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SUMMARY

Molecular profiling studies have enabled discoveries for metastatic prostate cancer (MPC) but 

have predominantly occurred in academic medical institutions and involved non-representative 

patient populations. We established the Metastatic Prostate Cancer Project (MPCproject, 

mpcproject.org), a patient-partnered initiative to involve patients with MPC living anywhere in the 

US and Canada in molecular research. Here, we present results from our partnership with the first 

706 MPCproject participants. While 41% of patient partners live in rural, physician-shortage, or 

medically underserved areas, the MPCproject has not yet achieved racial diversity, a disparity that 

demands new initiatives detailed herein. Among molecular data from 333 patient partners (572 

samples), exome sequencing of 63 tumor and 19 cell-free DNA (cfDNA) samples recapitulated 

known findings in MPC, while inexpensive ultra-low-coverage sequencing of 318 cfDNA samples 

revealed clinically relevant AR amplifications. This study illustrates the power of a growing, 

longitudinal partnership with patients to generate a more representative understanding of MPC.
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In brief

Crowdis et al. describe the MPCproject (mpcproject.org), a decentralized initiative to partner with 

patients with metastatic prostate cancer in the US and Canada to accelerate molecular research. 

The authors describe clinicogenomic results from the first 706 geographically diverse patient 

partners and lay the foundation for sustained and inclusive partnership in this disease.

INTRODUCTION

Prostate cancer is the second most diagnosed cancer in men, with nearly 200,000 men 

diagnosed in 2020 alone in the US.1 Survival rates for localized disease are high, but the 

5-year survival rate for the over 300,000 men currently living with metastatic prostate cancer 

(MPC) is only 31%, representing the third leading cause of death for men.1,2 Genomic 

sequencing studies have enabled new therapeutic targets for MPC, but obtaining large 

cohorts of tumor biopsies for molecular study has been difficult, as MPC often spreads to 

bone and requires technically challenging procedures to sample.3–6 Because prostate cancer 

can shed cell-free DNA (cfDNA) into the bloodstream, blood biopsies that sample this 

circulating tumor DNA have proven to be a useful alternative for the study of MPC.7,8

Historically, quaternary care academic medical institutions have had the necessary 

infrastructure to lead clinically integrated MPC sequencing studies. However, the resulting 

clinical and genomic data is often siloed within these institutions, leading many to push 

for mandatory data sharing.9,10 These efforts, while important, do not directly improve 
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access to molecular research programs and do not address underlying ethnic, socioeconomic, 

and geographic patient disparities in such studies, which threaten to bias findings and 

eventually care toward select patient populations.11–14 Commercial sequencing options for 

prostate cancer are emerging but are often proprietary, only available with appropriate 

insurance, and regularly inaccessible for research use.15–17 Indeed, despite growing interest 

from patients with MPC in clinical and research-based genomic sequencing, there are only 

limited mechanisms for these patients to partner with the research community to accelerate 

discoveries.18–20

We hypothesized that a patient-partnered framework that empowers patients with MPC 

to share their biological samples, clinical histories, and lived experiences directly with 

researchers regardless of geographic location or hospital affiliation would lead to new 

clinicogenomic discoveries and begin to address demographic inequities and data-access 

barriers in molecular studies for this disease. Thus, we established the Metastatic Prostate 

Cancer Project (MPCproject, mpcproject.org), a research model that leverages patient 

advocacy and social media to enable patients with MPC to participate in genomic research 

remotely at no personal cost.

RESULTS

Development of a patient-partnered MPC research model

Working with patients, loved ones, and advocates, we developed an MPCproject enrollment 

process for men living with MPC in the US and Canada (Figure 1A). The MPCproject 

outreach model is community centered and utilizes advocacy partnerships, social media 

campaigns, and educational initiatives to engage patients (Figure S1). To enroll, patient 

partners complete an online survey describing their experience with MPC, followed by 

signing electronic consent and release forms, which allow the MPCproject team to contact 

their hospitals to request medical records and optionally archival tumor tissue for research-

grade genomic sequencing (Figure S2). Enrolled patient partners can also use a mailed kit 

to donate saliva and/or blood at routine blood draws at no cost, and these samples are 

sequenced to assess germline DNA and cfDNA, respectively (Figures S3 and S4).

Patient partners and advocates are involved in every step of the project’s design and 

execution—we respond directly to their feedback and keep them informed of our progress 

and findings (supplemental information; Figure S5). Patient advocates help design the 

website and all patient-facing enrollment material, lead patient information sessions about 

the project, and advise the project’s mission. We also work with patient partners who 

continue donating blood to help the research community understand the evolution of MPC, 

and we regularly release prepublication, deidentified genomic, patient-reported, and clinical 

data in public repositories for research use.

Partnering with a demographically distinct patient population

To date, the MPCproject has partnered with over 1,000 patients in the US and Canada and 

has orchestrated three public data releases (Figure 1B). The analyses presented here are 
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based on the 706 men from the US and Canada who had enrolled (completed consent forms) 

as of June 1, 2020 (Figure S6).

Using patient-reported survey data, we assessed the geographical diversity of our patient 

partners. Hailing from 49 US states and six Canadian provinces, patient partners reported 

receiving care for their prostate cancer at over 1,000 distinct medical institutions, 91% 

of which were reported by two or fewer patients (Figure 1C). We found that 56% of 

patient partners have never received care at an NCI-designated cancer center, where genomic 

research is traditionally conducted (Table S1). These patient partners were three times less 

likely to report participating in a clinical trial (7% versus 20%, p = 1 × 10−6, Fisher’s exact 

test).

We then used patient-reported data to identify residential census tracts and their geographic 

characteristics (n = 628/706 participants had identifiable census tracts; STAR Methods). We 

found that 13% of patient partners live in rural areas defined by the USDA, a proportion 

consistent with patients with MPC in the US (11%).21 We additionally found that 30% 

of patient partners live in health-physician-shortage areas (HPSAs) and that 24% live in 

medically underserved areas (MUAs) as defined by the Health Resources and Services 

Administration (Figure 1D; STAR Methods).22 These proportions could not be compared 

with patients with MPC in the US or with other sequencing efforts due to a lack of published 

data but are significantly enriched compared with the US population (25% HPSAs, 5% 

MUAs, p = 0.03 and 1 × 10−82, respectively, Fisher’s exact test).23,24 While living in a 

rural area was associated with being in an MUA or HPSA, 28% of MPCproject patient 

partners live in urban primary care MUAs or HPSAs (p = 5.7 × 10−13, Fisher’s exact test). 

We additionally found that patient partners living in rural areas compared with urban areas 

lived a median of 160 km farther from institutions where they reported receiving treatment, 

suggesting that they may travel farther for cancer care (p < 10−11, Mann-Whitney U test; 

Figure S7).

We next examined the socioeconomic traits of patient partner residential areas using the 

national Area Deprivation Index (ADI), a 0–100 ranking that includes factors of income, 

education, employment, and housing quality, where 100 indicates the most disadvantage.25 

The average ADI of patient partner residential areas was lower than the age- and race-

matched national average (31 versus 46), which may reflect the relative success of patient 

partner engagement via social media outreach, the usage of which is correlated with 

socioeconomic status, compared with our community-driven efforts to date (Figure S7).26 

Notably, we cannot compare this average with patient populations from existing sequencing 

studies due to a lack of published data. We also found that patient partners living in more 

disadvantaged areas were less likely to attend NCI cancer centers for treatment, even after 

controlling for rural, MUA, and HPSA status (ADI = 35 versus 27, NCI treated versus 

not, p < 0.001, logistic regression) (Figure 1E). We are cautious, however, in interpreting 

the results of these geographic analyses. Patient partners may not currently live in their 

reported locations, we do not directly survey their income or socioeconomic status, and their 

experiences may not be represented by their residential area. We did not observe significant 

associations in baseline clinical factors, therapies received, or likelihood to participate in a 

clinical trial with ADI or across patient partners in rural areas, MUAs, or HPSAs.
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The combination of the MPCproject’s online enrollment and patient-centered outreach 

through advocacy partnerships enabled the creation of a geographically distinct prostate 

cancer research program. Despite the project’s geographical diversity, however, fewer than 

10% of patient partners self-identify as non-White (Table S2). While similar to existing 

studies, this representation remains well below the proportion of minority patients with 

prostate cancer generally (20%).21 The lack of racial diversity in our study is a critical flaw 

that is thus far insufficient to accelerate research for communities of color, and it has spurred 

new, community-driven MPCproject initiatives to connect with these patients, as detailed in 

the limitations of the study.

Patient-reported data augment medical records to amplify patient stories

Through the patient-reported data, we sought to understand the real-world experiences 

of those living with MPC. 45% of patient partners report being diagnosed with de novo 
metastatic disease, with bone (48%) and lymph node (39%) lesions as the most common 

metastatic sites (Figures 2A and 2B). 48% of patient partners reported a family history of 

prostate or breast cancer, while 24% reported having at least one other cancer diagnosis 

in their lifetime, 30% of which was a non-skin form of cancer (Figures 2C and 2D). The 

average age at diagnosis was significantly younger than the national average (61 versus 

65 years old, p < 10−39, t-test), and 24% of participants were diagnosed with early-onset 

prostate cancer (≤55 years at diagnosis; Table S2).27 We note that these characteristics of our 

patient partners are likely influenced by participation bias and may differ from other prostate 

cancer studies as a result.

We used the MPCproject’s comprehensive abstracted medical records together with patient-

reported data to evaluate the treatments received in this real-world cohort (STAR Methods; 

Figure 2E). Patient partners reported taking an average of 2.8 therapies (range 1–13) to 

treat their prostate cancer. 119 (17%) patient partners had abstracted medical records at 

the time of writing, and there was 90% concordance between therapies noted in formal 

medical records and therapies reported by these patient partners. The overlap was lowest for 

treatments typically given earlier in the therapeutic timeline (first-line androgen deprivation 

therapy, 83%), supportive care therapies (64%), or treatments abandoned quickly due to side 

effects (Figure 2E).

We also used the patient-reported data to assess how living with prostate cancer has changed 

the daily lives of our patient partners. 56% of patient partners reported a lifestyle change 

because of living with their cancer, with the most common being a change in diet or exercise 

(Figure 2F). Common nutritional supplements reported include vitamin D and antioxidant-

based supplements, while common non-cancer medications included metformin and statins.

Whole-exome sequencing of a real-world MPC patient cohort

To complement the demographic, patient-reported, and clinical data, we have completed 

molecular profiling of 572 samples from 333 patient partners to date, including ultra-low-

pass whole-genome sequencing (ULP-WGS; average depth of 0.1×) of cfDNA from 318 

donated blood samples; whole-exome sequencing (WES) of cfDNA from 47 of those 

blood samples; WES of 106 tumor samples; and WES of 148 germline samples from 
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donated saliva or blood buffy coat. In total, 82 exome-sequenced samples (63 tumor and 19 

cfDNA) from 79 patient partners enrolled before June 1, 2020, were included in downstream 

genomic analyses after assessment of sufficient tumor purity (≥10%) and coverage (STAR 

Methods).

Exome sequencing from the tumor and cfDNA samples recapitulated known genomic 

patterns in MPC (Figure 3A). TP53 and SPOP were recurrently altered, consistent 

with previous studies of both metastatic and primary prostate cancer (q < 0.1 via 

MutSig2CV).3,4,6 In primary tumor samples from this cohort, the mutation frequency of 

TP53 (29%) was more consistent with metastatic cohorts than those of primary prostate 

cancer.3,6 Twenty-four (38%) primary tumor samples were from men diagnosed with de 
novo metastatic disease, and samples from these patient partners were more likely to 

carry TP53 mutations (p = 0.04, Fisher’s exact test). We also observed known patterns 

of copy-number alteration in prostate cancer, including recurrent amplifications of androgen 

receptor (AR) and FOXA1, as well as recurrent deletions of PTEN (q < 0.1 via GISTIC2.0; 

Figure 3A).28 Whole-genome doubling was present in 6/63 tumor samples and 2/19 cfDNA 

samples, including in two tumor samples from patient partners initially diagnosed with 

localized prostate cancer. Both patient partners were diagnosed with metastatic disease 

within a few months of their initial diagnosis.

To understand the mutational processes in this cohort’s exome-sequenced samples, we used 

a mutation-based method (deconstructSigs) to determine the contribution of COSMIC v.2.0 

signatures to each sample30,33 (Figure 3B; STAR Methods). We detected the presence of 

aging-associated clock-like signature one in all samples and the presence of signature 3 

(associated with homologous recombination deficiency [HRD]) and signature 6 (associated 

with mismatch repair deficiency [MMR]) in a subset of samples. These results are consistent 

with previous studies implicating these signatures in prostate cancer, although they likely 

overestimate the prevalence of signature six in tumor samples due to formalin-induced 

deamination artifacts.34,35 We found that the presence of signature three was enriched 

in metastasis-associated samples (cfDNA and primary tumors obtained in the metastatic 

setting) relative to tumor tissue from patient partners with strictly localized tumors at time 

of resection (p = 0.04, Fisher’s exact test). While some samples with signature three had at 

least one alteration in BRCA1 or BRCA2 (n = 9/16), this association was not statistically 

significant, highlighting the potential role of other homologous repair defects in the etiology 

of signature 3, as noted in prior studies of prostate and breast cancer.5,36–39 All samples with 

signature 3, however, had at least one alteration in a DNA-repair pathway gene, and biallelic 

BRCA2 alterations were associated with copy-number-based estimations of HRD (STAR 

Methods; Figure S8).40

In 10% of samples (8/82), we observed contributions from COSMIC signatures 2 and 13, 

which are driven by APOBEC cytidine deaminases and are known to operate at a baseline 

level in prostate cancer.34,41 APOBEC-driven mutagenesis has been implicated in kataegis—

rare, localized hypermutation in specific nucleotide contexts that is associated with genomic 

instability and increased Gleason score in prostate cancer.42,43 In one patient partner’s 

cfDNA sample, we detected eight distinct mutations within a 2-kB window in KMT2C, 

a known prostate cancer driver (Figure 3C).3 Six of these mutations were in a T(C>T)A 

Crowdis et al. Page 7

Cell Genom. Author manuscript; available in PMC 2022 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleotide context, and this sample had a detectable contribution from COSMIC signature 

13. We found that two pairs of the mutations, p.S1947F/p.S1954F and p.Q2325*/p.S2337Y, 

were each present on individual sequencing reads, confirming that these mutations existed 

within the same cell and strongly implicating KMT2C disruption through kataegis (Figure 

S9).

Given the strong heritability of prostate cancer, we assessed inherited germline alterations 

and their overlap with patient-reported family history of cancer.44 We found that among 

the 132 patient partners (19%) with WES of donated saliva or blood buffy coat, 15 and 

11 had pathogenic germline alterations in select genes implicated in prostate cancer and 

other cancers, respectively.45 Men that self-reported a family history of prostate or breast 

cancer were more likely to have a pathogenic germline alteration associated with cancer, 

although this difference was not statistically significant (25% versus 13%, p = 0.11, Fisher’s 

exact test; Figure 3D). The most mutated gene was CHEK2 (8 patient partners), followed by 

BRCA2 (4 patient partners). In three cases, we detected an accompanying somatic loss of a 

germline-mutated gene (Figures 3E and S10).

Longitudinal blood biopsies enable study of tumor evolution in a patient-partnered model

Ten patient partners had WES from both tumor tissue and cfDNA, and three patient 

partners had both samples pass quality-control metrics. Using the molecular data and 

abstracted medical records, we sought to explore the evolutionary relationships between 

these longitudinal samples in the context of patient clinical trajectories. Like most men 

with MPC, one participant, patient partner 0495, received a diverse range of treatments 

between biopsy timepoints (Figure 4A). After responding to first-line anti-androgen 

therapy (leuprolide + bicalutamide), they took second-generation anti-androgen inhibitors 

(abiraterone, enzalutamide), as well as experimental radio-therapy and immunotherapy. 

To explore the relationship between samples, we utilized PhylogicNDT, an algorithm 

that clusters mutations based on their prevalence in the tumor (cancer cell fraction) into 

evolutionarily related subclones (STAR Methods).46 In the cfDNA sample of patient partner 

0495, but not the primary tumor, we observed two distinct frameshift mutations in ASXL2, 

a gene implicated in castration-resistant MPC, as well as an amplification of AR, a known 

resistance mechanism to abiraterone and enzalutamide.47,48 Patient partner 0093’s tumor 

had clonal mutations in TP53 and KMT2D but harbored an NF2 mutation solely in the 

cfDNA sample. Patient partner 0213’s tumor had a TP53 mutation and APOBEC-associated 

COSMIC signature 13 detected exclusively in the cfDNA sample.

Two of these patient partners, 0495 and 0093, were initially diagnosed with primary 

prostate cancer (Gleason score 4 + 3 and 5 + 4, respectively), while patient partner 

0213 was diagnosed with de novo metastatic disease. Their donated blood samples were 

separated from their primary tissue biopsies by a range of years (2–10 years). Despite these 

varied disease presentations, clinical trajectories, and biopsy timelines, we observed similar 

patterns of a “clonal switch” between the primary tumor and cfDNA, wherein different 

subclones were dominant in each sample (Figures 4B and S11). We did not, however, 

observe primary tumor-specific copy-number alterations, bolstering previous claims that 

subclonal diversification in MPC via mutations may happen after acquisition of ancestral 
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copy-number alterations (Figure S12).49 Furthermore, we observed likely primary-tumor-

specific mutations across all seven other patient partners with both tumor and cfDNA 

samples, although the samples had low purity (Figure S13). While we cannot account for 

the sampling bias of tumor biopsies, these results suggest that such clonal switches may be 

common in the development of metastatic disease.

In several cases, we detected the emergence of an amplification in the AR between the 

initial diagnosis and metastatic blood sample that was captured using ULP-WGS of cfDNA 

(example patient partner shown in Figure 4C). This led us to examine AR copy number 

using ULP-WGS of cfDNA samples across the entire cohort (n = 300 patient partners, 

318 samples; Figures 4D and S14). We found that patient partners who reported taking 

enzalutamide or abiraterone had significantly higher AR log copy ratios across a range 

of tumor fractions (p < 0.001, linear regression). Men who had taken enzalutamide or 

abiraterone also had significantly higher tumor fractions, likely reflecting a more advanced 

disease state and subsequent higher tumor burden in blood (p < 0.001, Mann-Whitney 

U test).50 We observed that AR amplifications are often detectable in ULP-WGS of 

cfDNA even when the tumor fraction is below 0.03 (Figures 4E and 4F). For one patient 

partner, the tumor fraction within their donated blood was inferred as undetectable, but we 

nevertheless observed a clear AR amplification (Figure 4E). This highlights the potential 

efficacy of cfDNA to reveal clinically relevant changes in MPC, even in cases of very low 

or undetectable tumor burden. Attempts to identify other common copy-number changes 

were limited by tumor fraction (Figure S15). Broadly, these sequencing results illustrate the 

feasibility of identifying relevant genomic and evolutionary alterations from both archival 

tumor tissue and donated blood samples irrespective of geographical source site, enabling 

patient partners to participate in genomic research at no cost and with little effort.

DISCUSSION

Here, we describe the MPCproject, a patient-driven framework for partnering with patients 

with MPC in the US and Canada to increase access to genomics research and strengthen 

our understanding of this disease. The online enrollment process was jointly created with 

patient partners and advocates to emphasize simplicity, requiring only the completion 

of online consent and survey forms, along with optional mailed saliva and blood kits. 

To our knowledge, no previous effort in MPC has used patient partnership to integrate 

demographic, clinical, patient-reported, and genomic data from patients at a national level.

To that end, we demonstrated the feasibility of working with over 700 patient partners, 41% 

of whom live in rural areas, MUAs, or HPSAs, a metric unreported in previous molecular 

profiling efforts. We found that 56% of our patient partners have never received care at 

an NCI-designated cancer center and that patient partners living in more disadvantaged 

areas were less likely to attend those institutions for treatment. Taken together with 

previous studies showing disparities in standard treatment and clinical trial outcomes 

by socioeconomic status, these results highlight existing barriers in access to care and 

sequencing studies.51–53 Furthermore, a recent study found that incomplete medical records 

are associated with shorter overall survival for patients with MPC, particularly for those 

with complicated clinical histories or whose care is fragmented between institutions.54 
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Our analysis of abstracted medical record data revealed a strong overlap between clinical 

histories represented in medical records and patient-reported data, even for patient partners 

with complex treatment trajectories or who had received treatment at multiple hospitals, 

supporting the use of patient surveys to improve care in this disease.

We also demonstrated that tumor tissue collected from archival samples and cfDNA from 

donated blood samples from across the US and Canada accurately recapitulate known 

genomic findings in MPC and place findings in the context of both patient-reported and 

abstracted medical record data. There has been substantial effort in the field to identify 

molecular features associated with selective response to therapies like PARP inhibition 

and immunotherapy, including the use of mutational signatures to assess targetable HRD, 

MMR, and APOBEC deficiencies in cases without a causative molecular alteration.36,55 Our 

results strengthen previous findings that such signatures can be detected using cfDNA and, 

combined with our ability to obtain cfDNA from participants nationwide, demonstrate the 

scalability of a patient-partnered approach to identify and validate such genomic findings 

within a real-world cohort in parallel to existing molecular approaches.56,57

Moreover, we used archival tumor tissue and cfDNA from donated blood to reconstruct 

tumor phylogenetic profiles, revealing polyclonality between primary and metastatic 

diagnosis. Despite well-known findings of heterogeneity in both primary and MPC, there 

is a paucity of matched primary-metastatic studies, owing mostly to the invasiveness and 

logistical challenges of longitudinal biopsy studies.34,58 Our project enables such studies 

paired with comprehensive clinical histories with minimal patient effort. To that end, we 

also found clinically relevant AR amplifications via low-pass WGS of cfDNA from donated 

blood, even at very low or undetectable tumor fractions. This result provides additional 

inexpensive utility to the suggested use of cfDNA tumor fraction as a clinically relevant 

biomarker in MPC.50,56 We are working with patient partners who continue to donate blood 

and have been able to collect multiple secondary blood biopsy kits for future longitudinal 

analysis.

New approaches in molecular cancer research are needed to address an increased desire 

from patients to actively participate in research and a pressing need for equity in the clinic. 

Paired with emerging open-access clinical trials, patient-driven studies hold great promise 

to achieve equity and accelerate discovery in genomic research.59 The MPCproject is part 

of a wider “Count Me In” patient-partnered initiative (joincountmein.org) that has already 

yielded new findings in angiosarcoma and has expanded to metastatic breast cancer and 

osteosarcoma, among others.60–62 The achievements of the MPCproject are based entirely 

on the courage and altruism of the men with whom we partner, who, in the words of one 

participant, hope that their “participation will help other men […] and lead eventually to a 

cure.”

Limitations of the study

Despite the geographic diversity of our patient partners, we acknowledge that they do 

not reflect the racial diversity of patients with MPC, a critical issue given substantial 

disparities in both cancer care and genomics research by race and ethnicity.11,63,64 These 

unmet disparities demand that we rethink our models of outreach and patient engagement, 
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and our effort cannot be considered a success until sustained and equitable partnership 

is achieved.65 Recognizing that building trust in marginalized communities takes time, 

we must continue to work longitudinally with community-based advocacy organizations 

to partner with Black communities. Since the launch of our project, we have worked to 

build an engagement model that meets patients in their communities, including churches, 

barbershops, and fraternities. Using the longitudinal model of this study, we will continue to 

iteratively learn from community engagement successes and failures. We received feedback, 

for example, that Black patients and their cancer stories are rarely heard—in response, 

we are building a campaign to amplify the voices of Black patients with cancer and their 

lived experiences (www.BlackCancerVoices.org). Additionally, a common request is for 

the project to return clinically relevant sequencing results to patient partners and their 

physicians. We are working with regulatory, clinical, and sequencing experts to build the 

infrastructure necessary to fulfill this request.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Eliezer M. Van Allen 

(Eliezerm_vanallen@dfci.harvard.edu).

Materials availability—This study did not generate any new unique reagents.

Data and code availability—The MPCproject releases deidentified clinical, 

patient-reported and research-grade genomic data into public repositories, 

such as cBioPortal: mpcproject_broad_2021 (https://www.cbioportal.org/study/summary?

id=mpcproject_broad_2021), the Genomic Data Commons: CMI-MPC (https://

portal.gdc.cancer.gov/projects/CMI-MPC), and dbGaP: phs001939.v3.p1 (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001939.v3.p1) at regular 

intervals and prepublication. Data is processed and formatted as required by each 

repository’s guidelines. All patient identifiers are stripped prior to data deposition to 

protect patient privacy. On the MPCproject data release webpage (https://mpcproject.org/

data-release), patients can access project data, additional information about the data, a list 

of common terms used in research, methods used to generate the data, and an e-mail 

address for any additional data-related questions. All other data used in this paper are from 

publicly available resources. The code used to generate most main figures, central analyses, 

and supplementary figures can be found at can be found at https://github.com/vanallenlab/

mpcproject-paper, except for figures and analyses requiring sample-level germline data. An 

unchanging version of the code at time of publication is also available at Zenodo: https://

doi.org/10.5281/zenodo.6816267. Any additional information required to reanalyze the data 

reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients who chose to enroll in this research study provided informed consent using a 

web-based consent form approved by the Dana-Farber/Harvard Cancer Center Institutional 
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Review Board (DF/HCC Protocol 15–057B). Patient partners can exit the study at any 

time. All patient partners were male, with age and other features detailed in Table S2. 

If patient partners consented, FFPE exomes were requested from hospitals where they 

received treatment. Germline DNA was collected using mailed saliva collection kits. cfDNA 

from blood biopsies was collected through blood draws by medical providers or Quest 

Diagnostics (with a complimentary voucher), received by mail (Method details).

METHOD DETAILS

MPCproject website—The MPCproject utilizes a website (https://mpcproject.org/) to 

enroll patients through an online consent and release form. The website provides 

information about the project and advocacy groups that have partnered with the study. The 

website design, messaging, and workflow were developed with direct input from patient 

partners and advocates.

Informed consent—A link to the electronic informed consent document for formal 

enrollment in the study (https://mpcproject.org/ConsentAndRelease.pdf) was sent to 

registrant emails, and upon signing, a copy of the completed form was shared. At minimum, 

informed consent enabled study staff to request and abstract medical records, send a saliva 

kit directly to patients, perform sequencing on any returned saliva samples, and release 

de-identified integrated clinical, genomic, and patient-reported data for research use. Patient 

partners had the additional option to consent to study staff obtaining a portion of archived 

tumor tissue and/or a blood sample for further sequencing analysis.

Patient-reported data—After registering, patient partners completed a 17-question 

survey asking them about themselves and their disease (https://mpcproject.org/

AboutYouSurvey.pdf). All questions were optional. Information on how question responses 

were standardized and categorized can be found in the supplemental methods.

Acquisition of medical records—Medical records were obtained for patient partners 

from the U.S. and Canada who completed the consent and medical release forms. Later 

in project development, a donated saliva or blood sample was also required. Study staff 

submitted medical record requests to all institutions and physician offices at which the 

patient reported receiving clinical care for their prostate cancer. A detailed medical record 

request form, along with the consent and release forms, were electronically faxed to each 

facility listed in a patient’s release form. Medical records were returned to the project via 

mail, fax, or secure online portals. If a record request was not fulfilled in six months, study 

staff called the hospital, and a second request was submitted, with up to three requests made. 

Patient partners that communicated with study staff about changes in their treatment could 

request a medical record update, in which case their current hospital was again contacted for 

medical records. All medical records were saved in an electronic format to a secure drive at 

the Broad Institute.

Acquisition of patient samples—All consented patient partners living in the United 

States or Canada were mailed saliva kits with appropriate instructions, a sample tube 

labeled with a unique barcode, and a prepaid return box to send back the saliva sample. 
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Samples were returned to the Broad Institute Genomics Platform, logged, and stored at room 

temperature (25 °C) until further sequencing.

If a consented patient partner opted into the blood biopsy component of the study, they 

were sent a blood kit with instructions (https://mpcproject.org/BloodSampleInstructions.pdf, 

Figure S4). Participants could take this kit to their next blood draw and request a courtesy 

draw by their medical provider; if a courtesy draw was not possible, patient partners could 

go to Quest Diagnostics with a complimentary voucher to have their blood drawn. Blood 

kits were returned free of charge to the Broad Institute Genomics Platform where they were 

fractionated into plasma and buffy coats and stored at −80 °C. If a patient partner did not 

provide a saliva sample, buffy coats were used to extract germline DNA for WES. Plasma 

samples continued to WES if ultra-low pass WGS detected a tumor fraction of circulating 

tumor DNA greater than 0.03. Some patient partners were selected to provide additional 

blood samples and were sent a new consent form. If they agreed to submit another blood 

sample, a new blood kit was shipped.

For patient partners that provided a germline sample and consented to the acquisition of 

some of their archival tumor tissue, study staff reviewed each patient’s medical records 

and identified available tissue supplemental methods). Patient partners were screened by 

the study staff to determine if they had metastatic or advanced prostate cancer based on 

the definition by our study. If a patient partner had a sample that met the project’s strict 

requesting criteria, study staff coordinated with that hospital’s pathology department to fax 

a request for one H&E-stained slide as well as either 5–20 5-μm unstained slides or one 

formalin-fixed paraffin-embedded tissue block. Requests explicitly asked that the pathology 

department should not exhaust a sample to fulfill the request. Samples were sent to the 

MPCproject by mail. Tissue samples received as slides were labeled with unique barcode 

identifiers and submitted for whole exome sequencing. Tissue samples received as blocks 

were cut into three 30-μm scrolls per block, labeled with unique barcode identifiers, and then 

submitted for whole exome sequencing.

Medical record abstraction—A data dictionary comprising 60 clinical fields with 

possible options was curated by trained study staff working with prostate oncologists. 

Electronic health records were converted to searchable PDF files using the Optical Character 

Recognition (OCR) engine known as Tesseract.83 Three study staff abstractors were 

involved in the abstraction and QC process for each record (supplemental methods). If 

a field had lack of concordance between abstractors or there were outstanding questions, 

a prostate cancer oncologist reviewed the content. Whenever possible, clinical data was 

abstracted directly from the records. For information that’s not found, it was abstracted as 

‘NOT FOUND IN RECORD’. In instances where ambiguity or incomplete data was present, 

inferences were made considering the whole narrative of the medical record. Incomplete 

dates missing the day or month are abstracted as the first day of the month or first 

month of the year, respectively. While all medical records will eventually be abstracted, 

medical records from patient partners that received molecular sequencing of some form were 

prioritized for this study, resulting in 125 patient partners with medical record abstractions, 

119 of which had at least one therapy noted. In examining the overlap between patient 
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surveys and medical record therapies, we only considered therapies that were given for 

metastatic prostate cancer at least one week before the patient enrolled.

Geographic analysis—Using patient-reported data and secure Census Bureau geocoding, 

we identified residential census tracts for 628/706 patient partners.84 To identify patient 

partners living in rural areas, this information was overlapped with rural-area continuum 

(RUCA) codes from the United States Department of Agriculture (USDA).66 Census tracts 

with a secondary RUCA code greater than 3 were designated as rural. For comparison, the 

proportion of metastatic prostate cancer patients within each RUCA code from 2004 – 2017 

was taken from Surveillance, Epidemiology, and End Results (SEER) using SEER*stat with 

the following selection table: {Site and Morphology.Site recode ICD-O-3/WHO 2008} = 

‘Prostate’ AND {Stage - Summary/Historic.SEER Combined Summary Stage 2000 (2004–

2017)} != ‘In situ’, ‘Localized only’, ‘Not applicable’, ‘Unknown/unstaged/unspecified/

DCO’, ‘Blank(s)’.21 To identify patient partners living in medical shortage areas, census 

tracts were overlapped with primary care health physician shortage areas (HPSA) and 

medically underserved areas (MUA) defined by the Health Resources and Services 

Administration (HRSA).23 Census tracts were labelled as existing within a MUA or HPSA if 

they were designated as within a medically underserved area/population or within a primary 

care HPSA, respectively. Published geographic datasets of cancer patients (e.g., SEER, 

NPCR) do not contain census-tract resolved data or summary results of MUA/HPSA status, 

so for comparison we instead used the total U.S. population living in HPSAs and MUAs, 

taken from HRSA, divided by the entire U.S. population taken from the U.S. Census.23,24 To 

calculate appointment distances, we calculated the round-trip Haversine distances between 

residential zip codes and the zip code of reported institutions. To assess socioeconomic 

advantage, we used secure Census Bureau geocoding to identify residential census block 

groups (12 digit FIPS codes) and cross-referenced them with a publicly available dataset 

of Area Deprivation Index (https://www.neighborhoodatlas.medicine.wisc.edu/download).67 

We used the National ADI, which ranks neighborhoods by percentiles (1–100), with 100 

indicating the highest level of disadvantage.

To protect privacy, geographic locations in the graphical abstract do not represent real 

patient partner residential areas. Random counties from the state of each reported residential 

area are shown instead.

Whole exome sequencing analysis—Whole exome sequences were captured using 

Illumina technology and the sequence data processing and analysis was performed using 

Picard and FireCloud pipelines on Terra (https://terra.bio/) (supplemental methods). The 

Picard pipeline (http://picard.sourceforge.net) was used to produce a BAM file with 

aligned reads. This includes alignment to the GRCh37 human reference sequence using 

BWA72 and estimation and recalibration of base quality score with the Genome Analysis 

Toolkit (GATK).73 Somatic alterations for tumor samples were called using a customized 

version of the Getz Lab CGA WES Characterization pipeline (https://portal.firecloud.org/

#methods/getzlab/CGA_WES_Characterization_Pipeline_v0.1_Dec2018/) developed at the 

Broad Institute. Briefly, MuTect v1.1.6 algorithm was used to identify somatic mutations.74 

Somatic mutation calls were filtered using a panel of normals (PoN), oxoG filter 
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and an FFPE filter to remove artifacts introduced during the sequencing or formalin 

fixation process.85 Small somatic insertions and deletions were detected using the Strelka 

algorithm.75 Somatic mutations were annotated using Oncotator.76 Recurrently altered 

mutations were identified using MutSig2CV.77 To define somatic copy ratio profiles, we 

used GATK CNV.73 To generate allele-specific copy number profiles and assess tumor 

purity and ploidy, we used ABSOLUTE and FACETS.78,79 Final segmentation calls were 

taken from ABSOLUTE, except for the X chromosome, which was taken from FACETS. We 

utilized GISTIC2.0 to identify significantly recurrent amplification and deletion peaks.28 For 

determining allele-specific copy number alterations, we assessed the absolute allelic copy 

numbers of the segment containing each gene. Mutation burden was calculated as the total 

number of mutations (non-synonymous + synonymous) detected for a given sample divided 

by the length of the total genomic target region captured with appropriate coverage from 

whole exome sequencing.

Whole exome sequencing quality control—Samples with average coverage below 

55x in the tumor sample or below 30x in the normal sample were excluded. Samples with 

purity <0.10 from both ABSOLUTE and FACETS were excluded. DeTiN was applied to 

samples to estimate the amount of tumor contamination in the normal samples; samples 

with TiN (tumor in normal) > 0.25 were excluded.80 ContEst was applied to measure 

the amount of cross-sample contamination in samples; samples with contamination >0.04 

were excluded.81 The Picard task CrossCheckFingerprints was applied to determine sample 

mixups; samples with Fingerprints LOD value <0 were excluded.86 Two FFPE samples 

that failed sequence processing and were noted to have extensive segment fragmentation 

and allelic imbalance were also excluded due to suspicion of poor sequencing. A table of 

samples with quality control metrics for each sample can be found in the Supplementary 

Data. Samples which passed quality control were submitted to cBioPortal and GDC.

Ultra-low pass whole genome sequencing analysis—ichorCNA was used to 

assess the tumor fraction in cfDNA samples that completed ultra-low pass whole genome 

sequencing.56 The log copy ratio of AR was assessed by the log copy ratio of the genomic 

interval containing AR. This value could not consistently be converted to absolute copy 

number due to the low tumor fractions of many samples.

Mutational signature analysis and kataegis—Mutational processes in our cohort 

were determined using deconstructSigs with default parameters applying COSMIC v2 

signatures as the reference with a maximum number of signatures of 629,30. A signature 

was assessed as present if the signature contribution was greater than 6%. Because 

tumor samples were formalin-fixed and paraffin embedded (FFPE), a process known to 

introduce stranded mutational artifacts in specific nucleotide contexts, we used a filter to 

remove likely FFPE artifacts according to nucleotide context and strand bias before using 

deconstructSigs.87 We also tried to assess the colocalization of the kataegis event with 

structural variant breakpoints but were limited by targeted sequencing in exomes and low 

coverage in ULP-WGS. KMT2C and its surrounding region were not copy number altered in 

the sample with kataegis. Kataegis was not identified in any other sample.
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Germline variant discovery—To call short germline single-nucleotide 

polymorphisms, insertions, and deletions from germline WES data, we used 

DeepVariant (v0.8.0).82,88 Specifically, we used the publicly-released WES 

model (https://console.cloud.google.com/storage/browser/deepvariant/models/DeepVariant/

0.8.0/DeepVariant-inception_v3-0.8.0+data-wes_standard/) to generate single-sample 

germline variant call files using the human genome reference GRCh37(b37). We 

filtered variants with bcftools v1.9 to only keep high-quality variants annotated as 

“PASS” in the “FILTER” column. The high-quality variants were merged into single-

sample Variant Call Format (VCF) files using CombineVariants from GATK 3.7 

(https://github.com/broadinstitute/gatk/releases). To decompose multiallelic variants and 

normalize variants, we used the computational package vt v3.13 (https://github.com/atks/

vt). Lastly, germline variants were annotated using the VEP v92 with the publicly-

released GRCh37 cache file (https://github.com/Ensembl/ensembl-vep).68 An alteration 

was also considered if there was a pathogenic germline alteration, denoted by 

“Pathogenic”, “Pathogenic/Likely_pathogenic”, “Likely_pathogenic”, “_risk_factor”, or 

“Conflicting_interpretations_of_pathogenicity” (if at least one expert source indicated 

“Likely_pathogenic” or “Pathogenic”) in ClinVar (Dec 2019 version).32 An alteration was 

also considered if it had an “HIGH” predicted impact on protein function and had a 

maximum allele fraction of <0.01 in all populations. The germline cancer predisposition 

genes were selected based on the level of evidence supporting their Mendelian disease 

susceptibility. This is composed of the well-curated COSMIC germline cancer census gene 

set (v86; http://cancer.sanger.ac.uk/census) and the germline cancer gene set listed in Huang 

et al. 2018 and Rahman 2014.30,69,89,90

Association of DNA-repair alterations and presence of signature 3—Alterations 

in a select list of genes previously implicated in DNA-repair were examined (Table 

S3). An alteration was considered if there was a somatic single-copy deletion, double 

deletion, nonsense mutation, missense mutation, frameshift indel, or splice site mutation. An 

alteration was also considered if there was a pathogenic germline alteration. An alteration 

was considered biallelic for Figure S7 if there was a double somatic deletion, a pathogenic 

germline/protein-altering somatic variant plus a somatic loss, or more than one mutation in 

the same gene, although we cannot confirm the biallelic nature of multiple mutations.

Phylogenetic analysis—To compare mutations between distinct samples (tumor and 

cfDNA) from the same patient, we used a previously described method designed to recover 

evidence for mutations called in one sample in all other samples derived from the same 

individual.91 In brief, the ‘force-calling’ method uses the strong prior of the mutation 

being present in at least one sample in the patient to detect and recover mutations that 

might otherwise be missed. A mutation was deemed tumor/cfDNA specific if there were 

no force-called reads that supported the mutation in the other sample, although this process 

underestimates the proportion of shared mutations in low purity tumors. The cancer cell 

fraction (CCF) of mutations were defined using ABSOLUTE, which calculates the CCF 

based on variant allele frequency, purity, and local allelic copy number.78 To reconstruct 

tumor phylogenies, we used PhylogicNDT, which clusters mutations into subclones across 

multiple samples based on their underlying similar CCFs.46
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—Except where otherwise specified, analysis and data visualization 

were performed with Python 3.8, SciPy v.1.5.2, Matplotlib v.3.3.2, seaborn v.0.11.0 and 

R v.3.5.1.90,91 The code used to generate most main figures, analyses, and supplementary 

figures can be found at https://github.com/vanallenlab/mpcproject-paper or Zenodo: https://

doi.org/10.5281/zenodo.6816267, except for figures and analyses requiring sample-level 

germline data. Between-group comparisons of continuous variables were performed with the 

Mann-Whitney U test (Wilcoxon rank sum test) or Student’s t-test. Contingency table tests 

were performed with Fisher’s exact test. All tests were two-sided.

ADDITIONAL RESOURCES

MPCproject website: https://mpcproject.org/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MPCproject partners with metastatic prostate cancer patients for molecular 

research

• Over 1,000 patient partners to date are from across the US and Canada

• 41% of patient partners are from rural or medically underserved areas

• Remotely donated samples from real-world settings recapitulate genomic 

findings
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Figure 1. Partnering with diverse patients to enhance our understanding of metastatic prostate 
cancer
(A) Summary of MPCproject enrollment process. Patients learn about the project primarily 

through outreach and partnered advocacy groups. If they register, patient partners complete 

online intake, consent, and medical release forms, then can opt into donating saliva via a 

mailed kit and/or blood at routine blood draws at no charge. In parallel, MPCproject staff 

request medical records and archival tumor samples from patients’ medical institutions, then 

abstract medical information from obtained records and sequence archival tumor tissue 

and/or donated blood and saliva (STAR Methods). Deidentified clinical, genomic, and 

patient-reported data are released on a continual, prepublication basis and deposited in 

public repositories.

(B) Enrollment statistics and timeline for the MPCproject. Depicted are the cumulative 

number of patients that began the registration process (registered), patients that completed 

the survey and consent forms (enrolled), patients with at least one medical record received 

(medical records), and blood kits, saliva kits, and archival tumor tissue received at the 

Broad Institute for sequencing (blood kits, saliva kits, and tumor tissue, respectively). 706 

patient partners enrolled before “study cutoff,” June 1, 2020, and are included in this study’s 

analyses. cBioPortal (cbioportal.org) releases include summary abstracted medical, genomic, 

and patient-reported data; Genomic Data Commons (GDC) releases include raw sequencing 

files and demographic data.

(C) Represented medical institutions among patient partners living in the US and Canada. 

Shown are the 1,049 unique institutions (x axis) where patient partners report receiving 

care for their prostate cancer, with the number of distinct patient partners at each institution 

(y axis). NCI-designated cancer centers are shown in green. Patient partners that did not 

complete this survey question (n = 36) and institutions outside the US and Canada (n = 56) 

are not shown.
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(D) Access to medical care among patient partners living in the US. Patient-reported data 

were used to identify residential census tracts that were overlapped with primary care 

health-physician-shortage areas (HPSAs), medically underserved population/areas (MUAs), 

and rural areas obtained from the Health Resources and Services Administration and US 

Census. Patient partners that live in Canada (n = 30) who did not provide residential data (n 

= 40) or who provided only a P.O. box (n = 8) are not shown.

(E) Patient partners living in more disadvantaged areas are less likely to attend NCI cancer 

centers. The Area Deprivation Index, a metric that assesses neighborhood disadvantage, was 

assessed for each residential census block group. Higher values indicate more disadvantage. 

The x axis reflects whether patient partners reported receiving care at an NCI-designated 

cancer center. *** p < 0.001 in a logistic regression model that adjusts for rural, MUA, and 

HPSA status.
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Figure 2. Patient voices reveal the landscape of living with metastatic prostate cancer
(A–D) Self-reported data of 706 patient partners related to their prostate cancer.

(A) Patient partners were asked for the current location of their cancer. Participants were free 

to choose multiple if their cancer had metastasized to multiple locations.

(B–D) Responses were tabulated from questions asking patient partners if their initial 

prostate cancer diagnosis was metastatic (B), if they have a family history of prostate/breast 

cancer (C), or if they have ever had another cancer diagnosis (D). Patient partners who did 

not complete these questions (n < 5 for all questions) are not shown.

(E) Self-reported therapies show strong overlap with medical records. Therapy categories are 

shown on the y axis, with the proportion of patient partners from each data type (patient 

surveys and medical records) receiving therapies of that category shown on the x axis. In the 

online survey, patient partners selected therapies they received for their metastatic prostate 

cancer from a list. 639/706 patient partners reported at least one therapy and are shown. 

119 of these participants also had abstracted therapy data from medical records. Report 
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overlap refers to how often patient partners report receiving a therapy when their medical 

records show that they have received that therapy as a percentage. Only therapies available 

for selection in the patient survey were used in this comparison (Table S4).

(F) Landscape of lifestyle changes for patient partners. Participants were asked to list 

additional medications, alternative medications, or lifestyle changes since their diagnosis 

of prostate cancer. Free-text responses were manually abstracted and categorized into diet/

lifestyle changes, supplements, and non-cancer medications. The y axis shows individual 

instances of diet/lifestyle changes, supplements, or medications. The x axis shows the 

percentage of patient partners with that lifestyle change or that were taking that supplement/

therapy out of all patient partners that responded to the lifestyle question (n = 456). CBD/

THC, cannabidiol/tetrahydrocannabinol (oils, medical marijuana, etc.).
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Figure 3. Remotely donated tumor and cell-free DNA samples obtained through patient 
partnership recapitulate known genomic findings in metastatic prostate cancer
(A) Genomic and clinical landscape of 82 sequenced samples. Columns represent samples, 

separated into tumor (prostate, left) and cell-free DNA (cfDNA; donated blood, right) 

samples, while rows represent select clinical and genomic features. Gleason scores for 

tumor samples are taken from the pathology report received with the sample (n = 58) 

or the patient partner’s medical records (n = 5) if Gleason scores were not provided in 

the report. Gleason scores for cfDNA were taken from pathology reports in the medical 

record, with NR representing cases where a Gleason score was not reported in the medical 

record. Diagnosis refers to whether the initial diagnosis of prostate cancer was localized or 

metastatic. Multiple mutations in the same gene are represented as triangles. WGD refers to 

whole-genome doubling. Copy-number calls are allelic and defined with respect to baseline 

allelic ploidy (2 for samples with WGD, one for those without), with calls for the two alleles 

indicated by two triangles (except for AR, which has only one allele in men and so is shown 

as a single box). Allelic CN = 0 refers to complete allelic deletions. Allelic deletions that are 

not complete deletions are possible in samples with WGD. Figure created with CoMut.29

(B) Mutational signature analysis of sequenced samples. The relative contribution of select 

COSMIC v.2.0 mutational signatures are shown, separated by tumor and cfDNA (donated 

blood) sample type.30 APOBEC refers to signatures associated with activity of APOBEC 

family of cytidine deaminases (signatures 2 and 13); MMR to the signature associated 

with deficient DNA mismatch repair (signature 6); and HRD to the signature associated 

with homologous recombination deficiency (signature 3). To be denoted as present, a 

signature cutoff of 6% was used. Samples with too few mutations for signature analysis 

(<50 mutations, n = 5 samples) are not shown.
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(C) Instance of localized hypermutation (kataegis) of KMT2C in cfDNA from a donated 

blood sample. The y axis shows the cancer cell fraction of each mutation, while the x 

axis shows their amino acid within KMT2C. Domains taken from Pfam.31 The dotted line 

connects to this sample’s mutational signature profile.

(D and E) Germline pathogenic alterations and their overlap with patient-reported family 

history. Pathogenic germline alterations (as annotated by ClinVar) in genes from a select 

panel of genes previously implicated in cancer heritability were detected in patient partners 

with sequenced saliva or blood buffy coat (n = 132) (STAR Methods; Tables S3 and S5).32 

Survey responses to a question asking about a family history of prostate or breast cancer 

were tabulated and overlapped with this genomic data. Stars in (E) indicate instances where 

a somatic deletion also affected that gene in a tumor or cfDNA sample from that patient 

partner, suggesting biallelic inactivation.
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Figure 4. cfDNA from donated blood reveals patterns of clonal dynamics and clinically relevant 
genomic changes
(A) Clinical trajectory of patient partner 0495. This patient partner’s prostate-specific 

antigen (PSA) trajectory is shown on the y axis, time in years since initial diagnosis is 

shown on the x axis, and bars denote the beginning and end of therapies. EBRT, external 

beam radiation therapy; first-line androgen deprivation therapy (ADT), leuprolide and 

bicalutamide; immunotherapy, nivolumab; chemotherapy, cisplatin and etoposide.

(B) Tumor evolution from primary tumor to metastatic cfDNA samples. The y axis shows 

the cancer cell fraction (CCF) of clonal clusters identified between tumor and cfDNA 

samples (x axis). Time between samples shown on the x axis. Colors indicate how many 

mutations were identified in each clone, with a 95% confidence interval around the 

estimated CCF. Purple represents the truncal/ancestral clone. Clusters with CCF <0.10 

across all biopsies are omitted. The clinical trajectory of patient partner 0495 (left) is shown 

in (A), while the trajectory of patient partner 0093 (right) is shown in (C).

(C) Emergence of AR amplification in patient partner 0093 induced by anti-androgen 

therapy. The timeline depicts this patient’s clinical trajectory, while the plots show the 

absolute copy number (y axis) of the genomic region around AR (x axis, gene body shown 

in gray). The first plot depicts exome sequencing from the patient’s archival tumor tissue; 
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the second and third plots depict ultra-low-pass whole-genome sequencing (ULP-WGS) 

and exome sequencing of cfDNA from the patient’s donated blood, respectively. Individual 

points represent copy number of target regions (exome) or copy number of 1 Mb genomic 

windows (ULP-WGS). Black lines represent discrete copy-number segments.

(D–F) ULP-WGS reveals clinically relevant AR amplifications even at low tumor fraction. 

In (D), tumor fraction of 318 cfDNA samples from donated blood of 300 patient partners 

with ULP-WGS sequencing is shown on the x axis, while the log copy ratio (logR) of 

the genomic interval containing AR is shown on the y axis. Points are colored by whether 

patient partners self-reported taking enzalutamide or abiraterone. 89 samples are shown with 

tumor fraction of 0 (undetectable), while 229 have non-zero tumor fractions. Two samples, 

one at a tumor fraction of 0 and another at a tumor fraction of 0.023, have chromosome X 

log copy ratio profiles shown in (E) and (F), respectively. The green points represent the 

values shown in (D), with the genomic interval containing AR highlighted in gray.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw sequencing files This paper dbGaP study accession phs001939.v3.p1

Raw sequencing files (processed by 
GDC)

This paper https://portal.gdc.cancer.gov/projects/CMI-MPC

Processed and deidentified 
sequencing and clinical data

This paper https://www.cbioportal.org/study/summary?id=mpcproject_broad_2021

Processed and deidentified figure data 
and code

This paper https://github.com/vanallenlab/mpcproject-paper

Study information and materials seen 
by patients

This paper https://mpcproject.org/

Rural-area continuum codes (2010) USDA66 https://www.ers.usda.gov/data-products/rural-urban-commuting-area-
codes.aspx

Information on MPC patients 
nationwide (2018)

SEER21 https://seer.cancer.gov/data-software/

Medically underserved and health-
physician shortage areas (accessed 
Dec 2021)

HRSA23 https://data.hrsa.gov/tools/shortage-area

National Area Deprivation Index 2019 
data

Kind and Buckingham, 
201867

https://www.neighborhoodatlas.medicine.wisc.edu/

ClinVar (2019) Landrum et al., 201832 https://www.ncbi.nlm.nih.gov/clinvar/

Variant Effect Predictor GRCh37 
Cache

McLaren et al., 201668 https://useast.ensembl.org/info/docs/tools/vep/script/vep_cache.html

COSMIC germline cancer census 
gene set v86

Sondka et al., 201869 https://cancer.sanger.ac.uk/census

Software and algorithms

Python 3.8 Python Software 
Foundation, 202170

https://www.python.org/

R 3.5.1 R Core Team, 202171 https://www.r-project.org/

BWA Li and Durbin, 200972 http://bio-bwa.sourceforge.net/

GATK 3.7 McKenna et al., 201073 https://github.com/broadinstitute/gatk/releases

Sequence alignment and alteration 
calling (component algorithms 
detailed below)

The Getz Laboratory https://portal.firecloud.org/#methods/getzlab/
CGA_WES_Characterization_Pipeline_v0.1_Dec2018/

Mutect v1.1.6 Cibulskis et al., 201374 http://archive.broadinstitute.org/cancer/cga/mutect

FilterByOrientationBias McKenna et al., 201073 https://gatk.broadinstitute.org/hc/en-us/articles/360037060232

Strelka v2.8.0 Saunders et al., 201275 https://github.com/Illumina/strelka

Oncotator v1.9.9.0 Ramos et al., 201576 https://github.com/broadinstitute/oncotator

MutSig2CV Lawrence et al., 201477 https://github.com/getzlab/MutSig2CV

GATK 3.7 (CNV) McKenna et al., 201073 https://gatk.broadinstitute.org/hc/en-us/articles/360035531092

ABSOLUTE v1.5 Carter et al., 201278 https://software.broadinstitute.org/cancer/cga/absolute_download

FACETS v0.6.2 Shen and Seshan, 201679 https://github.com/mskcc/facets

GISTIC2.0 v2.0.23 Mermel et al., 201128 https://github.com/broadinstitute/gistic2

DeTiN v2.0.1 Taylor-Weiner et al., 
201880

https://github.com/getzlab/deTiN

ContEst Cibulskis et al., 201181 https://software.broadinstitute.org/cancer/cga/contest
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REAGENT or RESOURCE SOURCE IDENTIFIER

CrossCheckFingerprints (GATK 3.7) McKenna et al., 201073 https://gatk.broadinstitute.org/hc/en-us/articles/360037594711

ichorCNA Adalsteinsson et al., 
201756

https://github.com/broadinstitute/ichorCNA

deconstructSigs (COSMIC v2 
signatures, v1.9.0)

Rosenthal et al., 201633 https://genomebiology.biomedcentral.com/articles/10.1186/
s13059-016-0893-4

DeepVariant v0.8.0 Poplin et al., 201882 https://github.com/google/deepvariant

PhylogicNDT Leshchiner et al., 201846 https://github.com/broadinstitute/PhylogicNDT

Other

Repository for regenerating main 
study findings and figures of this 
paper

This paper https://github.com/vanallenlab/mpcproject-paper, https://doi.org/
10.5281/zenodo.6816267
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