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Abstract: Gestational diabetes mellitus (GDM) is a disorder in pregnancy with highest impact in the
future life of both mother and newborn. Increasing incidence, economic impact, and potential for
severe GDM-related pregnancy complications are some factors that have motivated the deep study of
physiopathology, risk factors for developing GDM, and potential biomarkers for its diagnosis. In the
present pilot study, we analyzed the urinary metabolome profile of GDM patients in the 3rd
trimester of pregnancy, when GDM is already established and the patients are under dietary and
pharmacological control. An untargeted metabolomics method based on liquid chromatography–mass
spectrometry analysis was developed to identify differentially expressed metabolites in the GDM
group. We identified 14 metabolites that are significantly upregulated in the urine of GDM patients,
and, more importantly, we identified those related with the steroid hormone biosynthesis and
tryptophan (TRP) metabolism pathways, which are associated with GDM pathophysiology. Thus,
these metabolites could be screened as potential prognostic biomarkers of type two diabetes mellitus,
coronary artery disease and chronic renal failure in future follow-up studies with GDM patients.
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1. Introduction

Gestational diabetes mellitus (GDM) is the most common complication of pregnancy worldwide
and is defined as hyperglycemia that is recognized for the first time during pregnancy [1]. The disease
is usually diagnosed in the second or third trimester of pregnancy in patients with no history of
diabetes prior to gestation [2].

In Mexico, the prevalence of GDM ranges from 8.7–17.7%. Women in Mexico are a high-risk group
for developing GDM, which increases in incidence in older, overweight and obese women (body mass
index > 30 kg/m2), or those with a family history of type two diabetes (T2D) [3,4].
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Hyperinsulinism with increased peripheral insulin resistance (IR) is a characteristic of GDM.
Hyperglycemia during pregnancy promotes epigenetic changes to the fetus and is associated with
increased risk for chronic diseases during adult life [5]. Maternal hyperglycemia results in exaggerated
fetal anabolism, growth of fetal adipose tissue, and bone and muscle tissue leading to macrosomia.
The newborns are prone to neonatal hypoglycemia, hyperbilirubinemia, hypocalcemia, respiratory
distress syndrome, and polycythemia [6].

Women with GDM are, on average, seven times more likely to develop T2D. Approximately
50% of mothers with GDM will develop T2D within ten years—along with cardiovascular morbidity,
metabolic syndrome, and renal complications [7,8]. However, the metabolic mechanisms underlying
this pathophysiology remain poorly understood. Metabolomics studies have confirmed that highest
circulating concentrations of different metabolites in patients with T2D and GDM are associated with IR
and pancreatic β-cell dysfunction [9]. A range of untargeted and targeted metabolomics methodologies
have been developed to characterize the metabolome. Amino acids and its derivatives—organic acids,
lipids, and fatty acids—are some dysregulated metabolites identified in studies conducted principally
with maternal serum or plasma [10]. Only a few studies have investigated the excretion profile of
maternal urine [11–16]. Urine is very useful for clinical applications because it is available in large
quantities, can be collected in a non-invasive manner, and sample treatment is relatively simple.
However, the biological interpretation of the urine metabolome remains challenging due to the effect
of physiological factors or hydration status.

While the search for biomarkers capable of predicting GDM early in pregnancy (first and second
trimesters) has been the main goal of metabolomics studies conducted in pregnant women, it is
also very important to investigate the metabolic alterations in late pregnancy, when GDM has been
established. The identification of dysregulated circulating metabolites in GDM patients—metabolites
which have also been found to be dysregulated in patients with diabetes, renal failure, cardiovascular
complications, and hypertensive disorders—may reflect unmanaged GDM or ineffective response
to treatment and dietary control, leading to the aforementioned diseases. Recently, dysregulated
tryptophan (TRP) and purine metabolism have been described as the major pathophysiology of
GDM [16]. Besides, chronic kidney disease secondary to T2D is also associated with accumulation of
toxic TRP metabolites due to both inflammation and impaired kidney function [17]. Dysregulation of
TRP-kynurenine (KYN) and KYN-nicotinamide adenine dinucleotide (NAD) metabolic pathways has
been postulated as one of the mechanisms of IR [18]. Recently, branched-chain amino acids (BCAAs)
and the valine metabolite 3-hydroxybutyrate have shown potential as biomarkers for the transition of
GDM to T2D [19]. In conjunction, the study of metabolic pathways dysregulated during the course of
GDM could contribute to predicting irreversible metabolic effects in the mother.

In the present study, we analyzed the urinary metabolome of Mexican GDM patients at the 3rd
trimester of pregnancy, when GDM is already established and the patients are under dietary and
pharmacological control, with the purpose of predicting dysregulated metabolic pathways that could
be molecular links associated with negative outcomes after pregnancy.

2. Results

2.1. Clinical and Demographic Characteristics of the Groups Under Study

A total of 35 pregnant women were selected for the study from an initial cohort of 80 patients.
11 women had healthy pregnancies (control group) and 24 patients had GDM (GDM group).
The clinical characteristics of the study groups are presented in Table 1. These data belong to the first
prenatal control. There were no statistically significant differences between groups for maternal age,
pre-gestational body mass index (BMI), and all clinical findings except glucose levels (p = 0.0029).
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Table 1. General clinical characteristics of the pregnant women included in the study.

GDM (n = 24) Control (n = 11) p-Value

Age (years) 31.00 ± 1.401 26.91 ± 1.232 0.0771
Gestational age at sampling (weeks) 32.05 ± 0.9026 34.74 ± 0.6853 0.0672

BMI (Kg/m2) 30.07 ± 1.268 25.98 ± 1.594 0.0546
Glucose (mg/dL) 92.75 ± 3.174 76.70 ± 1.764 0.0024

SBP (mmHg) 110.4 ± 9.079 108.2 ± 9.816 0.8781
DBP (mmHg) 73.75 ± 9.816 71.82 ± 7.109 0.8161

Creatinine (mg/dL) 0.5262 ± 0.02066 0.5500 ± 0.03643 0.5436
Urea (mg/dL) 13.83 ± 0.9461 16.12 ± 1.734 0.2144

Hb (g/dL) 12.52 ± 0.8055 13.26 ± 1.074 0.1453
Leucocytes (×103) 8.739 ± 1.756 8.000 ± 1.525 0.2339

Data are presented as mean ± standard error of mean (SEM). BMI: body mass index; SBP: systolic blood pressure;
DBP: diastolic blood pressure. p-values were determined by independent t-test or Mann–Whitney test. Statistically
significant: p < 0.05.

The urea, creatinine, and glucose results measured in the plasma of GDM patients before and
after the diagnosis are shown in Figure 1.
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Figure 1. Levels of (A) glucose, (B) creatinine, and (C) urea measured in plasma of GDM patients 
before and after GDM diagnosis. Significant differences between the levels in the first prenatal visit 
(pre-D) and the levels at 3rd trimester (post-D) were found for the three metabolites (p < 0.05). Data 
were analyzed by a paired t-test with the software GraphPad Prism. 
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Figure 1. Levels of (A) glucose, (B) creatinine, and (C) urea measured in plasma of GDM patients
before and after GDM diagnosis. Significant differences between the levels in the first prenatal visit
(pre-D) and the levels at 3rd trimester (post-D) were found for the three metabolites (p < 0.05). Data
were analyzed by a paired t-test with the software GraphPad Prism.

2.2. Ultra-Performance Liquid Chromatography (UPLC)-Mass Spectrometry (MS) Urinary Profiles

Typical urinary profiles acquired under positive ion mode are shown in Figure 2.
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Figure 2. Positive ion base peak intensity chromatograms of urine from a healthy control (top) and a
GDM patient (bottom) in the third trimester.

The methodology’s reproducibility was evaluated between quality control (QC) injections,
which were run before the samples, and showed good reproducibility for retention time, peak shape,
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and peak intensity. These were evaluated by direct comparison of overlaid chromatograms
(Figure 3A,B) that showed no drifts in retention time, reflecting the stability and reproducibility
of the system.
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2.3. Metabolites Identification

A total of 4598 features were detected under the conditions employed for the pre-processing of
the raw data within UNIFI 1.8.1 (Waters Corp., Milford, MA, USA) and detailed in the Material and
Methods section (retention times from 0 to 10 min). Since creatinine normalization had been proven
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inappropriate for clinical applications [20], in the present study normalization was applied using total
ion abundance, scaling the summed abundance of all compound ions in each sample to an equal value.

In the principal component analysis (PCA) score plot, the samples of the control group were
only partially separated from the GDM group (variance explained R2Xcum = 60%). PCA was first
performed to discover intrinsic treatment-related clusters within the datasets and to identify outliers
(Supplementary Figure S1).

Following this, partial least-squares discriminant analysis (PLS-DA) and orthogonal partial
least-squares discriminant analysis (OPLS-DA) were used to improve separation among the groups
and to screen for differential metabolites. The OPLS-DA score plots resulted in inter-group
separation (Figure 4A). The parameters of the obtained models were satisfied with an acceptable
quality of variance explained (R2) and variance predicted (Q2) and are represented in Figure 4B.
Differential metabolites were selected based on the separation through the OPLS-DA loadings and
variable importance projection (VIP) scores (Figure 4C). VIP represents the extracted variables’ ability
to discriminate between different treatments. The variables with VIP values greater than 1.5 (VPI > 1.5)
were included in the set of metabolites analyzed. The loading plots (S-Plot) identified the metabolites
with significant differences in abundance between the study groups (Figure 4D). These variables were
further filtered by Mann–Whitney–Wilcoxon test to determine whether a potential biomarker was
statistically significant between the two groups. The metabolites with a significant difference after
false discovery rate correction (q < 0.05) were kept and considered as the potential biomarkers.
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Figure 4. (A): Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the urine
data set, acquired under positive ion mode. Visual inspection of the OPLS-DA score plot exhibited
tight clusters of samples from each group. (B): Goodness of fit; variance explained R2Y(Cum): 88%,
variance predicted Q2(Cum): 59%. (C): Coefficients vs. variable importance in the projection (VIP).
The VIP values were also implemented to search for potential biomarkers. Only variables with VIP
values higher than 1.5 were highlighted to be important for discrimination. (D): S-plot score plot.

The metabolites selected in the OPLS-DA loading S-plot were identified as described in Material
and Methods. Identified metabolites with significant changes in expression after false discovery rate
(FDR) correction in the GDM group are summarized in Table 2. Moreover, Supplementary Table S1
shows other identified metabolites (p < 0.05; q > 0.05). The exact measured mass/charge (m/z),
mass error (mDa), retention time, and percentage of changes between groups (fold change) are detailed
along with the statistical significance of each change. The selected metabolites were identified and
classified according to their degree of physicochemical and/or spectral similarity to published data.
Mass Spectrometry (MSE) data were manually inspected for the correct identification of major ions.
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Table 2. Differential metabolites dysregulated in GDM urine.

Class Compound HMDB Molecular
Formula Observed m/z RT (min) p-value FC Mass Error (mDa) Adducts

Benzopyrans 5-carboxy-alpha-chromanol HMDB0012798 C19H28O4 338.2322 5.82 2 × 10−4 a 4.2 2.0 NH4+

Carboxylic acids and derivatives
1-Methyl

N-L-alpha-aspartyl-L-phenylalanate
(Aspartame)

HMDB0001894 C14H18N2O5 295.12879 3.32 4.45 × 10−4a 5.1 0.2 H+

Glycerolipids DG (24:0/14:1) HMDB0007792 C41H78O5 668.6179 9.87 6.36 × 10−4 a 3.6 −0.9 NH4+

Indoles and derivatives L-Tryptophan HMDB0000929 C11H12N2O2 205.09703 2.90 3.08 × 10−6 a 2.4 −0.5 H+

Tetrapyrroles and derivatives L-Urobilinogen HMDB0004157 C33H48N4O6 597.3631 5.94 3.75 × 10−3 a 3.2 −1.6 H+

Sphingolipids Cer (d18:0/23:0) HMDB0011767 C41H83NO3 638.60751 9.92 5.0 × 10−7 a 11 0.1 H+

SM (d18:0/22:0) HMDB0012091 C45H93N2O6P 789.685 9.62 4.96 × 10−6 a 4.2 0.6 H+

Steroid and steroid derivatives

11-oxo-androsterone-glucuronide HMDB0010338 C25H36O9 503.2247 5.5 5.44 × 10−4 a 2.6 −0.5 Na+

cortolone-3-glucuronide HMDB0010320 C27H42O11 543.2789 5.12 5.80 × 10−4 a 2.9 −1.1 H+

tetrahydroaldosterone-3-glucuronide HMDB0010357 C27H40O11 563.2456 5.09 2.38 × 10−5 a 4.6 −0.7 Na+

5-androstene-3b,16b,17a-triol HMDB0000523 C19H30O3 329.21105 5.09 6.10 × 10−5 a 4.4 1.9 Na+

21-deoxycortisol HMDB0004030 C21H30O4 347.22121 5.26 2.45 × 10−4 a 3.7 −0.6 H+

11b, 17a,21-Triydroxypreg-nonolone HMDB0006760 C21H32O5 365.2317 5.09 2.0 × 10−3 a 3.1 −0.4 H+

cucurbitacin c HMDB0034706 C32H48O 561.3411 5.92 3.00 × 10−4 a 3.3 0.1 H+

a: significative for false discovery rate (FDR) correction. FC: Fold change. Metabolites in bold are exogenous metabolites.
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2.4. Pathway Analysis

The underlying signaling pathways and molecular networks influenced by GDM were explored
and visualized by MetPA, a web application for metabolomics analysis. Identified metabolites
contributing to the separation of pairwise groups were imported into MetPA. The “Homo sapiens”
library was selected for the database, while hypergeometric test and relative-betweenness centrality
were performed for over-representation analysis and pathway topology analysis respectively.
Tryptophan metabolism and steroid hormone biosynthesis were classified as important, although other
metabolic pathways related to amino acids, lipids, purine, and carbohydrate metabolism were also
identified (Figure 5).Int. J. Mol. Sci. 2019, 20, x 8 of 16 
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Figure 5. Summary of pathway analysis visualized by MetPA. Steroid hormone biosynthesis and
tryptophan metabolism pathways have significant pathway impact (pathway impact > 0.1). The dots
represent the pathways that were matched using pathway impact values from pathway topology
analysis and p values from pathway enrichment analysis. Colors (varying from yellow to red),
means the metabolites are in our data with different levels of significance for enrichment analysis.
Other metabolic pathways identified are: Sphyngolipid metabolism, Phenylalanine, Tyrosine and
Tryptophan metabolism, Nitrogen metabolism, Nicotinate and nicotinamide metabolism, Glycine, serine
and threonine metabolism, Starch and sucrose metabolism, Pentose and glucuronate interconversions,
Aminocyl t-RNA biosynthesis, Arginine and proline metabolism, and Purine metabolism.

When investigated with the same methodology for the relationship of urinary metabolites with
diseases, cervical/colon/ovarian cancer, impaired glucose tolerance, diabetes mellitus, coronary artery
disease, and chronic renal failure, among others, were predicted (Figure 6).
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3. Discussion

In the present pilot study, we analyzed the urinary metabolomics profiles of patients with GDM
in the third trimester of pregnancy. At this point, all the patients enrolled in the study were receiving
dietary control and/or pharmacological support (insulin or metformin or a combination of both).
Since GDM was diagnosed at 24–28 weeks of gestation, the hyperglycemia associated with this
condition could have induced persistent metabolic alterations during the pregnancy. The selected
participants were matched according to pre-gestational BMI and age, which, although non-significant,
were higher on average in the GDM group. In both groups, consistent with epidemiologic statistical
reports in the Mexican population [3], overweight and obese women were predominant. As shown
in Figure 1, the evolution of the disease was monitored measuring the levels of glucose, creatinine,
and urea before and after the GDM diagnosis. The levels of glucose decreased significantly at the 3rd
trimester, reflecting a positive effect of treatment and dietary control (three patients received insulin
treatment and 21 were treated with metformin 850 mg). However, the significant increase in the levels
of serum urea and creatinine in the GDM group after diagnosis means that underlying metabolic
disorders continued taking place during the pregnancy. The significantly upregulated metabolites
identified in our work by the metabolomics approach belong to the following compound classes:
benzopyrans, carboxylic acids and derivatives, glycerolipids, indoles and derivatives, tetrapyrroles,
sphingolipids, and steroid derivatives. Different metabolites within these classes have an impact in the
physiopathology of GDM and its complications.

3.1. The Contribution of Identified Metabolites in the Physiopathology of GDM

Since the composition of urine is significantly influenced by diet, measurement of maternal urine
can be used to identify a change in dietary pattern. In our study, aspartame (known as trademark
canderel), 5-carboxy-alpha-chromanol (related with the Vitamin E metabolism), and cucurbitacin c
(present in fruits and cucumber) are related with dietary control in the GDM group. These substances
are particularly consumed in Mexican patients under a dietary regimen, as suggested by the Mexican
Food System Equivalents [21].
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Several compounds classified as steroids and derivatives were also found upregulated in our
study: 11-oxo-androsterone-glucuronide, cortolone-3-glucuronide, tetrahydroaldosterone-3-glucuronide,
5-androstene-3b,16b,17a-triol, and 21-deoxycortisol. Some of these metabolites are related to the
glucuronidation process—which is used to assist in the excretion of toxic substances, drugs or other
substances that cannot be used as an energy source—and have been found altered during GDM [16].
The increase in cortisol cortisol derivative levels during pregnancy is considered as the main cause of
the decrease in glucose tolerance. Steroid hormones, which are elevated steadily during pregnancy, are
the main hormones that influence β-cell function in early pregnancy and IR, especially in late pregnancy.
Estrogen levels change during pregnancy in different states of GDM [22].

Steroid hormones and lipid metabolism are closely related, not only because lipids are precursors
of steroid hormones, but also due to the effect on lipid metabolism during pregnancy. In our study,
we identified two classes of lipids: sphingolipids and glycerolipids. Diacylglycerols (DGs; belonging
to glycerolipids) are intracellular messengers that have been identified as mediators of IR [23].
Regarding sphingolipid metabolism, we detected two species differentially expressed: SM (d18:0/22:0)
and Cer (d18:0/23:0). Sphingomyelins are present in animal cell membranes, and the synthesis and
degradation of sphingomyelin species produce signal transduction second messengers that regulate
the innate immune response at the feto-maternal interface [24]. Other authors have found pronounced
elevations in several species of both saturated and unsaturated sphingomyelins in GDM amniotic
fluid [25].

The metabolic breakdown of SM results in ceramides, which are recognized as proinflammatory
lipids which are increased in T2D. Ceramide accumulation has demonstrated to be detrimental to
pancreatic beta cells and may promote IR, thereby playing a direct role in the pathogenesis of T2D in
both the general population and in women with previous GDM [26].

L-tryptophan was found upregulated in our study. Altered levels of TRP have been found
in GDM patients [16] as well as in normal pregnancies [9]. TRP is metabolized via TRP-KYN and
TRP-methoxyindole pathways.

Regarding the relationship between the identified metabolites and the pharmacological treatment
with metformin, in a recent work, Zucker diabetic fatty rats were treated daily for 12 weeks with
metformin (200 mg/Kg), which represents a high dose when compared to the maximum human
daily dose of 2000 mg/day. In this study, six metabolites were found to have significantly reverted to
the normal levels after the therapy, including sphingosine [27]. However, this study was conducted
in a model of non-pregnant diabetic rats. A recent report informed about the metabolic profile in
women with GDM treated with metformin or insulin [28]. In this study, independently of medication,
pregnancy itself had marked influences on amino acid profiles. Metformin treatment of GDM caused
a greater increase in serum alanine, isoleucine, and lactate concentrations; this agrees with other
previously reports. It was demonstrated that treatment with metformin is associated with increased
triglyceride levels and higher atherogenic index of plasma in the third trimester in pregnant women
with GDM [29]. Although measures of glucose and C-reactive protein improved with treatment with
metformin and insulin, the increase in maternal plasma triglycerides—between randomization to
36 weeks—was greater in women treated with metformin [30,31]. Moreover, previous randomized
control trials of lifestyle advice or metformin in obese or overweight pregnant women have reported
little or no effect on standard lipid measurements [32,33].

3.2. Pathway Analysis: Impact on GDM Complications

The metabolic pathways considered as significant (pathway impact > 0.1) in our study were the
steroid hormone biosynthesis and TRP metabolism pathways.

In pregnancy, increase in IR occurs due to substantial steroid spectra changes. Major changes
in the hypothalamic–pituitary–adrenal/–gonadal axis influence fetal growth and timing of delivery.
In the same manner, counter-regulatory hormones—placental growth hormone (GH), glucocorticoid
cortisol, and progesterone—progressively increase. It has been reported that gonadal steroids have also
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been shown to modulate pancreatic function and susceptibility to developing IR and T2D. High levels
of androgens are also associated with other serious health consequences, such as high cholesterol,
high blood pressure, heart disease, IR, and T2D. Moreover, IR leads to hyperinsulinemia, which is
described to induce androgen production and, consequently, hyperandrogenemia directly promotes
peripheral IR in women [34]. These mechanisms, when dysregulated, promote the emergence of GDM.

Regarding the TRP dysregulation, in a recent study, serum TRP level was found to be significantly
higher in T2D and was positively and independently associated with risk of diabetes onset.
Patients with higher TRP level tended to present with a higher degree of IR, higher triglycerides,
and higher blood pressure [35]. These authors suggest that serum TRP levels increased before IR
and T2D, and then depleted gradually along with the progression of T2D. The variation pattern of
circulating TRP may represent the compensatory metabolic response to increased oxidative stress
related to inflammation as well as the competition with branched-chain amino acids for the same
trans-membrane transporter during the development of T2D.

Metabolites of the TRP-kynurenine pathway (i.e., TRP, kynurenine, kynurenic acid, quinolinic
acid, 3-hydroxyanthranilic) were also associated with diabetes development in another study [36].
Other authors have reported that downstream bioactive TRP metabolites—kynurenine, kynurenic
acid, and quinolinic acid—were positively and robustly correlated with the severity of kidney
disease [18]. The close relationship in the kynurenine pathway between TRP, gamma-interferon,
and 2-3-dioxygenase (IDO) as an immuno-modulatory mechanism has since been substantiated [36].

In the specific context of TRP alterations during pregnancy, recent work has also demonstrated
similar results: changes in L-TRP in the GDM group were related to an altered serotonin
metabolism [37].

TRP is in high demand during pregnancy to meet the increased protein formation for the
development of the fetus, and also essential for the production of serotonin in brain, melatonin in the
pineal gland, nicotinic acid in liver, etc. This has led to the end for “the tryptophan depletion concept
in pregnancy” and its replacement by the “tryptophan utilization concept” [38]. High levels of TRP
have also found in pregnancy disorders. A potential role of excessive levels of TRP in preeclampsia has
been found, suggesting that high TRP levels can undermine T-cell suppression, resulting in pregnancy
complications [39].

The finding of steroid hormones and TRP metabolism dysregulation in our study may be linked
with the results obtained in the metabolite set enrichment analysis, where some of the diseases that
have been associated with abnormalities in these metabolites are listed (Figure 6). These diseases have
been associated with previous GDM history.

Since this study is a pilot and exploratory study, it is limited by a small sample size and the lack
of an external validation cohort at the time of the study. The internal cross-validation and univariate
methods employed were helpful in validating the OPLS-DA model; this intriguing initial observation,
however, requires external validation. Hence, it is imperative that further longitudinal studies be
conducted to replicate these results using a larger and more diverse patient cohort.

4. Materials and Methods

4.1. Study Design and Selection of Participants

A cross-sectional study was performed between May and December 2018 to evaluate the
metabolomics profile in the 3rd-trimester urine of pregnant women diagnosed with GDM. The GDM
group (n = 24) was composed of patients who were diagnosed with GDM during the second trimester.
The control group (n = 11) was constituted by euglycemic women. Patients who developed GDM
were matched with women with normal pregnancies based on age and first prenatal body mass index
(BMI). The criteria used for the diagnosis of GDM were established in accordance with the parameters
established by the American College of Obstetricians and Gynecologists (ACOG) [40]. A routine oral
glucose tolerance test (OGTT) was performed at 24–28 weeks’ gestation, following the World Health
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Organization recommendations [41]. Patients enrolled in the study received treatment immediately
after the diagnosis and until the delivery. The first-line treatment for pre-gestational and GDM is diet
and moderate exercise, which can control up to 70–85% of patients. The first-line pharmacological
treatment for gestational diabetes mellitus is insulin, however, in this study, the use of metformin
in GDM patients with 20 weeks of gestation or higher was considered as a choice of treatment: (a)
when the patient refused the insulin therapy, (b) when the patient was controlled without risk for the
binomial, and (c) when the patient stated her agreement with the therapy having signing an informed
consent form.

Table 3 summarizes the diagnostic criteria established at Hospital Central. Patients with
gestational hypertension, urinary infections, pre-existent T2D, preeclampsia, and chronic renal disease
were excluded. Patients were also interviewed and tested for additional comorbidities. Neither cancer
nor Polycystic ovary syndrome were reported among the patients. Clinical and demographic data were
collected from the medical records for each participant at the first prenatal visit. For GDM patients,
levels of glucose, urea, and creatinine were also measured in the 3rd trimester.

Table 3. Diagnostic criteria for GDM.

Procedure Glucose Cut Points a

Time (h) mg/dL mmol/L

Step 1: 50 g Fasting ≥140 mg/dL 7.8
Step 2: 100 g, 3 h OGTT b Fasting ≥95 mg/dL 5.3

1 ≥180 mg/dL 10.0
2 ≥155 mg/dL 8.6
3 ≥140 mg/dL 7.8

75 g, 2 h OGTT b Fasting ≥92 mg/dL 5.1
1 ≥180 mg/dL 10.0
2 ≥153 mg/dL 8.4

a: venous serum or plasma glucose measured at the hospital laboratory. b: Two values meeting or exceeding the cut
points are required for diagnosis.

4.2. Ethical Considerations

The study was carried out in agreement with the Helsinki Declaration. Signed written informed
consent was obtained from all participants prior to interviews and sample collections. The protocol
was approved by the Research Ethics Committee of the Hospital Central “Dr. Ignacio Morones Prieto”,
San Luis Potosi, Mexico, with Registry: CONBIOETICA-24-CEI-001-201604279. The Registry number
of the protocol is 84-17 and it was approved on 19 December 2017.

4.3. Sample Collection and Preparation

Prenatal visits were always scheduled in the morning. Midstream urine samples were collected
from each patient at the Hospital Central. The samples were centrifuged at 1200 rpm for 15 min at
room temperature (RT) to eliminate cells and/or cellular debris. Then, the urine samples were again
centrifuged at 3000 rpm at 4 ◦C, aliquoted and stored at –80 ◦C until use. For metabolomics analysis,
urine samples were thawed on ice and vortexed. A 10-microliter aliquot of each sample was pooled
to build quality controls (QC) for each group under study. A 100-microliter aliquot of each sample
and QCs was diluted with liquid chromatography–mass spectrometry (LC–MS) grade water (1:1 v/v).
The mixture was then centrifuged at 14,000 rpm at 4◦C for 15 min. The supernatant was transferred to
glass sample vials for UPLC–MS analysis.

4.4. UPLC- MS Method for Metabolomics Analysis

LC–MS grade acetonitrile and water was purchased from JT Baker (Brick Town, NJ, USA).
High- purity formic acid (99%) was provided by Thermo Scientific (Rockford, IL, USA).
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Samples were analyzed with an ACQUITY UPLC I-Class (Waters Corp., Milford, MA, USA)
coupled to a XEVO-G2 XS quadrupole time-of-flight (ToF) mass spectrometer (Waters, Manchester,
NH, USA) with an electrospray ionization source. The separation of different metabolites was done in
a UPLC Ethylene Bridged Hybrid (BEH) C18 column (2.1 × 100 mm, 1.7 µm) using binary gradient
elution of solvents A and B. The mobile phase was A: 0.1% formic acid in water; B: 0.1% formic acid in
acetonitrile. The mobile phase was delivered at a flow rate of 0.5 mL/min, initially with 1% B, followed
by a linear gradient to 15% B over 3 min. Then the percentage of B was increased to 50% within 3 min.
Over the next 4 min, the gradient was ramped up to 95% B, and the amount of B was then decreased to
1% in 1.1 min. Over 2 min, the percentage of B returned to initial conditions (1%), until the end of the
chromatographic run (13 min). The column temperature was adjusted to 40 ◦C. The injection volume
was 5 µL.

Data were acquired in positive electrospray ionization (ESI+) mode with the capillary voltage set
to 2.0 kV, the cone voltage to 30 eV and the source temperature to 120 ◦C. The desolvation gas was
nitrogen, with a flow rate of 500 L/h and with a temperature of 350 ◦C. Data were acquired from m/z
100 to 2000 in Mass Spectrometry (MSE) mode in which the collision energy was alternated between
low energy (6 eV) and high energy (ramped up from 20 to 40 eV).

As a look mass for accurate mass measurements, leucine enkephalin (200 pg/µL in acetonitrile:
water (50:50 v/v) + 0.1% formic acid) was infused. For calibration, 0.5 mM sodium formate was used.
Five pooled samples (QC) were initially injected to equilibrate the column.

4.5. Data Acquisition and Statistical Analysis

The raw MSE datasets were acquired in continuum mode and processed within UNIFI 1.8.1
(Waters Corp., Milford, USA). The analysis parameters were as follows: retention time of 0–10 min
and peak width of 1–30 s. Data within UNIFI 1.8.1 were passed through the apex peak detection and
alignment processing algorithms. The intensity of each ion was normalized with respect to the total
ion count (TIC) to generate a data matrix that consisted of the retention time, m/z value, and the
normalized peak area.

The multivariate data matrix was analyzed by EZinfo software (Waters Corp., Milford, MA, USA)
and the univariate analysis was performed with MetaboAnalyst [23]. The data were mean-centered
and Pareto-scaled prior to principal component analysis (PCA) and orthogonal projection to latent
structures discriminate analysis (OPLS-DA). Potential markers of interest were extracted from the
combining VIP plot that was constructed from the loading plots of OPLS-DA. A VIP threshold of 1.5
was considered to select the metabolites.

The nonparametric univariate method, Mann–Whitney–Wilcoxon test was applied to measure
the significance of each metabolite, with results adjusted for multiple testing using false discovery rate
(FDR) correction, with a mass tolerance of 10 ppm.

Exact molecular mass data (m/z) from significant peaks were used to search the online Human
Metabolome Database (HMDB) (http://www.hmdb.ca) for metabolite identities. The identities of
key metabolites were confirmed by inspecting the MSE spectra and by comparison of fragmentation
pattern with those reported in the HMDB database.

4.6. Pathways Analysis

Metabolite Set Enrichment Analysis and Pathway Analysis were carried out using the pathway
analysis module (MetPA) of MetaboAnalyst 3.0. Hypergeometric test and relative betweenness
centrality were used for over-representation analysis and pathway topology analysis, respectively.

5. Conclusions

In our pilot study conducted with Mexican women in their the 3rd trimester of pregnancy
and previously diagnosed with GDM, we identified 14 metabolites belonging to different classes
of compounds which suggest biochemical and metabolic changes orchestrated due to GDM

http://www.hmdb.ca
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physiopathology. This is, to our knowledge, the first metabolomics study conducted in Mexican
women diagnosed with GDM. We found that metabolites from steroid hormone biosynthesis and TRP
metabolism pathways could have a significant role in GDM and may be associated with different
negative outcomes. The upregulation of these pathways, as a consequence of the oxidative stress and
inflammation persistent in GDM, could lead to a higher IR, predisposing to several diabetes-associated
complications. These metabolites need to be investigated as potential biomarkers for prognostication
in future follow-up studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/5/1186/s1,
Figure S1: Principal Component Analysis (PCA) scores plots of urine GDM and controls acquired in positive
mode. Table S1: Metabolites differentially expressed (p < 0.05) predicted from a multivariate model.
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