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Type I PRMT Inhibition Protects
Against C9ORF72 Arginine-Rich
Dipeptide Repeat Toxicity
Alan S. Premasiri†, Anna L. Gill† and Fernando G. Vieira*

ALS Therapy Development Institute, Cambridge, MA, United States

Repeat expansion mutations in the C9ORF72 gene are the most common genetic cause
of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat-
associated non-AUG translation of this expansion produces dipeptide repeat proteins
(DRPs). The arginine containing DRPs, polyGR and polyPR, are consistently reported to
be the most toxic. Here we demonstrated that small molecule inhibition of type I protein
arginine methyltransferases (PRMT) protects against polyGR and polyPR toxicity.
Furthermore, our findings suggest that asymmetric dimethylation of polyGR and polyPR
by Type I PRMTs plays important roles in their cytotoxicity.

Keywords: ALS (Amyotrophic lateral sclerosis), FTD (Fronto-Temporal Dementia), C9ORF72 DPRs, arginine
methylation, protein arginine methyl transferase, glycine-arginine, proline-arginine
INTRODUCTION

A mutation in the C9orf72 gene is the most common known cause of amyotrophic lateral sclerosis
(ALS) and frontotemporal dementia (FTD) (DeJesus-Hernandez et al., 2011; Renton et al., 2011).
The mutation consists of an abnormal expansion of a repeated hexanucleotide sequence
(GGGGCC) in the first intron of the C9orf72 gene (DeJesus-Hernandez et al., 2011; Renton
et al., 2011). In ALS and FTD, the expanded nucleotide tract is translated through an
unconventional mechanism known as repeat-associated non-AUG (RAN) translation (Ash et al.,
2013; Mori et al., 2013). Depending on what reading frame RAN translation takes place in, along
either the sense or antisense RNA strand, it leads to the generation of five different dipeptide repeat
proteins (DRPs) of variable lengths: poly-Glycine-Arginine (polyGR), poly-Proline-Arginine
(polyPR), poly-Proline-Alanine (polyPA), poly-Glycine-Alanine (polyGA), and poly-Glycine-
Proline (polyGP) (Ash et al., 2013; Mori et al., 2013).

The arginine-containing DRPs in particular have been demonstrated to have detrimental effects in
several model systems and to interact with several different pathways (Kwon et al., 2014;Wen et al., 2014;
Abbreviations: ALS, amyotrophic lateral sclerosis; FTD, frontotemporal degeneration; DRP, dipeptide repeat protein; RAN,
repeatassociated non-AUG; GAR, glycine- and arginine-rich; MMe, monomethylation; ADMe, asymmetric dimethylation; SDMe,
symmetric dimethylation; PRMT, protein arginine methyltransferase; SAM, S-adenosyl methionine , ICW, In-Cell Western; IVM, In
Vitro Methylation.
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Kramer et al., 2018). For example, when administered exogenously
to U2OS cells, synthetic GR20 and PR20 are shown to bind to
nucleoli, disrupt RNA splicing and processing, and decrease cell
viability (Mori et al., 2013). Our lab has previously demonstrated
that exogenous application of synthetic GR15 and PR15 to mouse
spinal cord neuroblastoma hybrid cells (NSC-34) induces cellular
toxicity, as measured by various cell health and function assays and
that this toxic effect becomes more severe as the cells are further
differentiated toward neurons, with primary neurons exhibiting the
greatest toxicity (Gill et al., 2019). In addition, a series of studies
involving the expression of the repeat expansion in Drosophila have
demonstrated polyGR and polyPR related toxicity (Mizielinska
et al., 2014; Freibaum et al., 2015; Lee et al., 2016), with one study
revealing the disruption of stress granule assembly due to the
presence of polyGR and polyPR (Lee et al., 2016). Other
pathways that have been implicated in arginine-containing DRP
toxicity include those involved in nucleocytoplasmic transport
(Freibaum et al., 2015) and RNA-binding (Lee et al., 2016),
though the complete nature of the pathogenesis of polyGR and
polyPR remains unclear. Of particular interest, recent studies in
ALS suggest a role for arginine methylation in disease progression
and in polyGR-related toxicity (Ikenaka et al., 2019; Gittings
et al., 2020).

Protein arginine methyltransferases (PRMTs) are a family of
enzymes that post-translationally modify proteins by methylating
nitrogen atoms of arginine residues. These modifications influence
many cellular processes including transcription, RNA processing,
signal transduction cascades, DNA damage response, and liquid-
liquid phase separation (Guccione and Richard, 2019). Specifically,
glycine- and arginine-rich (GAR) motifs, typical in histones and
RNA binding proteins, are common targets for PRMT mediated
modifications that are reported to influence protein localization and
gene expression (Thandapani et al., 2013). In the present study we
examined whether the cytotoxic effects of exogenously applied
polyGR and polyPR would be affected by pharmacological
inhibition of PRMT activity.

PRMTs are responsible for the monomethylation (MMe),
asymmetric dimethylation (ADMe), and symmetric dimethylation
(SDMe) of arginine residues, primarily within a GAR motif
(Najbauer et al., 1993; Cheng et al., 2007) and are classified as
type I, type II, or type III depending on the type of methylation they
catalyze. Type I PRMTs catalyze ADMe with MMe as an
intermediate, and include PRMT1, 2, 3, 4, 6 and 8. Type II
PRMTs catalyze SDMe with MMe as an intermediate, and
include PRMT5 and 9. Type III PRMTs perform MMe only and
include PRMT7 (Blanc and Richard, 2017).
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MATERIALS AND METHODS

NSC-34 Cell Culture
NSC-34 cells (Cedarlane Laboratories, Burlington, ON, CA) were
cultured in a complete medium consisting of high glucose
Dulbecco’s modified eagle medium (DMEM) (Millipore-Sigma,
Burlington, MA, USA) supplemented with 10% US-origin fetal
bovine serum (Thermo Fisher Scientific, Cambridge, MA, USA),
1% 200 mM L-glutamine solution (Thermo Fisher Scientific,
Cambridge, MA, USA), and 1% 10,000 U/mL penicillin-
streptomycin solution (Thermo Fisher Scientific, Cambridge,
MA, USA). Prior to preparation of NSC-34 complete medium,
L-glutamine and penicillin-streptomycin solutions were
aliquoted and stored at -20°C, and DMEM/high glucose was
stored at 4°C. At each passage, cells were washed once with
Dulbecco’s phosphate-buffered saline (DPBS) with calcium and
magnesium (Thermo Fisher Scientific, Cambridge, MA, USA)
and treated with 0.25% Trypsin-EDTA solution (Thermo Fisher
Scientific, Cambridge, MA, USA) for 5 min at 37°C and 5% CO2

for dissociation. Prepared complete medium, DPBS, and Trypsin
were always heated in a 37°C water bath before use and stored at
4°C between uses.

Preparation of Exogenous Dipeptide
Repeat Protein Solutions
Synthesized proteins GR15 (94.53% purity) and PR15 (93.17%
purity) (GenicBio Limited, Kowloon, Hong Kong, CN) and
ADMe-GR15 (95% purity) and ADMe-PR15 (98% purity)
(Anaspec, Fremont, California, USA) were purchased as
lyophilized powders and stored at -20°C in a desiccator prior
to reconstitution. Proteins were reconstituted in sterile DMSO
(Millipore-Sigma, Burlington, MA, USA) to stock concentrations
of 10 mM and stored at 4°C.

Preparation of PRMT Inhibitor Solutions
Small-molecule PRMT inhibitors MS023 and GSK591 (Tocris
Bioscience, Briston, UK), MS049 and EPZ020411 (Cayman
Chemical, Ann Arbor, MI, USA), GSK3368715 (Medchem
Express, Monmouth Junction, NJ, USA), and negative control
MS094 (Millipore-Sigma, Burlington, MA, USA) were purchased
and stored at -20°C prior to and following reconstitution. After
reconstitution using the solvents specified in Table 1, stocks were
aliquoted to 15–20 µL and immediately stored at -20°C.
UltraPure™ DNase/RNase-Free Distilled Water (Thermo
Fisher Scientific, Cambridge, MA, USA.
TABLE 1 | Small molecule PRMT inhibitors, controls, and solvents applied in these studies.

Drug name(s) Vendor catalog # Type of PRMT inhibitor Solvent used to reconstitute Stock concentration Purity

GSK591GSK3203591EPZ015866 5777/10 Type II (symmetric) DMSO 10 mM ≥97%
MS023 5713 Type I(asymmetric) Water 10 mM ≥98%
MS094 SML2548 Inactive DMSO 10 mM 99.5%
MS049 18348 Type I (asymmetric) Water 10 mM ≥98%
EPZ020411 19160 Type I (asymmetric) DMSO 10 mM ≥98%
GSK715GSK3368715EPZ019997 HY-128717A Type I (asymmetric) DMSO 10 mM 99.49%
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Small Molecule PRMT Inhibitor Details
In Cell Western Assay
NSC-34 cells were seeded in clear, flat-bottom, full volume, 96-
well tissue culture–treated plates (Thermo Fisher Scientific,
Cambridge, MA, USA). After plating, cells were incubated for
24 h at 37°C and 5% CO2 prior to application of PRMT inhibitor
or small molecule. Desired concentrations of compound were
achieved by diluting aliquots of each stock into warmed culture
medium. Cells were tested at least in quadruplicate. Once dosed,
plates were incubated for 24h at 37°C and 5% CO2. After
incubation, media was manually removed and fixed with 3.7%
paraformaldehyde (Electron Microscopy Sciences, Hatfield PA,
USA) in 1X PBS for 20 min at room temperature. Once fixed,
fixing solution was removed manually and cells were
permeabilized with 0.1% Triton X-100 + 1X PBS (Sigma-
Aldrich, St. Louis, MO, USA) washes. Wells were blocked
using Intercept Blocking Buffer (LI-COR, Lincoln, NE, USA)
for 90 min at room temperature with shaking. Blocking buffer
was manually removed and replaced with either anti-
Asymmetric di-methyl arginine antibody (1:500, Cell Signaling
Technology, 13522) or anti-symmetric di-methyl arginine
antibody (1:800, Cell Signaling Technology, 13222) in intercept
blocking buffer and kept at 4°C overnight with no shaking. After
overnight incubation, antibody solution was manually removed
and washed with 0.1% Tween 20 + 1X PBS. An IRDye 800CW
goat anti-rabbit (1:1000, LI-COR) and CellTag700 (1:500, LI-
COR) fluorescent antibody solution in intercept blocking buffer
were added to the plate and incubated for 60 min at room
temperature with shaking. Antibody solution was manually
removed and washed with 0.1% Tween 20 + 1X PBS solution.
Plate was read on the LI-COR Odyssey 9120 Infrared Imaging
System. Data were expressed as a ratio of 800 channel signal to
700 channel signal (test condition to total protein).

Plating NSC-34 and Dosing With DRPs and
PRMT Inhibitors
NSC-34 cells were in clear, flat-bottom, full volume, 96-well tissue
culture-treated plates (Thermo Fisher Scientific, Cambridge, MA,
USA). One row on the top and bottom of the plate and two columns
on either side of the plate were left without cells and contained
culture medium only to minimize experimental well volume
evaporation. After plating, cells were incubated for 24h at 37°C
and 5%CO2 prior to DRP and/or PRMT inhibitor addition. At time
of DRP/PRMT inhibitor addition, desired doses of DRP for
challenge and inhibitor for treatment were achieved by diluting
aliquots of each stock in warm culture medium. During
experiments where both PRMT inhibitors and DRPs were used,
PRMT inhibitors were always applied to wells first, followed byDRP
application. Vehicle controls were included as wells treated with
equivalent DMSO concentrations to those that had been DRP-
treated, drug treated, or both. Inhibitor toxicity controls were
included as wells treated with the desired doses of drug for the
experiment, but no DRP. DRP toxicity controls were included as
wells only treated with the doses of DRP used for challenge. Once
dosed, plates were incubated for 24 h at 37°C and 5% CO2 prior to
running the WST-1 or LDH assay endpoints. Additional controls
Frontiers in Pharmacology | www.frontiersin.org 3
needed for each endpoint are specified in the “WST-1 Assay” and
“LDH Assay” sections of these methods.

WST-1 Assay
Cells were plated and prepared using the steps described in the
“Plating NSC-34 and Dosing with DRPs and PRMT Inhibitors”
section of these methods. Other controls for this experiment
included wells containing only cells in culture medium, and
culture medium only. At time of testing, culture medium was
removed from wells and replaced with a warmed, sterile-filtered
solution consisting of DPBS with calcium and magnesium and
4.5 g/L of D-glucose (Millipore-Sigma, Burlington, MA, USA).
To wells containing 200 µL of DPBS-glucose solution, 20 µL/well
of WST-1 reagent (Millipore-Sigma, Burlington, MA) was
applied, and plates were then incubated at 37°C and 5% CO2

for 1 h before plates were read at 450 nm on a SpectraMax M3
Microplate Reader (Molecular Devices, San Jose, CA, USA). As
indicated in figures, WST-1 data was calculated relative to either
GR/PR challenge or no challenge conditions using the following
formulas. If DMSO was used as a solvent for compounds in test
conditions, then same concentrations of DMSO were added to
untreated controls.

%MetabolicActivity

=
(A450TestCondition − A450DRPonlychallenge)

(A450UntreatedControl − A450DRPonlychallenge)
∗ 100%

%MetabolicActivity =
(A450TestCondition)

(A450UntreatedControl)
∗ 100%

LDH Assay
Cells were plated and prepared using the steps described in the
“Plating NSC-34 and Dosing with DRPs and PRMT Inhibitors”
section of these methods. Other controls for this experiment
included several sets of wells with only cells in culture medium
(one triplicate designated for “untreated,” one triplicate
designated for “lysed” positive control) and wells with culture
medium only. An additional control added only to the transfer
plate at time of testing was 5 µL of LDH only. Testing was
performed using colorimetric LDH-Cytotoxicity Assay Kit II
(Abcam, Cambridge, MA, USA) per manufacturer’s instructions.
Final read at 450 nm was performed on a SpectraMax M3
Microplate Reader (Molecular Devices, San Jose, CA, USA).
Data analysis included calculation of % LDH release using the
following equation:

% LDHRelease

=
(A450TestCondition − A450UntreatedControl)
(A450LysedControl − A450UntreatedControl)

∗ 100%

In Vitro Methylation (IVM) Assay
Individual assays were conducted in 0.5 mL, flat cap PCR tubes
(Thermo Fisher Scientific, Cambridge, MA, USA). Systems
contained recombinant PRMT1 (Active Motif, Carlsbad, CA,
September 2020 | Volume 11 | Article 569661
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USA), S-(5-adenosyl)-L-methionine iodide (SAM, Sigma-
Aldrich), either Histone H4 (Active Motif) or GR15 (Genic
Bio), 10X PBS (Thermo Fisher Scientific), and nuclease-free
water (Thermo Fisher Scientific). All reagents were added to
achieve a final volume of 30 µl. Up to 0.8 µg of PRMT1, 25 µM of
SAM, 3 µM of Histone H4, and 6.7 µM of GR15 were added to the
system. Three microliters of 10X PBS was added to achieve 1X
PBS. Once desired ratios of reagents were added to each tube,
systems were lightly mixed and incubated for 2 h at 37°C and 5%
CO2. After the incubation, reactions were stopped using 10 µl of
4x LDS Sample Buffer (Thermo Fisher Scientific).

IVM Immunoblotting
After conducting the IVM assay, samples were boiled at 95°C for
5 min. Samples were separated on 4–12% Bis-Tris gels (Thermo
Fisher Scientific) and blotted onto a nitrocellulose membrane.
Membranes were blocked in a Superblock (Thermo Fisher
Scientific) and Tween 20 solution and then incubated with rat
anti-GR (1:1000, Millipore-Sigma, MABN778) and either rabbit
anti-H4R3me2a (1:500, Active Motif, 39006) or rabbit anti-
asymmetric di-methyl arginine antibody (1:500, Cell Signaling
Technology, 13522). This was followed by incubation with
fluorescently labeled IRDye antibodies (1:10,000 anti-rat 700 and
1:10,000 anti-rabbit 800, LI-COR 926-68076 and 925-32211) and
read on the LI-COR Odyssey 9120 Infrared Imaging System. The
protein standard used was the SeeBlue Plus2 Pre-stained protein
Standard (Thermo Fisher Scientific LC5925).

Statistics
Statistical analyses were performed using Graphpad Prism v.8
and Microsoft Excel. Statistical tests included two-way ANOVAs
with Dunnett’s, Sidak’s multiple comparisons tests, one-way
ANOVAs with Dunnett’s multiple comparison test, five-
parameter logistical regression models to calculate EC50s, and
a four-parameter logistical regression model to calculate IC50s.
One 1 µM and 0.2 µM data point for MS049 and one 20 µM data
point for EPZ020411 in Figure 1A were excluded for being
outside of two standard deviations of their respective means. A
full listing of n values that were not represented in main text
figures are presented in Supplementary Material Tables
S2–S6. Experiments were performed in technical triplicates or
quadruplicates, with n values greater than 3 or 4 indicating
combination with biological replicates.
RESULTS

Our lab has reported that exogenous application of GR15 and
PR15 to NSC-34 cells induces cellular toxicity, as measured by
WST-1 metabolism, LDH release, BrdU labeling, and Caspase-3
activity (Gill et al., 2019). In the present study, we use the WST-1
metabolism and LDH release assays to evaluate changes in DRP
toxicity in the presence of a PRMT inhibitor.

To test the effects of inhibition of various PRMTs in the
presence of polyGR or polyPR, we acquired commercially
available, small molecule PRMT inhibitors that were capable of
Frontiers in Pharmacology | www.frontiersin.org 4
inhibiting either ADMe or SDMe. Because multiple PRMTs are
capable of catalyzing asymmetric dimethylation of arginine
residues, multiple small molecule inhibitors were selected with
varying potencies against the various type I PRMTs. These
included MS023, GSK715, EPZ020411, and MS049. Because
PRMT5 is the more common and abundant of the two Type II
PRMTs across and in various cell types (Stopa et al., 2015), we
selected a potent and specific inhibitor of PRMT5, GSK591. As a
negative control, we used MS094, a previously described
structural analog of MS023, which is known to be inert against
all PRMT activity (Eram et al., 2016).

We first determined the potency of the PRMT inhibitors in
NSC-34 cells using an In-Cell Western (ICW) assay measuring total
ADMe for Type I PRMT inhibitors and total SDMe for the Type II
PRMT inhibitor (Table 2 and Figures 1A, B). After establishing a
working range of concentrations for each inhibitor, we measured
metabolic activity (WST1 metabolism endpoint) and cytotoxicity
(LDH release endpoint) in NSC-34 cells challenged by various
concentrations of GR15 or PR15 with or without co-incubation with
PRMT inhibitors.

We found that the Type I PRMT inhibitors were effective at
abrogating the decreased metabolic activity and increased
cytotoxicity associated with the application of GR15 or PR15,
with MS023 in particular demonstrating the lowest EC50s (Table
2 and Figures 1C–F). At some concentrations, incubation with
Type I PRMT inhibitors resulted in complete rescue of GR15 or
PR15 effects. Most of the inhibitors were inert with regards to
LDH and WST1 endpoints in the absence of polyGR and polyPR
at concentrations that were effective at abrogating polyGR and
polyPR toxicity. The lone exception was EPZ020411. At
concentrations at and above 10 µM, MS023, MS049, and
EPZ020411 did reduce WST1 metabolism and elevated
cytotoxicity, possibly contributing to their bell-shaped dose-
response curves (Supplementary Figures 1A–D and Table
S1). MS094, the reported inert analog of MS023, displayed a
negligible effect at inhibiting ADMe at 0.1 and 0.2 µM
concentrations and did not abrogate the GR15- and PR15-
related toxicity at any concentration (Figures 1H, I and
Supplementary Figure 2A). The Type II PRMT5 inhibitor,
GSK591, did inhibit SDMe but did not abrogate the decreased
metabolic activity due to GR15 and PR15 challenge (Figure 1G
and Supplementary Figure 3). These results suggest that the
activities of Type I PRMTs contribute to the toxicity produced by
GR15 and PR15.

One possible interpretation of our data is that the
asymmetric dimethylation of the arginine-rich DRPs is
essential for arginine-rich DRP toxicity. To evaluate poly-GR
as a substrate for Type I PRMT activity we conducted an in vitro
methylation assay, using recombinant PRMT1 as the enzyme
and S-adenosyl methionine (SAM) as the methyl donor group.
We used recombinant Histone H4, a known substrate of
PRMT126, as a positive control for asymmetrical and
symmetrical dimethylation activity. In one experiment, we
used antibodies against total ADMe and Histone H4
asymmetrical dimethylation (H4R3me2a) and revealed that
GR15 is subject to ADMe by PRMT1 in this system and can be
September 2020 | Volume 11 | Article 569661
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FIGURE 1 | Type I PRMT inhibitors abrogate toxicity associated with GR15 and PR15 challenge in NSC-34 cells. (A) Relative signal of total ADMe in NSC-34 cells
after having been incubated with Type I PRMT inhibitors for 24 hours. Quantification of the signal was done by ICW assay using an antibody against total ADMe and
normalized using an antibody against total protein (MS023: df = 132, R2 = 0.7441; MS049: df = 82, R2 = 0.8218; EPZ020411: df = 83, R2 = 0.7087; GSK3368715:
df = 50, R2 = 50). (B) Schematic of an ICW assay workflow and example visualization. We used a primary antibody against total ADMe, and a fluorescent green
IRDye secondary antibody. A red, CellTag700 antibody was used to fluorescently label total protein. (C, D) Percent metabolic activity after challenging with 3 µM of
GR15 or PR15 and dosing with a Type I PRMT inhibitor (GR15 challenge: MS023: df = 67, R2 = 0.8054; MS049: df = 10, R2 = 0.9630; EPZ020411: df = 13, R2 =
0.9237; GSK3368715: df = 19, R2 = 0.8077; PR15 challenge: MS023: df = 40, R2 = 0.9034; MS049: df = 10, R2 = 0.9571; EPZ020411: df = 13, R2 = 0.9625;
GSK3368715: df = 7, R2 = 0.9330). (E, F) Percent LDH release after challenging with 3 µM of GR15 or PR15 and dosing with a Type I PRMT inhibitor (GR15

challenge: MS023: df = 22, R2 = 0.9056; MS049: df = 10, R2 = 0.9414; EPZ020411: df = 13, R2 = 0.8807; GSK3368715: df = 10, R2 = 0.9313; PR15 challenge:
MS023: df = 22, R2 = 0.9398; MS049: df = 10, R2 = 0.9613; EPZ020411: df = 10, R2 = 0.7078; GSK3368715: df = 10, R2 = 0.9375). (G) Percent metabolic activity
after challenging NSC-34 cells with 3 µM of GR15 or PR15 and dosing with GSK591 (two-way ANOVA with Dunnett’s multiple comparison; n = 6 untreated, n = 3
treated; P values > 0.1657, mean ± s.e.m). The 200 µM dose of GSK591 significantly decreased metabolic activity beyond the effect observed with 3 µM of GR15

alone (two-way ANOVA with Sidak’s multiple comparison; n = 6 untreated, n = 3 treated; *P = 0.0261, mean ± s.e.m.) (H) Percent metabolic activity after challenging
cells with 3 µM of GR15 or PR15 and dosing with MS094 (two-way ANOVA with Dunnett’s multiple comparison; NS P values >0.5496, mean ± s.e.m.). (I) Percent
LDH release after challenging cells with 3 µM of GR15 or PR15 and dosing with MS094 (two-way ANOVA with Dunnett’s multiple comparison; NS P values >0.1650,
mean ± s.e.m.). For (C, D, G, H), 100% activity represents untreated NSC-34 cells, and 0% activity represents metabolic activity after 3 µM of GR15 or PR15

challenge alone. For (C–F), full dose response plots can be found in Supplementary Figure 1. For (A), (C–F), a full listing of n for each condition can be found in
the Supplementary Statistics section of the Supplementary Material.
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TABLE 2 | IC50s for inhibition of dimethylation activity and EC50s for abrogation of toxicity caused by GR15 or PR15 challenge, and chemical structures for each
compound tested.

Small molecule IC50 (µM) ± s.e. EC50 (µM) ± s.e. Chemical structure

3 µM GR15 challenge 3 µM PR15 challenge

WST-1 LDH WST-1 LDH

MS023 0.545 ± 0.646 0.08 ± 0.02 0.012 ± 0.006 0.132 ± 0.017 ~0.029

MS049 1.082 ± 0.291 ~2.103 ~1.765 ~1.99 ~1.616

EPZ020411 1.529 ± 0.310 12.01 ± 14.23 1.41 ± 0.118 ~2.655 ~2.939

GSK715 0.08 ± 0.441 ~0.6724 ~0.768 ~0.799 ~0.269

GSK591* 1.914 ± 96.28 – – – –

MS094** – – – – –

IC50s were calculated using a four-parameter logistical regression model, and EC50s were calculated using a five-parameter logistical regression model. Ambiguous values result from
curve fits that lack a plateau or constraint.
*Inhibits symmetrical dimethylation.
**Inert analog of MS023.
~indicates value is ambiguous.

Premasiri et al. PRMT Inhibition for C9orf72 ALS
increasingly dimethylated when incubated with increasing
amounts of PRMT1 (Figure 2A). The H4R3me2a antibody
was able to detect the ADMe of GR15, possibly due to the
antibody having been raised against the H4R3me2a epitope
containing a methylated arginine 3, which is preceded by a
glycine (Figure 2A).

After determining that GR15 could be arginine methylated, we
had ADMe-GR15 synthesized. We first compared effects of
ADMe-GR15 challenge to effects of unmethylated GR15

challenge in our LDH and WST-1 assays in NSC-34 cells.
ADMe-GR15 challenge produced similar levels of cytotoxicity
as challenge with unmethylated GR15 peptide and caused a
significant decrease in cellular metabolic function beyond the
effects seen with unmethylated GR15 (Figures 2B, C). To further
elucidate the mechanism behind the protective effects of Type I
PRMT inhibitors, we challenged NSC-34 cells with ADMe-GR15

and dosed with MS023. In contrast to treatment after challenge
with unmethylated GR15, MS023 was not able to abrogate the
toxicity produced by ADMe-GR15 challenge (Figures 2D, E). We
also had ADMe-PR15 synthesized and conducted a similar set of
experiments as those with ADMe-GR15 and unmethylated GR15.
Again, we found that ADMe-PR15 challenge led to similar levels
of cytotoxicity and caused a significantly greater decrease in
metabolic activity when compared to unmethylated PR15

challenge (Figures 2B, C). Interestingly, MS023 co-incubation
led to abrogation of toxicity caused by PR15 and to, a much lesser
extent, toxicity caused by ADMe-PR15 (Figures 2F, G).
Together, these results suggest the importance of asymmetric
dimethylation to the toxicity caused by the arginine-rich DRPs
Frontiers in Pharmacology | www.frontiersin.org 6
however, the post-modification mechanism driving polyGR
toxicity could be different than that of polyPR.
DISCUSSION

The present study reveals that Type I PRMT inhibitors can
completely abrogate toxicity produced by exogenous polyGR and
polyPR challenge in NSC34 cells and suggests that Type I PRMT
inhibition is a potential therapeutic strategy for C9orf72-
associated ALS. We also determined that polyGR is subject to
ADMe modification, and the ADMe of exogenous polyGR and
polyPR is crucial to the toxicity caused by the arginine-rich
dipeptide repeats. The partial rescue of ADMe-PR15 toxicity by
MS023 leaves the question of how the mechanisms of polyGR
and polyPR differ. As PRMTs typically react with GAR motifs,
methylation and demethylation dynamics could be different
between the two DRPs, leading to different responses in the
presence of a PRMT inhibitor (Thandapani et al., 2013).
Alternatively, it is possible that ADMe-PR15 interferes
downstream with various PRMT substrates, and the addition
of an inhibitor partially prevents those interactions. It is
noteworthy that our co-incubation of DRP and Type I PRMT
inhibitor produced a bell-shaped dose-response curve, possibly
indicating a drastic increase in Type I PRMT activity in hormetic
response to the inhibitor (Calabrese et al., 2018). Recent work
examining dimethylation found in human cortical tissue suggests
symmetric dimethylation of DRPs can extend disease duration
(Gittings et al., 2020). As symmetric dimethylation prevents
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FIGURE 2 | Asymmetrical arginine dimethylation of GR15 prevents abrogation of toxicity by MS023. (A) Products of in-vitro methylation assay immunoblotted for
asymmetrically dimethylated arginine 3 in Histone 4 and GR dipeptide (left) and total asymmetrical arginine dimethylation and GR dipeptide (right). Also shown is the
peptide sequence of Histone 4 with the epitope of the H4R3me2a antibody highlighted. Both blots show ADMe of GR15 and that it is increasingly dimethylated with
increasing amounts of PRMT1. (B) Percent metabolic activity after challenging with ADMe-GR15 compared to unmethylated GR15 (****P < 0.0001, ***P = 0.0002,
**P = 0.0013, *P = 0.0281) or ADMe-PR15 compared to unmethylated PR15 (

####P < 0.0001, ##P = 0.004; two-way ANOVA with Sidak’s multiple comparison; n = 3
for each dose of DRP; mean ± s.e.m.). (C) Percent LDH release after challenging with ADMe-GR15 compared to unmethylated GR15 (**P = 0.0083, *P = 0.0117) or
ADMe-PR15 compared to PR15 (#P = 0.0239; two-way ANOVA with Sidak’s multiple comparison; n = 3 for each dose of DRP; NS P > 0.05 mean ± s.e.m.).
(D) Percent metabolic activity after challenge with 3 µM of ADMe-GR15 or unmethylated GR15 and dosing with MS023, compared to activity after challenge of 3 µM
of GR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 9 for each dosing group; NS P > 1.638, ****P < 0.0001, *P = 0.0411; mean ± s.e.m.).
(E) Percent LDH release after challenge with 3 µM of ADMe-GR15 or unmethylated GR15 and dosing with MS023, compared to release after challenge of 3 µM of
GR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 3 for each dosing group; NS, P > 0.0657, ****P < 0.0001, ***P = 0.0002; mean ± s.e.m.).
(F) Percent metabolic activity after challenge with 3 µM of ADMe-PR15 or unmethylated PR15 and dosing with MS023, compared to activity after challenge of 3 µM of
PR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 3 for each dosing group; NS, P > 0.1830, ****P < 0.0001, ***P = 0.0004, #P > 0.0242;
mean ± s.e.m.). (G) Percent LDH release after challenge with 3 µM of ADMe-PR15 or unmethylated PR15 and dosing with MS023, compared to release after
challenge of 3 µM of PR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 3 for each dosing group; NS, P > 0.0.2947, ****P < 0.0001, ***P =
0.0007; ####P < 0.0001, ###P = 0.0004, #P > 0.0273 mean ± s.e.m.). For (D, F), 100% activity represents untreated NSC-34 cells, and 0% activity represents
metabolic activity after 3 µM of GR15 or PR15 challenge alone, respectively. For (F, G), *- PR15 + MS023 compared to PR15 alone. # - ADMe-PR15 + MS023
compared to PR15 alone.
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asymmetric dimethylation from occurring on a given substrate,
our results are consistent with human pathological findings.
Given that our systems were different however, more work
in other models needs to be done to better understand
how PRMT activity influences C9orf72-mutation mediated
neurodegeneration. In summary, our study reveals a novel
mechanism that can contribute to arginine-rich DRP toxicity
and suggests a possible therapeutic strategy through Type I
PRMT inhibition.
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