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Abstract

Motivation: The application of constraint-based modeling to functionally analyze metagenomic

data has been limited so far, partially due to the absence of suitable toolboxes.

Results: To address this gap, we created a comprehensive toolbox to model (i) microbe–microbe

and host–microbe metabolic interactions, and (ii) microbial communities using microbial genome-

scale metabolic reconstructions and metagenomic data. The Microbiome Modeling Toolbox

extends the functionality of the constraint-based reconstruction and analysis toolbox.

Availability and implementation: The Microbiome Modeling Toolbox and the tutorials at https://

git.io/microbiomeModelingToolbox.

Contact: ines.thiele@gmail.com

1 Introduction

Microbial community sequencing data are increasingly available for

numerous environmental niches (Mitchell et al., 2018). The analysis

of this data often relies on investigating which microbes are present

in a given sample. However, to further our understanding of the

functional contribution of individual microbes in a community as

well as the overall functional differences between communities,

advanced analysis approaches, such as computational modeling, are

required.

One possible approach is the constraint-based reconstruction

and analysis (COBRA) approach, which builds genome-scale recon-

structions of an organism and enables the prediction of, e.g. pheno-

typic properties (Palsson, 2006). Through the application of

condition-specific constraints, an organism’s metabolic reconstruc-

tion can be converted into many condition-specific models, which

can be analyzed using available toolboxes, such as the Matlab

(Mathworks, Inc.)-based COBRA Toolbox (Heirendt et al., 2017a).

Metabolic reconstructions have been assembled for many organ-

isms, including hundreds of gut microbes (Magnúsdóttir et al.,

2017) and human (Brunk et al., 2018). Although the COBRA

Toolbox encapsulates many tools developed by the community for

biotechnological and biomedical applications, it is currently focused

on modeling single organisms or cells. Here, we present the

Microbiome Modeling Toolbox, which enables the generation,

simulation and interpretation of (i) pairwise microbe-microbe and

host-microbe interactions, and (ii) sample-specific microbial com-

munity models. By integrating sample-specific metagenomic data,

the Microbiome Modeling Toolbox facilitates its analysis in the con-

text of microbial reconstructions.

2 Features

2.1 Pairwise interactions
The pairwise interaction analysis determines metabolic exchange be-

tween two metabolic reconstructions. A joint matrix of two individ-

ual genome-scale reconstructions is generated, which enables them

to freely exchange metabolites (Fig. 1A). Defined nutrient input, e.g.

a particular medium formulation, can be applied via the shared
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compartment using the corresponding exchange reactions. The pair-

wise microbial models can be investigated for six possible inter-

action types (i.e. competition, parasitism, amensalism, neutralism,

commensalism and mutualism) and Pareto optimality frontiers can

be calculated. The tutorials MicrobeMicrobeInteractions and

HostMicrobeInteractions illustrate the implemented functionalities.

2.2 Microbial community modeling
Metagenomic data can be analyzed using mgPipe (Fig. 1B), which

requires microbe identification and relative abundance data for each

sample, obtained with bioinformatic tools, such as QiIME 2

(Caporaso et al., 2010) and MetaPhlAn (Segata et al., 2012).

mgPipe is divided into three parts: (i) the analysis of individuals: spe-

cific microbes abundances, including metabolic diversity and classic-

al multidimensional scaling of the reactions in the identified

microbes. (ii) Construction of a personalized microbial community

model using the identified microbes and their relative abundance

data. For each personalized (or sample-specific) model, the corre-

sponding microbial reconstructions are joined by adding reactions

to each microbial reconstruction transporting metabolites from the

extracellular space to the common lumen compartment. Metabolites

present in the lumen compartment are connected to a diet and fecal

compartment, enabling the uptake and secretion from/to the envir-

onment, respectively. Hundreds of reconstructions can be combined

and modeled with using static parallelization. In each microbial

community model, the community biomass reaction is personalized

using the relative abundance data. Finally, coupling constraints

(Heinken et al., 2013) are applied to couple the flux through each

microbial reaction to its corresponding biomass reaction flux. (iii)

Simulation of the personalized microbial community models

under different diet regimes, e.g. using flux variability analysis

(Heirendt et al., 2017b). The differences between maximal uptake

and secretion fluxes provide a metabolic profile for each microbial

community sample, which can be analyzed using classical multidi-

mensional scaling analyses. Diet-specific constraints (e.g. obtained

from https://vmh.life/#nutrition) can be applied to the corresponding

diet exchange reactions.

3 Implementation

The Microbiome Modeling Toolbox is written in MATLAB

(Mathworks, Inc.) and accompanied with comprehensive documen-

tation and tutorials. The toolbox allows for the integrative analysis

of any number of reconstructions, including the human metabolic

reconstruction (Brunk et al., 2018). Metabolic reconstructions can

be obtained from, e.g. the VHM (https://vmh.life), BioModels

(https://www.ebi.ac.uk/biomodels-main/) and the KBase (https://

kbase.us/). A uniform nomenclature of reaction and metabolite

abbreviations across the reconstructions is required. The imple-

mented diet constraints require VMH abbreviations. To use higher

taxonomical levels create pan-reconstructions (createPanModels).

For larger datasets and/or bigger microbial community models, we

recommend the use of the MATLAB command line or.m files and of

a high-performance computing cluster.

4 Discussion

The Microbiome Modeling Toolbox enables the user to investigate

microbial interactions at a large scale (Heinken et al., 2013;

Magnúsdóttir et al., 2017). Moreover, metagenomically derived

data can be integrated with microbial metabolic reconstructions per-

mitting the prediction of altered functional assessment of different

microbial communities, e.g. in health and disease (Heinken et al.,

2018; Thiele et al., 2018).
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