalized predicted disorder
score. For all other residues that do not fall under scenario 1 or 2,mcs is equal to ics. (For learn-
ing appropriate window sizes and other thresholds, please see: Learning the MoRF conservation
propensity score thresholds values section in supplement).

Binding residues and conservation
To validate the assumption that residues involved in binding are more conserved than other
residues in MoRFs, we measured the distances between MoRF residues and the surface of the
binding partner using coordinates for the MoRF complex structures of the TEST464 dataset
collected from the Protein Data Bank [27]. When we separated the MoRF residues into those
that are in close proximity to the binding partner and those that are not, we found a significant
difference between their median conservation (ics) values (distance>5Å ics = 0.536 ± 0.005;<
= 5Å ics = 0.568 ± 0.004; p value< 2.2x10-16). The confidence intervals for the medians are cal-
culated as 1:58� IQR=

ffiffiffi

n
p

, where IQR is the interquartile range. The IQR is calculated as the
difference between the first and third quartile of a distribution of n values as defined in the box-
plot.stats function of R [28] (see “S1 Excel” for data and example calculation). The p value is
calculated using the Wilcoxon test in R. The distances measured correspond to those between
the beta-carbon of the MoRF residues and the closest atom on the surface of the binding part-
ner. The same trend was observable across a range of cut-off values (not shown). The lower
conservation scores of the residues above the distance cut-off suggest that residues further
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away from the interaction surface are less conserved. We also measured the change in relative
accessible surface area (rASA) upon binding using NACCESS [29]. The change in rASA of
each residue was calculated by subtracting the rASA in the bound state from the rASA in the
unbound state, where the unbound structure was obtained by removing all the atoms of the
binding partner from the protein complex structure. Once again, we separated the MoRF resi-
dues into two groups for comparison. The group of residues that have a change in rASA greater
than 20 percent upon binding has a higher median ics compared to the remaining residues
(> 20% change in rASA ics = 0.570 ± 0.004;< = 20% change in rASA ics = 0.537 ± 0.005; p
value< 2.2x10-16). This difference in ics values suggests that residues that contribute more to
the interface surface tend to be more conserved.

Transforming data to normality (Normalization)
In this work, we utilized a number of component predictors to predict scores for features asso-
ciated with MoRFs (eg. MoRFCHiBi, ESpritz_D, ics . . . etc). Then, we hierarchically integrated
these predicted scores into a single propensity score that reflects the likelihood of each residue
to be a MoRF residue. Because these component scores are positively correlated with the proba-
bility of MoRFs, we chose to integrate them using Bayes rule. Ideally, Bayes rule should be used
to combine real probabilities. However, the scores we are integrating predict features that
unequally reflect the likelihood of MoRFs. As a result, these component scores do not reflect
real MoRF probabilities and include extreme values, which are close to zero or one. These
extreme values dominate the outcome of Bayes rule and mask the effect of other features.
Using TRAINING, a MapD function was created for each input feature D that transforms its
propensity scores from its unknown distribution UD to approximately fit a Gaussian probabil-
ity density function specified by the normal distribution N(μ = 0.5, σ2 = 0.01) while preserving
their cumulative values. The cumulative value of the feature D score for a residue x, S(UD)x, is
the probability of a residue in TRAINING to have a propensity score less than or equal to
S(UD)x. Thus, the normalized score S(ND)x for S

(UD)
x is:

SðNDÞx ¼ MapDðSðUDÞxÞ

The MapD function for each feature is then used to preprocess the corresponding feature
scores of query sequences. (For the implementation procedure, please see: “Defining MapD
function and normalization section in S1 Text”). For this article, this process of transforming
data to a normal distribution is what we call normalization.

Performance evaluation
We used AUC, the area under the receiver operator characteristics curve (ROC), to evaluate
the performance of MoRFCHiBi_Web and compared it with that of MoRFCHiBi, MoRFpred and
ANCHOR. Even though AUC is a common evaluation metric for prediction performance, it
only provides an overall assessment about the separation of the two classes, which are MoRFs
and non-MoRFs in this case. However, in most scenarios, we are only interested in high confi-
dence predictions at some high threshold values represented by the lower left corner of the
ROC curve. Thus, we also compared false positive rates, FPRs, at different true positive rate val-
ues, TPRs, for each predictor. TPR is defined as TPR = TP / NMoRF where true positive, TP, is
the number of accurately predicted MoRF residues, and NMoRF is the total number of experi-
mentally verified MoRF residues. False positive rate is defined as FPR = FP / Nnon-MoRF where
FP is the number of inaccurately predicted MoRF residues, and Nnon-MoRF is the total number
of non-MoRF residues. On occasion, to maintain consistency with evaluations presented by
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other groups, we also used sensitivity and specificity where sensitivity is equal to TPR and spec-
ificity is 1 –FPR.

Results
When comparing the performance of different machine learning predictors, it is crucial for the
test data, or homologs of test data sequences, not to overlap with data used in the training of
the predictors. In our case, MoRFCHiBi_Web was trained on the same TRAINING set used by
MoRFpred and MoRFCHiBi, so we can make detailed performance comparisons with these pre-
dictors using the two datasets, TEST464 and EXP53, described in the Datasets section in Meth-
ods. Both TEST464 and EXP53 consist of sequences with less than 30% identity to those in
TRAINING. These two test sets are also used for comparison with ANCHOR since it has mini-
mal reliance on its training set. Note that all the predictors above are trained on short MoRFs
with up to 30 residues, but EXP53 also includes MoRFs that are longer than 30 residues. Thus,
when testing the predictors’ performance on EXP53, we also provided a separate performance
evaluation for short and long MoRFs. Table 1 shows the AUC values for each of the four pre-
dictors and reveals that MoRFCHiBi_Web outperforms the other ones.

ROC curves generated for TEST464 (Fig C in S1 Text) and EXP53 (Fig 3) show that MoRF-

CHiBi_Web has a higher specificity (1- FPR) at any level of sensitivity (TPR) when compared to
ANCHOR and MoRFpred. All four predictors performed better on EXP53_Short than on
TEST464. This difference is expected because each sequence in TEST464 is labeled with only
one MoRF, despite the fact that some sequences contain more MoRFs. For example, all MoRFs
in the protein p53 are annotated on a single sequence in EXP53, whereas TEST464 contains
eight almost identical sequences of p53 with only one annotated MoRF in each, which were all
identified based on different PDB structures (Uniprot: P04637, Q2XSC7, Q2XN98, Q9TTA1
. . . etc.). Therefore, evaluations with the more sparsely annotated sequences of TEST464 results
in some true MoRF residues with high prediction scores being erroneously treated as non-
MoRF resides. Hence, we think that the overall performances are more accurately represented
by test results on EXP53 than on TEST464.

When compared to MoRFpred and ANCHOR, MoRFCHiBi_Web produces less than half the
false positive rate for the same true positive rate at practical threshold values (Table 2).

As MFSPSSM and DISOPRED3 were trained on a large training set that includes all the
sequences of TEST464 and many of the sequences in EXP53 (or homologs thereof), we com-
pared the performance of MoRFCHiBi_Web with the results of DISOPRED3, MFSPSSMpred and
MoRFpred that were reported by Jones and Cozzetto [15] based on the EXP9 set. This set con-
tains experimentally validated MoRFs that have no sequence homology with MoRFs used in
the training of all these predictors and thus MoRFCHiBi_Web. For each predictor, only one data

Table 1. AUC Results.

Data MoRFCHiBi_Web MoRFCHiBi MoRFpred ANCHOR

TEST464 0.806 0.748 0.675 0.605

EXP53_All 0.789 0.714 0.620 0.615

EXP53_Short 0.877 0.790 0.673 0.683

EXP53_Long 0.751 0.681 0.598 0.586

AUC values of the four MoRF predictors using the TEST464 and EXP53 data sets. For EXP53_Short, only MoRF sections with up to 30 residues are

considered as MoRFs, while longer MoRF sections were masked out. Similarly, for EXP53_Long, only MoRF sections longer than 30 residues are

considered, while shorter MoRFs were masked out.

doi:10.1371/journal.pone.0141603.t001
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point (i.e. specificity, sensitivity) was provided by Jones and Cozzetto [15]. On this small test
set, MoRFCHiBi_Web also achieves higher sensitivity (TPR) for a given specificity (1-FPR) when
compared to the other predictors (Fig 4).

As MoRF predictors are often used to screen large sets of proteins, we were also interested
in their efficiencies. Prediction times of MoRFCHiBi and ANCHOR, both of which do not
require PSI-BLAST alignments, were tested by scoring the entire TEST464 set on an Intel core
i7, 3.44G desktop. MoRFCHiBi_Web, MoRFpred, DISOPRED3 and MFSPSSMpred were tested
by repeatedly submitting a single sequence from the TEST464 set (Uniprot:Q38087) with 903
residues to their web sites and then selecting the fastest outcome. ANCHOR is the fastest with
a processing speed of 4�106 r/m (residues/minute), MoRFCHiBi came in second with 6�103 r/m,
and MoRFCHiBi_Web is third with 536 r/m. MFSPSSMpred processed 135 r/m, MoRFpred 41 r/
m and DISOPRED3 13 r/m. This comparison might not be entirely fair as the underlying hard-
ware of web-based predictors is unknown. Nevertheless, the comparison of computational
costs of the tools that depend on PSI-BLAST alignment clearly shows that MFSPSSMpred,
MoRFpred and DISOPRED3 are significantly slower than the predictor introduced here.

Discussion
We presented a new web-based approach, MoRFCHiBi_Web, for predicting MoRFs within pro-
tein sequences. We compared its performance to that of MoRFpred, MoRFCHiBi and ANCHOR
using two different test sets: TEST464 with 464 sequences and EXP53 with 53 sequences that
contain only experimentally validated MoRFs. The results demonstrate that MoRFCHiBi_Web

outperforms all three predictors. Furthermore, MoRFCHiBi_Web generates less than half the
false positive rate of other predictors at most cut-off values. Because MFSPSSMpred and DIS-
OPRED3 use a different set of training data, we have to rely on a small set of only 9 sequences,
EXP9, collected by the authors of the latter to compare the performance of these two predictors
with MoRFCHiBi_Web. Although results from such a small dataset might not accurately reflect
the actual performance of these predictors, MoRFCHiBi_Web‘s significantly higher sensitivity at
selected specificities shows a consistent advantage over these predictors.

The high accuracy of MoRFCHiBi_Web can be attributed to the use of three mostly indepen-
dent sources of information: sequence similarity and contrast in amino acid composition,

Fig 3. Full ROC curves (A, C and E) and their lower left corners (B, D and F) for the EXP53 dataset.ROC curves in A and B show the MoRF prediction
performance for all MoRFs. C and D show the prediction performance of short MoRFs with up to 30 residues while longer MoRFs are masked out, and E and
F show the performance of long MoRFs with more than 30 residues while shorter MoRFs are masked out. Vertical axis is the true positive rate (Sensitivity)
and horizontal axis is the false positive rate (1-Specificity). MoRFCHiBi_Web (MCW) is in red, MoRFCHiBi (MC) in orange, MoRFpred (MP) in green, and
ANCHOR (AN) in purple. The dashed line (Naïve) represents a random classifier. AUC values are in parentheses next to each label.

doi:10.1371/journal.pone.0141603.g003

Table 2. FPR as a Function of TPR.

TPR (Sensitivity) FPR (1—Specificity)

MoRFCHiBi_Web MoRFCHiBi MoRFpred ANCHOR

0.2 0.016, 0.015, 0.018 0.030, 0.010, 0.038 0.081, 0.059, 0.099 0.103, 0.070, 0.128

0.3 0.032, 0.022, 0.041 0.064, 0.035, 0.091 0.140, 0.095, 0.168 0.173, 0.118, 0.217

0.4 0.060, 0.034, 0.083 0.124, 0.065, 0.165 0.218, 0.154, 0.252 0.263, 0.175, 0.310

0.5 0.113, 0.061, 0.144 0.201, 0.117, 0.264 0.306, 0.227, 0.353 0.345, 0.249, 0.398

FPR as a function of TPR computed on the EXP53 set (All MoRFs, short MoRFs, long MoRFs) for MoRFCHiBi_Web, compared to MoRFCHiBi, MoRFpred,
and ANCHOR at different TPR cut off values.

doi:10.1371/journal.pone.0141603.t002
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disorder content of the MoRF-harbouring segment, and conservation of the MoRF sequence.
The first source has been exploited in a stand-alone predictor (MoRFCHiBi) that we developed
previously [16]. As MoRFCHiBi only considers local sequence information, it does not utilize
information about the level of disorder of the protein segments in which the putative MoRFs
are located. The location of MoRFs within IDRs is part of their definition and distinguishes
them from a similar and overlapping class of protein sequences known as short linear motifs
(SLiMs). SLiMs are sequences 3 to 10 residues in length that have been found to be enriched in
IDRs and bind specific protein domains [30]. However, SLiMs are also found in structured
domains, as exemplified by PY motifs buried in structured proteins that get exposed and recog-
nized by E3 ubiquitin ligase upon heat shock [31]. MoRFCHiBi was trained and tested on
MoRFs only and, therefore, the inclusion of disorder information was necessary and rewarding.
Furthermore, residues in IDRs are known to be less conserved on average than those in MoRFs
[18, 19]. Therefore, MoRFCHiBi_Web was also designed to exploit the difference in conservation
to improve predictions.

The improvement derived from the addition of information on both intrinsic disorder and
conservation to MoRFCHiBi can be exemplified in the case of the protein p53 (Fig 5). This pro-
tein contains two main regions where the existence of MoRFs has been verified: one in the N-
terminal region and the other in the C-terminal region. The propensity scores generated by
MoRFCHiBi correctly identified the N and C-terminal MoRFs but they also incorrectly identi-
fied the region around residue 161 as a MoRF segment, as shown by the grey curve in Fig 5.
The region between residues 95 and 292 is known to be a globular domain (PDB: 1gzh; [32]).
MoRFDC keeps the propensity scores low in this globular region, which suppresses the MoRF-

CHiBi_Web scores at the region around position 161 relative to the scores of the N and C-termi-
nal MoRF regions. The addition of disorder and conservation information is thereby able to
broaden the gap in propensity scores between MoRF and non-MoRF regions, which allows for
a more stringent cutoff that generates a lower false positive rate. Interestingly, the remaining
false positive region near the C-terminus is also known to make interactions, but it has not
been verified to be intrinsically disordered [17].

Fig 4. Comparing the performance of MoRFCHiBi_Web (MCW in red), MoRFCHiBi (MC in orange),
DISOPRED3, MFSPSSMpred and MoRFpred using EXP9.Curves of sensitivity as a function of specificity
for MoRFCHiBi_Web and MoRFCHiBi are computed on a set of 9 protein sequences collected by Jones and
Cozzetto [15]. The data points for each of the three predictors, DISOPRED3, MFSPSSMpred and MoRFpred,
are from published results of Jones and Cozzetto [15].

doi:10.1371/journal.pone.0141603.g004
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As some predictors have been trained on all available MoRFs, it is important to discuss
issues regarding scoring bias towards the training data. In general, MoRFs in query sequences
that are identical or very similar to those in the training set are scored favorably compared to
other MoRFs. This scoring bias can often be misleading as we naturally expect the score quality
to be consistent throughout the entire query sequence. Hence, the scoring bias can hamper the
identification of novel MoRFs because their scores are overshadowed by those over-scored
training MoRFs. Different machine learning tools are affected differently by training data. Sup-
port vector machines with RBF kernels are known to be prone to over-scoring their training
data [33], whereas over-scoring is minimal with the use of linear and sigmoid kernels. One of
MoRFCHiBi_Web‘s components is a SVM-RBF model, namely the SVMT model in MoRFCHiBi.
However, the potential for bias brought on by SVMT is mitigated by contributions from the
other models, MoRFCHiBi‘s SVMS and MoRFDC’s conservation and disorder components,
which are all less susceptible to over-scoring. Specifically, MoRFCHiBi‘s SVMS employs a sig-
moid kernel and was trained on synthetic data. Furthermore, MoRFDC’s conservation compo-
nent has very limited reliance on training and its disorder component comes from ESpritz,
which is based on a neural-network model that was trained on an independent dataset from
DisProt. Using Bayes rule to integrate multiple propensity scores generated by different predic-
tors targeting different features using different machine learning tools provides MoRFCHiBi_Web

with less potential for biased scoring compared to predictors that are based on a single machine
learning tool.

In summary, we introduced a new MoRF predictor, MoRFCHiBi_Web, which is based on hier-
archically incorporating several independently computed propensity scores of features associ-
ated with MoRFs. MoRFCHiBi_Web is fast and its predictions include less than half the false
positives compared to all available MoRF predictors. Regarding its usage, we like to stress that
categorical prediction by assigning a static cut-off value can be a misleading oversimplification.
Yet, if users need such a cut-off, we suggest a value of 0.66. At this cut-off, MoRFCHiBi_Web

achieved sensitivities of 0.482, 0.615, 0.425 for all_MoRFs, short_MoRFs, and long_MoRFs
from EXP53, respectively, at a specificity of 0.897.

Fig 5. MoRFCHiBi_Web Propensity scores for the protein p53. Propensity scores for the protein p53 by
MoRFCHiBi_Web (MCW) in orange, MoRFCHiBi (MC) in gray and MoRFDC (MDC) in green. The 2 verified MoRF
sections in our EXP53 test set are marked in blue below the chart.

doi:10.1371/journal.pone.0141603.g005
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