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Abstract: There is strong evidence for a genetic contribution to non-syndromic congenital heart
defects (CHDs). However, exome- and genome-wide studies conducted at the variant and gene-
level have identified few genome-wide significant CHD-related genes. Gene-set analyses are a
useful complement to such studies and candidate gene-set analyses of rare variants have provided
insight into the genetics of CHDs. However, similar analyses have not been conducted using data
on common genetic variants. Consequently, we conducted common variant analyses of 15 CHD
candidate gene-sets, using data from two common types of CHDs: conotruncal heart defects (1431
cases) and left ventricular outflow tract defects (509 cases). After Bonferroni correction for evaluation
of multiple gene-sets, the cytoskeletal gene-set was significantly associated with conotruncal heart
defects (βS = 0.09; 95% confidence interval (CI) 0.03–0.15). This association was stronger when
analyses were restricted to the sub-set of cytoskeletal genes that have been observed to harbor rare
damaging genotypes in at least two CHD cases (βS = 0.32, 95% CI 0.08–0.56). These findings add to
the evidence linking cytoskeletal genes to CHDs and suggest that, for cytoskeletal genes, common
variation may contribute to the risk of CHDs.

Keywords: association; case-control; case-parent trios; congenital; conotruncal; heart; gene; genetics;
genome-wide; malformation

1. Introduction

Congenital heart defects (CHDs) are the most common type of birth defect and are
associated with significant morbidity and mortality [1–3]. Some individuals with CHDs
have an identified malformation syndrome (e.g., 22q11.2 deletion, Holt-Oram). However,
the majority of individuals with a CHD appear to be non-syndromic [4,5]. While a genetic
contribution to non-syndromic CHDs has long been suspected, the number of genes for
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which there is strong evidence of an association with non-syndromic forms of human
CHDs is relatively small [5–7].

A few CHD genes have been identified by classic linkage and candidate gene associa-
tion studies [4]. In addition, single nucleotide polymorphism (SNP)-level, genome-wide
association studies (GWAS) of CHDs and common variants have identified several genome-
wide significant associations, although few of these associations have been independently
replicated [8]. Further, studies using next generation sequencing data have revealed en-
richment of potentially damaging de novo and rare inherited variants in specific gene
classes. However, genome-wide significant associations with rare variants have been
identified for only a few individual genes. For example, analysis of whole exome sequence
(WES) data from 2871 CHD case-parent trios identified only seven genes with an excess
of rare, potentially damaging de novo and inherited variants that exceeded genome-wide
significance [9].

It is widely recognized that studies requiring genome-wide multiple testing cor-
rections will identify only a small fraction of the disease-relevant genetic variation [10].
Consequently, analytic strategies that complement genome- and exome-wide analyses are
used to extract additional information from such data. Gene-set analyses, which aggregate
genetic variants and genes into biologically meaningful groups (e.g., based on function,
expression pattern, biological pathway), and evaluate the overall effect of the set, provide
one such strategy.

Gene-set analyses of de novo and rare inherited variants have provided additional
insights regarding the genetic architecture of CHDs. For example, Watkins et al. [11]
evaluated 15 CHD candidate gene-sets using WES data from 2391 trios and identified
several sets (e.g., cilia, chromatin, and cytoskeletal genes) that were significantly enriched
for rare damaging genotypes. Further, these analyses revealed differences in the variant
profiles across gene-sets. For example, cilia genes were found to be enriched for rare
inherited genotypes (recessive or compound heterozygous) and relatively depleted for rare
de novo mutations, whereas the opposite pattern was observed for chromatin genes, and
cytoskeletal genes were found to be enriched for both rare inherited and de novo genotypes.

Despite the insights into the genetic contribution to CHDs provided by gene-set
analyses of rare variants, similar analyses have not been conducted using data on common
variants. Gene-set analyses of common variants would, however, have increased power to
detect associations relative to SNP- or gene-level GWAS. In addition to identifying new
gene-sets that may be related to CHDs, such analyses would help to determine whether
common and rare variants act through shared or distinct gene-sets. Consequently, to gain
further insight into the genetic landscape of CHDs, we conducted common variant gene-set
analyses for the 15 CHD candidate gene-sets that were assessed for rare genotypes by
Watkins et al. [11]. Since CHDs are a heterogeneous group of conditions that may have
overlapping but not identical risk profiles, we conducted our analyses separately for the
two most common types of CHDs: conotruncal heart defects (CTDs) and left ventricular
outflow tract defects (LVOTDs), as well as for the two defects in combination.

2. Materials & Methods
2.1. Data Sets

Our analyses were based on summary statistics from SNP-level genome-wide associa-
tion meta-analyses of CTDs and LVOTDs, which, collectively, account for approximately
60% of all CHDs [12]. Details of the data and analyses underlying the summary statistics
are published [13]. Briefly, meta-analyses were based on five datasets derived from study
populations recruited through the Children’s Hospital of Philadelphia (CHOP) and the
Pediatric Cardiac Genomics Consortium (PCGC). Informed consent was obtained from
each case or the case’s parent/guardian, under protocols approved by the institutional
review boards at CHOP or the PCGC clinical study sites. Individuals of all races and
ethnicities were eligible to participate.
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Cases with CTDs included individuals with tetralogy of Fallot, D-transposition of
the great arteries, ventricular septal defects (conoventricular, posterior malalignment and
conoseptal hypoplasia), double outlet right ventricle, isolated aortic arch anomalies, truncus
arteriosus, or interrupted aortic arch. Cases with LVOTDs included individuals with
hypoplastic left heart syndrome, coarctation of the aorta with or without bicuspid aortic
valve, and aortic valve stenosis, and excluded individuals with variants of hypoplastic left
heart syndrome, such as mal-aligned atrioventricular canal defects or double outlet right
ventricle with mitral valve atresia. Medical records were reviewed to ensure accuracy of
the cardiac phenotype. Cases with a known or suspected genetic syndrome (e.g., 22q11.2
deletion syndrome) were excluded.

Genotype data were generated using Illumina arrays followed by imputation. Prior
to imputation, haplotypes were pre-phased using SHAPEIT2 v2.727 [14]. Genotype im-
putation was performed using Impute 2 v2.3.0 [15], with pre-phased data from the 1000
Genomes Project (Phase I integrated v3 variant set) as a reference. The following exclusions
were made prior to imputation: case-parent trios with a Mendelian error rate > 1%; sus-
pected duplicate samples (i.e., samples with pair-wise identity by descent > 0.6); and SNPs
with a minor allele frequency (MAF) < 1%, genotyping rate < 90%, or deviation from Hardy
Weinberg equilibrium in controls/parents (p ≤ 1 × 10−5). Post-imputation, individuals
with genotyping rates < 90% were excluded, as were variants with poor imputation quality
(r2 < 0.8), MAF < 5%, or genotyping rate < 90%.

SNP-level (MAF ≥ 0.05) GWASs, conducted in three CTD datasets: CHOP CTD trios
(N = 670 trios), CHOP CTD cases/controls (N = 406 cases/2976 controls), and PCGC CTD
trios (N = 355 trios), and two LVOTD datasets: CHOP LVOTD trios (N = 317 trios) and
PCGC LVOTD trios (N = 192 trios), have been reported [13]. Briefly, the trio data were
analyzed using a multinomial likelihood approach [16]. Genotypes were indexed using
an additive (one degree of freedom) model of inheritance and, for each SNP, a likelihood
ratio test was use to compare models with and without the genotypic parameter. These
analyses were implemented in EMIM [17]. As these family-based analyses are robust to
population stratification bias [18], cases of any race and ethnicity were included. The case-
control data were analyzed in a similar manner using logistic regression as implemented in
Golden Helix v8.1 (Golden Helix, Inc., Bozeman, MT, USA). The case-control analyses were
restricted to include only Caucasian cases and controls and the SNP-phenotype associations
were adjusted for the first two principal components of race/ethnicity. An additive genetic
risk model was used in all analyses.

Meta-analyses, based on the summary statistics from the EMIM analyses of the individ-
ual studies, have also been reported [13]. Specifically, we conducted three meta-analyses:
CTDs only (3 studies, 1431 cases); LVOTDs only (2 studies, 509 cases); and CTDs and
LVOTDs combined (5 studies, 1940 cases). Meta-analyses were conducted using GWAMA
v2.1 [19] with a fixed-effects model, unless there was evidence of heterogeneity (based on
Cochran’s heterogeneity p ≤ 0.1), in which case a random-effects model was used.

2.2. Gene-Sets

We evaluated 15, previously-defined, CHD-related gene-sets [11]. These gene-sets
were selected based on evidence of a role in heart development, or association with CHDs
in humans or animals, and include sets based on gene function (e.g., cilia, cytoskeletal),
pathways (e.g., hedgehog signaling), and expression patterns (e.g., mouse embryonic heart)
(Table 1). The cytoskeletal gene-set excluded genes specific to cilia function and structure.
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Table 1. CHD-related gene-sets analyzed for association with CTDs and LVOTDs.

Name Description 1 # of Genes

Autism High-ranking autism candidate genes 86

CHD Non-cilia genes associated with congenital heart defects in humans or
other organisms 402

Chromatin Chromatin-modifying genes found to be disrupted in patients with
congenital heart defects 163

Cilia
Expanded cilia gene list including the 302 SysCilia genes and potential
cilia genes identified by a GOontology search in model organisms
(zebrafish and mouse)

669

Cytoskeletal Cytoskeleton genes identified using the Reactome pathway database,
with exclusion of genes related to cilia structure or function 791

FGF signaling Fibroblast growth factor signaling genes identified using the Reactome
pathway database 87

FoxJ1 Genes with at least a two-fold change in expression when FoxJ1 is
over-expressed or depleted in a zebrafish model 116

Hedgehog signaling Hedgehog signaling genes identified using the
Reactome pathway database 149

High heart expression Genes with de novo mutations observed in human CHD cases and in the
top quartile of expression in mouse embryonic day 14.5 hearts 146

Notch1 Hand curated Notch1 associated gene list 130

PDGF signaling Platelet derived growth factor signaling genes identified using the
Reactome pathway database 116

Ser-Thr kinases Ser-Thr kinases identified using the Reactome pathway databases 47

Syscilia Well-characterized structural cilia genes (SysCil 2.0) assembled
from the literature 302

TGF-β Assembled using the Reactome pathway database 431
WNT signaling WNT signaling genes identified using the Reactome pathway databases 297

#, number. 1 Gene-sets as defined in Watkins et al. 2019 [11].

2.3. Gene-Set Analyses

Gene-set analyses were conducted using the regression-based approach implemented
in MAGMA version 1.08 [20] and SNP-level summary statistics from our prior meta-
analyses as input. Separate analyses were conducted for CTDs only, LVOTDs only, and for
CTDs and LVOTDs combined. For these analyses, genes were defined by their transcription
start-stop coordinates, based on the Genome Reference Consortium Human genome build
37. For each gene, we specified an annotation window that included 1 kilobase up- and
downstream of these start-stop coordinates, and all SNPs located in the window were
mapped to the gene.

Gene p-values were calculated from the summary statistics for SNPs within the gene
annotation window. In MAGMA, gene p-values can be estimated by the mean of these
statistics, the top statistic, or these two gene-level statistics can be combined into an
aggregate statistic. We used the aggregate statistic, because it provides a more even
distribution of power and sensitivity for a wider range of genetic models than the other
gene-level statistics. The aggregate statistics were transformed to Z-scores using the probit
function, such that associations with lower p-values are associated with higher Z-scores.
The resulting Z-scores were used as the input for the gene-set analyses.

We used MAGMA to conduct competitive gene-set analyses using linear regression.
The dependent variable in these analyses was the gene Z-score and the primary inde-
pendent variable was a binary variable (S) indicating whether a gene is (S = 1), or not
(S = 0) in the gene-set. Additional covariates were included, using the default options in
MAGMA, to control for gene size, mean minor allele count in the gene and within-gene
linkage disequilibrium. To account for linkage disequilibrium between genes in close
proximity, MAGMA models the residuals as a multivariate normal, with correlations set
to the gene-gene correlations estimated as part of the gene-level analyses. In MAGMA,
gene–gene correlations are estimated for pairs of genes within five megabases of each other
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and are otherwise set to zero [20]. The gene-set statistic tests the null hypothesis that the
mean association of the outcome (e.g., CTDs) with the genes in the set is greater than that
of genes that are not in the set (i.e., H0: βS = 0 versus H1: βS > 0). A Bonferroni correction
was used to account for the assessment of 15 gene-sets, such that gene-sets with p < 0.003
were considered to be significantly associated with the outcome.

For each significantly associated gene-set, we re-examined the results for each gene
and SNP in the set, to determine whether these associations would be significant using a
gene-set specific Bonferroni correction (i.e., p < 0.05/number of genes in the set). We also
annotated each SNP in the gene-set with its odds ratio and 95% confidence interval from
our prior SNP-level genome-wide meta-analyses [13], and with its location (e.g., intergenic)
or consequence (e.g., missense mutation), and scaled a combined annotation dependent
depletion (CADD) score [21,22] obtained using the Ensembl Variant Effect Predictor [23].

In addition, because the present analyses and the analyses of Watkins et al. [11] both
used data from the PCGC, for each significant (p < 0.003) CHD-gene-set association, we
determined the number of cases with potentially damaging rare genotypes in relevant
genes (as identified by Watkins et al. [11]) in the analysis. These cases were not omitted
from the current analyses, because we used SNP-level summary statistics from GWAS
that pre-dated the work of Watkins et al. [11]. The number of cases that would have been
excluded was, however, relatively small. For example, only 2% of the CTD cases in our
analyses were both included in the analyses of Watkins et al. [11], and found to carry a
potentially damaging rare genotype in a cytoskeletal gene.

2.4. Post Hoc Analyses

Although not part of our original analysis plan, we conducted additional analyses for
each significant (p < 0.003) CHD-gene-set association, to assess whether the association
was stronger when the gene-set was restricted to include only those genes that were found
to harbor damaging de novo or rare recessive or compound heterozygous genotypes in
at least one of the 2391 whole-exome sequenced CHD trios included in the analyses of
Watkins et al. [11]. Specifically, we conducted competitive analyses for three restricted
gene-sets including genes with: damaging de novo mutations in at least one CHD case;
damaging recessive or compound heterozygous genotypes in at least one case; or damaging
de novo mutations and/or recessive or compound heterozygous genotypes in more than
one case. The magnitude of the association between the outcome and each of these gene-sets
was compared using the gene-set indicator parameter estimates (i.e., βS).

3. Results

We used a regression-based approach to assess associations between 15 CHD-related
gene-sets and the two most common types of CHDs (i.e., CTDs and LVOTDs). Our anal-
yses were based on summary statistics from prior genome-wide, common variant (i.e.,
MAF > 5%) analyses of CTDs only, LVOTDs only and the combined CTD and LVOTD
groups [13]. For each outcome (CTDs only, LVOTDs only, CTDs and LVOTDs combined),
gene-level p-values were generated for 17,343 genes. Using a genome-wide Bonferroni
correction (i.e., p < 0.05/17,343) no gene was significantly associated with any of these
outcomes (Supplemental Table S1). Further, no gene-set was significantly associated
(i.e., p < 0.003) with LVOTDs only, or with CTDs and LVOTDs combined. However, a sig-
nificant association was identified between the cytoskeletal gene-set and CTDs (p = 0.001)
(Table 2). The coefficient for the gene-set variable (i.e., βS = 0.09) indicates that, on average,
the Z-scores for genes in the cytoskeletal set are higher than the Z-scores for genes that are
not in this set after controlling for gene size, mean minor allele count in the gene, and both
within and between gene linkage disequilibrium, since these Z-scores are inversely related
to their corresponding p-values.
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Table 2. Summary of gene-set analyses for CTDs only (N = 1431 cases), LVOTDs only (N = 509 cases), and CTDs and LVOTDs (N = 1940) combined.

Gene-Set # Genes Analyzed
(# of Genes in Set) 1

CTDs Only
(3 Datasets/1431 Cases) 2

LVOTDs Only
(2 Datasets/509 Cases) 2

CTDs and LVOTDs
(5 Datasets/1940 Cases) 2

BS 95% CI p-Value 3 βS 95% CI p-Value 3 βS 95% CI p-Value 3

Autism 76 (86) −0.12 −0.03–0.06 0.89 0.11 −0.09–0.31 0.12 −0.02 −0.20–0.16 0.59
CHD 364 (402) 0.04 −0.05–0.11 0.21 0.05 −0.03–0.13 0.14 0.02 −0.06–0.10 0.36

Chromatin 148 (163) 0.07 −0.05–0.19 0.15 −0.02 −0.16–0.12 0.63 −0.01 −0.13–0.11 0.57
Cilia 612 (669) 0.06 0.001–0.12 0.03 0.04 −0.02–0.10 0.09 0.06 0.001–0.12 0.04

Cytoskeletal 726 (791) 0.09 0.03–0.15 0.001 −0.06 −0.12–0.001 0.97 0.04 −0.02–0.10 0.08
FGF signaling 83 (87) 0.03 −0.15–0.21 0.37 0.008 −0.17–0.18 0.46 −0.07 −0.23–0.09 0.80

FoxJ1 105 (116) 0.06 −0.08–0.20 0.20 0.06 −0.08–0.20 0.20 0.05 −0.09–0.19 0.24
Hedgehog signaling 137 (149) 0.11 −0.01–0.19 0.04 0.06 −0.06–0.18 0.19 0.05 −0.07–0.17 0.21

High heart expression 133 (146) −0.12 −0.26–0.02 0.96 −0.03 −0.16–0.12 0.66 0.02 −0.12–0.16 0.41
Notch1 120 (130) −0.05 −0.19–0.09 0.77 0.18 0.04–0.32 0.007 −0.12 −0.26–0.02 0.95

PDGF signaling 101 (116) −0.11 −0.27–0.05 0.92 0.08 −0.08–0.24 0.15 −0.18 −0.34–0.02 0.99
Ser-Thr kinases 41 (47) −0.06 −0.31–0.19 0.66 −0.03 −0.28–0.22 0.60 −0.13 −0.37–0.13 0.84

SysCilia 280 (302) 0.04 −0.06–0.14 0.19 0.04 −0.06–0.14 0.20 0.01 −0.07–0.09 0.40
TGF-β 402 (431) −0.03 −0.11–0.05 0.77 −0.05 −0.13–0.03 0.88 −0.04 −0.12–0.04 0.86

WNT signaling 275 (297) 0.08 −0.02–0.18 0.04 −0.02 −0.12–0.08 0.65 0.05 −0.05–0.15 0.16

#, number; CI, confidence interval; CTDs, conotruncal heart defects; LVOTDs, left ventricular outflow tract defects. 1 # of genes in the set that were represented in our data (# of genes in set as specified in Watkins
et al. 2019). 2 Number of datasets and total number of cases included in the meta-analyses that provided the summary statistics used as the initial input for these analyses. 3 Test of the null hypothesis that the
mean association of the phenotype with the genes in the set is greater than that of genes not in the set (i.e., H0: βS = 0 versus H1: βS > 0).
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We re-examined the gene-level p-values for genes in the cytoskeletal gene-set (Supple-
mental Table S2), using a Bonferroni correction for the number genes in the set (N = 726,
p < 6.89 × 10−5). No gene was significantly associated with CTDs after this correction.
We also re-examined the associations for SNPs mapping to genes in the cytoskeletal set
(N = 131,628 SNPs). The odds ratios for the associations between these SNPs and CTDs
ranged from 0.7–1.5 (Supplemental Table S3). Using a Bonferroni correction for the number
of SNPs in the cytoskeletal set (p < 3.8 × 10−7), none of these SNPs were significantly
associated with CTDs.

The 10 cytoskeletal genes with the lowest p-values are provided in Table 3. The lowest
gene association p-value was for Cas scaffold protein family member 4 (CASS4, p = 0.0032),
a cytoplasmic adaptor protein involved in integrin signaling pathways that are important
for cell migration and adhesion [24]. Of the SNPs mapping to CASS4, the lowest p-value
was p = 0.0002 for an intronic variant (rs2064860) with a scaled CADD score of 1.06. This
gene also includes a variant in the 5′ untranslated region with a p-value < 0.05 and a CADD
score ≥ 10 (rs17462136, p = 0.038, CADD = 18.66) (Supplemental Table S3).

Table 3. Top 10 associations in the analyses of CTDs (N = 1431 cases) and all genes in the cytoskeleton gene-set and in the
sub-set with rare, putatively damaging variants in > 2 cases 1 with a congenital heart defect.

Gene Symbol Gene Name p-Value # De Novo 1 # Recessive or Compound
Heterozygous 1

Total # of Rare
Variants 1

Top 10 gene-associations in the full cystoskeletal gene-set (N = 726)
CASS4 Cas scaffold protein family member 4 0.003 0 0 0
CLIP1 Cap-gly domain containing linker protein 0.006 0 0 0

ACTA2 Actin α 2, smooth muscle 0.006 0 0 0
KAZN Kazin, periplankin interaction protein 0.007 0 0 0

MAEA Macrophage erythroblast attacher,
E3 ubiquitin ligase 0.010 0 0 0

TBC1D21 TBC1 domain family member 21 0.010 0 0 0
NRP1 Neuropilin 1 0.010 0 0 0

SPIRE2 Spire type actin nucleation factor 2 0.012 0 2 2
SEPT9 Septin 9 0.014 0 0 0
CLIC5 Chloride intracellular channel 5 0.014 0 0 0

Top 10 gene-associations in the sub-set of cystoskeletal genes with damaging rare genotypes in ≥ 2 cases 1 (N = 50)
SPIRE2 Spire type actin nucleation factor 2 0.012 0 2 2
TNS1 Tensin 1 0.035 1 2 3

SCNN1D Sodium channel epithelial 1 subunit delta 0.040 0 2 2

RAPH1 Ras association and pleckstrin homology
domains 1 0.046 1 1 2

TENM2 Teneurin transmembrance protein 2 0.049 0 2 2

TACC2 Tranforming acidic coiled-coil containing
protein 2 0.050 0 2 2

PLEC Plectin 0.060 0 8 8
TRIP6 Thyroid hormone receptor interactor 6 0.073 0 2 2
NOS3 Nitric oxide synthase 3 0.086 0 2 2
BSN Bassoon presynaptic cytomatrix protein 0.093 1 4 5

1 As reported in Watkins et al. [11]; includes cases with any type of CHD.

For SNPs mapping to a cytoskeletal gene, the lowest (albeit non-significant) p-value
was p = 6.6 × 10−6, for an intronic variant (rs12072230), with a scaled CADD score of
2.14, in kazrin periplakin interaction protein (KAZN), a cytoplasmic adaptor that binds to
p120 catenin family members, which are important in maintaining cell shape integrity via
the actin cytoskeleton [25]. An additional seven SNPs mapping to this gene had p < 0.05
and CADD ≥ 10, including four intronic variants (rs41269409, p = 0.008, CADD = 11.13;
rs1721829, p = 0.028, CADD = 10.40; rs804127, p = 0.032, CADD = 13.07; rs761191, p = 0.045,
CADD = 13.74), two intergenic variants (rs17399514, p = 0.011, CADD = 10.47; rs2697976,
p = 0.016, CADD = 10.06;) and one variant in a regulatory region (rs10927460, p = 0.010,
CADD = 11.76) (Supplemental Table S3). KAZN had the fourth lowest gene-level p-value
(p = 0.007) in the cytoskeletal gene-set (Table 3).

The relatively low magnitude of association between SNPs in this gene-set and CTDs
(i.e., odds ratio range: 0.7–1.5), suggests that the association between CTDs and the cy-
toskeletal gene-set observed in this study is unlikely to be driven by linkage disequilibrium
between common and rare damaging variants with large effect sizes. Further, of the 1431
CTD cases included in our analyses, only 29 were included, and found to carry a rare
damaging genotype in a cytoskeletal gene in the analyses of Watkins et al. [11] Hence, it is
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unlikely that the common-variant signal detected in the current analyses is driven by the
same individuals that drove the rare-variant signal reported in Watkins et al. [11]

Post-hoc analyses were performed to assess whether the magnitude of the association
between CTDs and the cytoskeletal gene-set was stronger when the set was restricted to
include only those genes that were found to harbor rare damaging genotypes in cases
with CHD in the analyses of Watkins et al. [11]. The genes included in each sub-set can
be found in Supplemental Table S2. This table also includes the number of damaging de
novo mutations and rare recessive or compound heterozygous genotypes in each gene,
as reported by Watkins et al. [11] and the gene-level p-values generated in the MAGMA
analysis of CTDs only.

Compared to the association between CTDs and the full cytoskeletal gene-set (βS = 0.09,
95% CI 0.03–0.15), the magnitude of the association with the de novo subset (N = 82 genes,
βS = 0.12, 95% CI−0.05–0.30) was 1.3-fold higher (Table 4), and the magnitude of the associ-
ation for the rare recessive or compound heterozygous subset was two-fold higher (N = 120
genes, βS = 0.18, 95% CI 0.04–0.3). Further, when the cytoskeletal gene-set was restricted to
include only those genes for which variants (de novo or recessive/compound heterozy-
gous) were identified in more than one case (N = 50 genes: one gene with ≥2 de novo
mutations only; 31 genes with ≥2 recessive or compound heterozygous genotypes only; 18
genes with at least one de novo mutation and one recessive or compound heterozygous
genotype), the magnitude of the association with CTDs was 3.6-times higher (βS = 0.32,
95% CI 0.08–0.56) than that for the full cytoskeletal gene-set. Similar results were obtained
when this subset was further limited to include only the 39 genes for which recessive or
compound heterozygous genotypes were observed in ≥2 cases (Table 4). Similar analyses
conducted for the remaining 14 gene-sets revealed no clear patterns across datasets and
none of the sub-set analyses had p-values less than our initial Bonferroni corrected value of
p < 0.003.

Table 4. Summary of post hoc analyses of the association between CTDs and the cytoskeletal gene-set and sub-sets.

Gene-Set/Sub-Set # of Genes βS 95% Confidence Interval p-Value 2

Full cytoskeletal gene-set 726 0.09 0.03–0.15 0.001
Subset with de novo mutations 1 82 0.12 −0.05–0.30 0.09
Subset with rare recessive mutations 1 120 0.18 0.04–0.32 0.007
Subset with more than one reported de

novo or recessive mutations 50 0.32 0.08–0.56 0.002

Subset with more than one reported
recessive mutation 39 0.32 0.08–0.56 0.005

#, number; 1 18 genes are in both the de novo and recessive sub-sets. 2 Test of the null hypothesis that the mean association of the phenotype
with the genes in the set is greater than that of genes that are not in the set (i.e., H0: βS = 0 versus H1: βS > 0).

The 10 genes with the lowest p-values in the subset of cytoskeletal genes that had rare
variants in two or more cases are provided in Table 3. The genes in this subset include only
one of the genes (Spire Type Actin Nucleation Factor 2, SPIRE2) with the 10 lowest p-values
in the full cytoskeletal gene-set. The lowest gene association p-value in this sub-set was
for SPIRE2 (p = 0.012), which, along with SPIRE1, drives nucleation of actin filaments cells
involved in intracellular vesicle transport [26]. Of the SNPs mapping to SPIRE2, the lowest
p-value was p = 0.0004 for an intronic variant (rs12922448) with a scaled CADD score of
0.20. No variant in this gene had both a p-value < 0.05 and a CADD score ≥ 10.

4. Discussion

We assessed the associations of 15 CHD candidate gene-sets with CTDs and LVOTDs
using summary statistics from analyses of common (i.e., MAF ≥ 5%) genetic variants. We
found that, as a class, cytoskeletal genes were associated with CTDs. The cytoskeleton is
involved in all aspects of cell shape changes and motility and is, therefore, critical for tissue
morphogenesis and development. A role for cytoskeletal genes in the etiology of CHDs,
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including defects of the outflow tract, is supported by studies in animal models [27–29],
and by the identification of potentially causal mutations in cytoskeletal genes in humans
with CHDs [30,31]. In addition, among individuals with a CHD, the cytoskeletal gene-set
has been found to be significantly enriched for damaging de novo mutations (p≤ 7× 10−5)
as well as recessive or compound heterozygous (p ≤ 4 × 10−5) genotypes [11]. Hence, our
study adds to the evidence for involvement of cytoskeletal genes in the etiology of CHDs
in humans, and suggests that CHD risk may be influenced by common as well as rare
variants in these genes.

Our study highlights the importance of conducting downstream analyses of genome-
wide data that aggregate SNPs and genes into biologically meaningful groups and assess
the overall effect of the set. In our data, no single SNP in the cytoskeletal set was strongly
associated with CTDs (i.e., range of odds ratios: 0.7–1.5) and no SNP or gene in this set
passed strict genome-wide, or even more lenient set-wide significance thresholds. Further,
while the Z scores for genes in the cytoskeletal set were, on average, significantly higher
(corresponding to lower p-values) than for all other genes, this difference was modest (i.e.,
βS = 1.09). Hence, consistent with the observation that common genetic variants generally
have only modest disease-associations, our analyses indicate that the association between
CTDs and common variants in cytoskeletal genes is driven by weak signals across many
genes, rather than by strong signals from a few genes.

Several cytoskeletal genes for which there is prior evidence of a role in heart develop-
ment or an association with CHDs in humans had relatively low p-values in our analyses:
ACTA2 (p = 0.006), which is associated with bicuspid aortic valve in individuals with
ACTA2-related thoracic aortic aneurisms [31] and with complex CHDs in individuals with
ACTA2-related multisystemic smooth muscle dysfunction syndrome [32]; NRP1 (p = 0.01),
for which a homozygous splice site mutation was identified in a multiplex, consanguineous
family with truncus arteriosus [33]; RAC1 (p = 0.04), which is associated with a range of
outflow tract defects in targeted knockout mice [27,28]; and NOS3 (p = 0.09) which is
associated with septal defects in the mouse knockout [34].

The relatively low p-values observed for cytoskeletal genes with prior links to CHDs
provide some support for a causal interpretation of our observed association between
CTDs and the cytoskeletal gene-set. Further support for such an interpretation is provided
by the stronger association observed when our analyses were restricted to include only
cytoskeletal genes with predicted damaging mutations in more than one CHD case, as
compared to the full cytoskeletal gene set (i.e., βS = 0.32 and βS = 0.09, respectively), since
the finding of deleterious genotypes in more than one affected individual increases the
likelihood that a gene is truly disease-related.

In their rare variant burden analyses, Watkins et al. [11] observed enrichment of several
gene-sets in addition to the cytoskeletal set—most notably, enrichment of de novo variants
in the chromatin gene set (p ≤ 1 × 10−5) and enrichment of recessive and compound
heterozygous genotypes in the cilia gene-set (p ≤ 1 × 10−5) [11]. In our analyses based
on common variants, we found no evidence for association with the chromatin gene-set
(CTDs, p = 0.15; LVOTDs, p = 0.63; CTDs + LVOTDs, p = 0.57) and only modest evidence for
association with the cilia-gene set (CTD only, p = 0.03; LVOTD only, p = 0.09; CTD + LVOTD,
p = 0.04). Watkins et al. also found some evidence of enrichment for de novo variants in the
NOTCH signaling pathway gene-set (p ≤0.001) [11], which, while not formally significant
after correction for multiple testing, had a relatively low p-value (p = 0.007) in our LVOTD
only analyses.

Based on their analyses of rare variants, Watkins et al. [11] concluded that different
classes of genes contribute to CHDs via different mechanisms, with some gene-sets con-
tributing predominantly via dominant (i.e., de novo) mutations (e.g., chromatin) and others
via rare recessive or compound heterozygous genotypes (e.g., cilia). Our results extend
these findings to suggest that some gene-sets also contribute to CHD risk via common
variants. In the analyses of Watkins et al. [11], the cytoskeletal gene-set was one of only
two sets (the other was TGFβ signaling) for which there was strong evidence of enrichment
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for both de novo mutations and rare recessive or compound heterozygous genotypes. As
common variants are generally expected to have mild functional consequences, it may be
that the developing heart is particularly vulnerable to variation in cytoskeletal genes.

In our analyses, the lack of association between CHDs and common variants in some
gene-sets that were found to be enriched for rare variants (e.g., chromatin) may indicate that
the impact of common variation on CHD risk is specific to particular gene-sets. However,
the lack of association in this study could also be related to statistical power. In addition,
the approach we used may underestimate true associations, since there may be a relatively
large number of CHD-related genes outside of any given candidate gene-set. Moreover,
each gene-set is likely to include a mixture of CHD relevant and non-relevant genes, which
would also dilute the association signal. Further, although we considered the two largest
categories of CHDs (i.e., CTDs and LVOTDs), it is possible that common variation in some
gene-sets is associated with other CHD phenotypes. Such differences in the contribution
of common variants across CHD phenotypes might also explain our observation of an
association between the cytoskeletal gene-set and CTDs, but not LVOTDs.

5. Conclusions

Our analyses provide evidence for an association between CTDs and common vari-
ation within cytoskeletal genes. These findings highlight the importance of conducting
downstream analyses of data from GWAS. Our findings also add to the evidence that
cytoskeletal genes contribute to CHDs, and in particular to CTDs, in humans and suggest
this gene-set may be somewhat unique in that variation across the spectrum, from rare to
common, may contribute to risk. Given the evidence that CHD-related genetic variation
includes a range of variant types (e.g., common, de novo, rare inherited), future studies
aiming to enhance our understanding of the causes of CHDs should seek to capture all po-
tentially relevant variation (e.g., common, de novo, rare inherited) as well as other potential
etiologic complexities such as interactions within and between genes and gene-sets.
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