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Breast cancer is the most prevalent non-skin cancer diagnosed in females and

developing novel therapeutic strategies to improve patient outcomes is crucial.

The immune system plays an integral role in the body’s response to breast

cancer and modulating this immune response through immunotherapy is a

promising therapeutic option. Although immune checkpoint inhibitors were

recently approved for the treatment of breast cancer patients, not all patients

respond to immune checkpoint inhibitors as a monotherapy, highlighting the

need to better understand the biology underlying patient response.

Additionally, as radiotherapy is a critical component of breast cancer

treatment, understanding the interplay of radiation and immune checkpoint

inhibitors will be vital as recent studies suggest that combined therapies may

induce synergistic effects in preclinical models of breast cancer. This reviewwill

discuss the mechanisms supporting combined approaches with radiotherapy

and immune checkpoint inhibitors for the treatment of breast cancer.

Moreover, this review will analyze the current clinical trials examining

combined approaches of radiotherapy, immunotherapy, chemotherapy, and

targeted therapy. Finally, this review will evaluate data regarding treatment

tolerance and potential biomarkers for these emerging therapies aimed at

improving breast cancer outcomes.

KEYWORDS

immune checkpoint inhibitors (ICI), radiotherapy, breast cancer, tumor immunology,
radiation biology, immunotherapy
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Introduction

Breast cancer (BC) is the most common non-cutaneous

malignancy diagnosed in females, accounting for nearly one-

third of all new cancer diagnoses (1). During 2022, in the United

States, approximately 287,850 females will be diagnosed with

breast cancer, while over 43,000 females will ultimately succumb

to their disease (1). Breast cancer incidence has increased in

female patients, coinciding with an increase in obesity and

decline in fertility rates (1, 2). Early detection and improved

loco-regional and systemic therapies have led to improved

outcomes among breast cancer patients in recent years (3).

However, breast cancer is a heterogenous disease with diverse

molecular subtypes, clinical classifications, and genetic

variations (3, 4). Using the most common definition, breast

cancer is divided into four molecular subtypes—luminal A,

luminal B, HER2+, and triple negative breast cancer (TNBC)—

based upon the presence or absence of important hormone

receptors, including the estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2

(HER2) (4). This heterogeneity at the tumor level results in

different responses to therapy (3–5). Importantly, TNBC is the

most aggressive breast cancer subset that disproportionately

impacts patients of color and younger patients (4, 6–8).

Significantly, more effective therapies for TNBC are

desperately needed.

Locally advanced breast cancer is treated via a trimodal

approach that includes surgery, chemotherapy, and

radiotherapy. Recent advances in precision medicine have

been developed to target the molecular differences that exist in

breast cancer (3). Endocrine therapies, including the selective

estrogen receptor modulator (SERM) tamoxifen, selective

estrogen degrader (SERD) fulvestrant, or the aromatase

inhibitors anastrozole and exemestane, target the estrogen

receptor found in ER+ breast cancer (9). Other precision

medicine advancements used in the management of metastatic

breast cancer include small molecule inhibitors of key

modulators of breast cancer growth and survival. For example,

inhibiting the cyclin dependent kinases 4 and 6 (CDK4/6)

mechanistically prevents the progression of cancerous cells

through the cell cycle, while inhibiting poly (adenosine

diphosphate-ribose) polymerase (PARP) impairs DNA repair

(10, 11). While these targeted therapies improve survival,

therapeutic resistance is common, and the discovery of

additional treatment options are warranted.

An emerging therapeutic option for treating breast cancer is

immunotherapy, which enables a patient’s immune system to

recognize and eliminate cancerous cells. Cancer cells evade the

immune system by expressing immune checkpoints: inhibitory

molecules that hinder the immune system’s ability to eliminate

cancer. Immune checkpoint inhibitors (ICIs) block these

immune checkpoints or “brakes” on the immune system,
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eradication of cancerous cells. Currently, clinically utilized ICIs

target the programmed death receptor 1 (PD-1)-programmed

death ligand 1 (PD-L1) or cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4) axes (12). ICIs have been most clinically

successful in the management of melanoma (13), non-small cell

lung cancer (NSCLC) (14), and bladder cancer (15). Overall,

more than 40% of all cancer patients are eligible to receive ICIs

(16, 17). Importantly, recent studies suggest that ICIs are

effective for the treatment of breast cancer patients, although it

was originally believed that these patients would respond poorly

to immunotherapies due to this disease being a relatively

nonimmunogenic cancer (18). Of all breast cancer subtypes,

immunotherapy is particularly promising for the treatment of

TNBC that cannot be treated via hormone therapies due to not

expressing commonly targeted hormone receptors—including

the ER, PR, and HER2. Immunotherapy may also be promising

for treating this subset of breast cancer, since treatment

resistance to standard therapies—like chemotherapy and

radiotherapy—remains a significant clinical issue for TNBC

patients (19, 20).

Combining radiotherapy with immunotherapy for the

treatment of aggressive breast cancers may improve treatment

efficacy. Early preclinical studies demonstrate that radiotherapy

promotes antigen presentation in tumor cells by causing DNA

damage, altering transcription, and potentially leading to

presentation of immunogenic peptides (21, 22). By promoting

the presentation of immunogenic peptides, the recognition of

cancer cells by T cells can be enhanced to reactivate the body

against the tumor, thus, overcoming the immunosuppressive

effects of immune checkpoints. Clinical studies assessing the

effectiveness of multimodal approaches incorporating

radiotherapy and immunotherapy in breast cancer are

ongoing. While combining immunotherapy and radiotherapy

to treat aggressive breast cancers is clinically promising,

additional research is necessary to determine the mechanisms

underlying this therapeutic approach. This review will cover the

cellular and molecular regulators of antitumor immunity as well

as review the preclinical and clinical advances supporting

immunotherapy as a treatment option for breast cancer

patients. Throughout this review, we place a special emphasis

on emerging therapeutic approaches and clinical trials

combining immunotherapy with radiotherapy to treat

breast cancer.
Immune microenvironment in
breast cancer

The immune system is a powerful mediator in protecting the

body against foreign pathogens, and importantly plays a crucial

role in safeguarding the body from self-cells that become
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cancerous. Paradoxically, the immune system can play both

supportive and inhibitory roles in breast cancer progression and

is an important pharmacological target to improve patient

outcomes (23). Tumors are classified based upon the presence

and location of immune cells in the tumor microenvironment

(TME), where noninflamed (“cold”) tumors have a low

infiltration of lymphocytes and inflamed (“hot”) tumors have a

high infiltration of lymphocytes (24). Noninflamed tumors can

also have an absence of infiltrating lymphocytes or have

lymphocytes only on the peripheral edges of the tumor

(“excluded”) (25). Additionally, antitumor immunity is

dependent on the immune tone of the TME, with both

immunosuppressive and immunostimulatory milieu being

common. This is relevant in breast cancer carcinogenesis, where

both the innate and adaptive immune system contribute to cancer

development and immune evasion (26).

Tumor-associated macrophages (TAMs) are innate immune

cells found within the TME that have pro-tumorigenic and anti-

tumorigenic effector mechanisms in the context of cancer (27).

Macrophages are divided into M1-like macrophages that exert

antitumor effects and M2-like macrophages that exert pro-

tumorigenic effects; however, these phenotypes are plastic and

can be pharmacologically reprogrammed (27). In breast cancer,

it has been known for the past two decades that macrophages

can promote malignant transformation (28), while monocyte-

derived macrophages additionally contribute to breast cancer

metastasis (29). FOLR2+ macrophages are a specific subset of

TAMs enriched predominantly in healthy mammary glands that

positively correlate with CD8+ T cells (30). Contrastingly,

TREM2+ macrophages are a subset of TAMs expressed

primarily in cancerous breast tissue that contribute to tumor

development (30). Additionally, in both TNBC and hormone

receptor-positive (HR+) breast cancer, CD163+ TAMs are

derived from circulating monocytes and contribute to

immunosuppression (31). Neutrophils, another innate cell

lineage, can also exert multifaceted pro-tumorigenic and anti-

tumorigenic effects under different contexts (32). Within TNBC,

there are dichotomous neutrophil-enriched subtypes (NES) and

macrophage-enriched subtypes (MES). Specifically, the NES

subtype displays an abundance of immunosuppressive

neutrophils and is resistant to ICIs, whereas the MES subtype

demonstrates mixed responses to ICIs (33). Furthermore,

mye lo id-der ived suppressor ce l l s (MDSCs) are a

heterogeneous population of immature myeloid cells of the

innate immune system that suppress CD8+ T cells and other

immune cells in the TME, promoting tumor progression (34).

Elevated levels of circulating MDSCs were present more often in

breast cancer patients than in healthy volunteers and were even

higher in patients with metastatic disease (35). MDSC crosstalk

signaling promotes breast cancer progression in part through the

STAT3 and NOTCH signaling pathways (36). In all, these cells

of the innate immune system exert multifaceted effects in the
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TME and execute significant roles in cancer progression and

immune surveillance.

Tumor-infiltrating lymphocytes (TILs) collectively refer to the

populations of lymphocytes in the tumor. This population of white

blood cells includes T lymphocytes (T cells), B lymphocytes (B

cells), and natural killer (NK) cells (37, 38). T cells compose

approximately 75% of TILs and consist of different subsets

including cytotoxic CD8+ T cells, CD4+ T cells, and regulatory

T cells (Tregs) that all contribute to the adaptive immune response

(38, 39). The presence of TILs is associated with improved disease

outcomes in breast cancer patients (40, 41). CD8+ T cells are

directly cytotoxic to tumor cells, while CD4+ T cells can promote

antitumor immunity through the secretion of inflammatory

cytokines (42). Meanwhile, some immune cell populations may

induce immunosuppressive effects in the TME. For example,

CD4+ Tregs restrain the activation and function of CD8+ T cells

(43). While it is well-established that CD8+ TILs are a favorable

prognostic indicator and positively correlate with relapse-free

survival in breast cancer (44), the T cell subtypes present in

breast cancer are not fully understood (45). CD8+ tissue-resident

memory (TRM) cells are one subset of CD8
+ TILs contributing to

immunity that express cytotoxic molecules and immune

checkpoint proteins (46). Interestingly, CD8+ TRM cells are

associated with improved relapse-free survival (RFS) in TNBC

cancer patients (45). In early-stage TNBC patients, the presence of

TRMs is associated with improved patient outcomes—including

increased survival and decreased rates of recurrence (46).

Increased intra-tumoral expression of CD39+PD-1+CD8+ T cells,

another subset of CD8+ TILs, correlates with longer disease-free

survival in breast cancer patients (47). In breast cancer, FOXP3+

Tregs are a distinct population of T cells associated with more

aggressive forms of breast cancer, including a higher risk of relapse

and decrease in survival (48). Additionally, intratumoral Tregs

from breast cancer tumors have increased expression of the

chemokine receptor CCR8, suggesting a unique phenotype and

function of these cells in human breast cancer patients (49). B

lymphocytes are a humoral cell population of the adaptive

immune system that can contribute to both antitumor immune

responses and potentiate cancer development (50). B lymphocytes

are less prevalent in invasive breast cancers in comparison to early

ductal carcinoma in situ (50). Importantly, the presence of

immune infiltrates in the breast tumor may correlate to patient

response to therapy. In the SweBCG91RT trial, immune infiltrates,

in the form of CD8+ T cells and FOXP3+ T cells, were examined in

early-stage breast cancer patients that received breast-conserving

surgery (BCS) and postoperative radiotherapy. In this trial, early-

stage breast cancer patients with antitumoral immune infiltrates

had a decreased risk of recurrence, while the addition of

radiotherapy to these patients was found to have limited benefits

(51). In summary, a variety of lymphocytes are present in breast

tissue and many of these lymphocytes play dual roles in

carcinogenesis and immune recognition.
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Of the breast cancer subtypes, TNBC is associated with the

highest lymphocyte infiltration, followed by HER2+ breast

cancer, and finally by HR+, HER2- breast cancer (41).

Importantly, lymphocyte infiltration in breast cancer patients

varies significantly from 1.1% to 44%, which is independent

from tumor size (52). In a study that examined CD8+ T cell

infiltration among 12,439 breast cancer patients, the presence of

intratumoral CD8+ T cells was associated with a significant

reduction in risk of death in both ER- and ER+, HER2+ breast

cancer. Specifically, intratumoral CD8+ T cell expression was

associated with a 28% reduction in mortality for TNBC and

HER2+ tumors and 27% reduction in mortality for ER+, HER2+

tumors (53). Furthermore, there have also been differences

found in the tumor immune microenvironment of African

American breast cancer patients compared to non-African

American pat ients , which may be contr ibuted to

socioeconomic and ancestry factors. African American TNBC

patients display an increase in gene expression of immune

pathways and an increase in immune infiltration—providing

rationale for the application of immunotherapies for these

patient populations (54). Inflammatory breast cancer (IBC) is

a rare type of breast cancer which clinically presents with distinct

rapid and substantial inflammation of the breast (55). IBC has a

unique tumor microenvironment composition compared to

other breast cancers (56). Emerging evidence suggests that the

tumor microenvironments of IBC tumors is associated with an

increase in CD8+ T cell infiltration (57, 58) and tumor-

associated macrophages (59, 60); however, the effects of the

immune system and underlying molecular pathways of IBC

carcinogenesis are not fully defined (61). In summary, more

research is necessary to understand the implications of

immunotherapy for other breast cancer subsets, including HR+

breast cancers and IBC.
Regulators of immune responses in
breast cancer

The immunogenicity of tumors is influenced by multiple

factors, including the mutational load of the tumor. Cancerous

cells accumulate variable levels of somatic mutations, which

may result in the production of neoantigens and tumor-

specific antigens (TSAs) (62–64). These antigens are

recognized by the immune system to distinguish cancer cells

from healthy, noncancerous cells (62). The ability of cytotoxic

CD8+ T cells to recognize neoantigens produced by tumor

cells was reported in the early 1990s and provided an

important insight into the antitumor effects of T cells in

cancer (65, 66). Cancer immunotherapies are often

developed to target these neoantigens because they are

tumor-specific and, thus, an attractive target for minimizing

on-target, off-tumor effects (63, 67). Compared to other

malignancies, breast cancer has less than the median
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cancers are hypermutated and carry a significant load of

somatic mutations. Additionally, in breast cancer, the

APOBEC signature, a signature that represents dysregulated

AID/APOBEC cytidine deaminases, is the primary mutational

process leading to these hypermutations (68). As tumor

mutational load correlates with response to immunotherapy,

from the perspective of antigen presentation, breast cancer is

deemed relatively non-immunogenic.

Disruption and dysregulation of the cancer immunity cycle

promotes carcinogenesis. Data from The Cancer Genome Atlas

(TCGA) and Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) breast cancer cohorts suggest that

malfunction of the cancer immunity cycle contributes to disease

progression and serves as a prognostic biomarker (69). Avoiding

immune clearance is an important hallmark of cancer that enables

cancer cells to expand independently from the inhibitory effects of

the immune system (65, 70). In the cancer immunity cycle, antigens

produced by cancer cells are sampled by antigen-presenting cells

(APCs) such as macrophages, dendritic cells, and B cells (65). APCs

then present the antigens via major histocompatibility complexes I

or II (MHCI/II) (65). Naïve T cells can recognize these antigens

when their T cell receptor (TCR) binds to the MHC on the APC,

and this interaction is stabilized by the co-receptors CD4 or CD8.

This TCR recognition of the peptide-MHC complex is insufficient

to fully activate T cells. An additional co-stimulation signal is

required, which occurs when costimulatory molecules, such as

CD28, on the T cell recognize signals, such as CD80/86, on the

APC. Following these two signals, the APC will release cytokines,

such as IL-2, to further direct the activation and differentiation of T

cells. Once activated, T cells egress from the lymph nodes, traffic

through the blood, and enter the TME (65). Trafficked T cells may

then utilize their tumor antigen-specific TCRs to bind to

neoantigens presented on MHC-I by the cancer cell, allowing for

granzyme and perforin driven cytotoxicity. The overall effect of this

pathway is dependent on which population of T cells is recruited to

the tumor microenvironment.

In breast cancer, there are several mechanisms utilized by

cancer cells to avoid recognition by the cancer immunity cycle

(71). One way tumor cells can avoid immune recognition is via

loss of MHC class I antigen presentation, which prevents the

tumor cells from being recognized by CD8+ T cells (72). In

breast cancer cells, this may occur in part through the protein

MAL2 that promotes endocytosis of tumor antigens (73).

Moreover, breast cancer cells can deplete the costimulatory

receptor needed for T cell activation when CTLA-4 on tumor

cells and CD80 on APCs promote trans-endocytosis of CD80

(74). Furthermore, by expressing immune checkpoints, cancer

cells can target and inhibit the effector functions of T cells,

including suppression of antitumor cytokine secretion and T cell

proliferation (71). Collectively, these studies illustrate the many

ways that breast cancer can avoid recognition by the cancer

immunity cycle.
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An immune pathway especially critical for modulating

immune responses to cancer is the cyclic GMP-AMP synthase-

stimulator of interferon genes (cGAS/STING) pathway, as

represented in Figure 1 (75). The stimulator of interferon genes

(STING) is an endoplasmic reticulum (EnR)-bound,

transmembrane protein that stimulates the transcription of

numerous immune pathways following the recognition of cyclic

dinucleotides (CDNs) and cytosolic DNA (cDNA) (75–77). CDNs

and cDNA can be produced from viruses, bacteria, and diseased

states including cancer (76). These cytoplasmic molecules of

genetic information are consequently recognized by cyclic

GMP-AMP synthase (cGAS), which produces cyclic GMP-AMP

(cGAMP) (76, 77). Chromosomal instability (CIN)—another

hallmark of cancer—occurs following chromosomal segregation

errors during mitosis and can also activate the cGAS/STING

pathway in cancer cells (70, 78). Moreover, in addition to

promoting an antitumor immune response through the cGAS/

STING pathway, CIN can also promote the activation of other

immune cells, including natural killer cells to promote antitumor
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the cGAS/STING pathway to activate an immune response (80).

Production of cGAMP by such means activates STING via

binding with two STING molecules in the EnR, which leads to

STING interacting with TANK-binding kinase 1 (TBK1) (76, 77).

TBK1 can then phosphorylate type 1 interferon (T1IFN)

transcription factors including interferon regulatory factor 3

(IRF3) and nuclear factor-kB (NF-kB) that promote gene

transcription after translocation to the nucleus (76, 77). The

cGAS/STING pathway and activation of T1IFNs also plays

critical roles in cancer (81). For example, T1IFN production is

often associated with T cell infiltration that promotes immune

responses against tumors (76, 82, 83). In breast cancer, perinuclear

expression of STING was recently found to be associated with

improved prognosis in ER+ breast cancers (84). Consequently, the

development of STING agonists has been explored as a therapy

for the treatment of breast cancer to induce an antitumor response

and improve the efficacy of additional immunotherapeutic

approaches (85, 86). In short, the cGAS/STING pathway plays a
FIGURE 1

The Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS/STING) Pathway Plays a Critical Role in Antitumor Immunity. Following
DNA damaging events, DNA fragments enter the cytoplasm of cancer cells. This cytosolic DNA is then recognized by the cytoplasmic sensor
cGAS, which can then produce cyclic GMP-AMP (cGAMP). Consequently, cGAMP promotes the recruitment of STING molecules in the
endoplasmic reticulum, which leads to TANK-binding kinase 1 (TBK1) phosphorylating interferon regulatory factor 3 (IRF3), and nuclear factor-
kB (NF- kB). IRF3 and NF- kB then translocate to the nucleus to promote transcription of type I interferons, which can lead to an antitumor
response via the promotion of T cell infiltration into the tumor microenvironment.
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critical role in cancer and is a potential pharmacological target for

treating cancer patients.
The role of immunotherapy in
breast cancer

Immunotherapeutic approaches aimed at improving cancer

control rates in breast cancer patients include cancer vaccines,

adoptive cell transfer, and ICIs (87, 88). Cancer vaccines target

distinct antigens upregulated in the tumors of cancer patients

and provide immunological memory (89). Mechanistically,

cancer vaccines seek to trigger an immune response via

machinery that promotes the presentation of tumor antigens

to the immune system and via adjuvants that cause a

proinflammatory response to activate the immune system (89).

Current research is focused on developing vaccines that can

prevent the progression of aggressive breast cancers—such as

triple negative disease (NCT04674306)—and combining breast

cancer vacc ines wi th other treatment approaches

(NCT00082641, NCT03789097). For instance, mRNA vaccines

have recently been successful in the context of COVID-19 and

are currently being explored for use in breast cancer (90).

Significant work has been done to study the efficacy of breast

cancer vaccines both preclinically and clinically; however, most

studies have failed to produce significant responses in patients,

which may be attributed to the heterogeneity of breast cancer

(89, 91).

ICIs have revolutionized cancer therapeutics, leading to Dr.

James P. Allison and Dr. Tasuku Honjo being awarded the Nobel

Prize in Physiology or Medicine in 2018 (92). One class of ICIs

target programmed death-ligand 1 (PD-L1 or B7-H1), which

serves to inhibit the immune system by binding to PD-1 on T

cells and dampening their cytotoxic abilities (93). PD-L1 is

expressed on a myriad of immune cells, including antigen

presenting cells, T cells, and B cells, and interacts with its

receptor, PD-1, expressed on T cells (94, 95). Mechanistically,

PD-L1 and PD-1 interactions suppress tumor immunity by

causing T cell apoptosis, anergy, exhaustion, and IL-10

expression (94). Expression of PD-L1 and PD-1 in the tumor

microenvironment is a common cancer immune evasion

strategy (94). Cytotoxic T-lymphocyte-associated protein 4

(CTLA-4 or CD152) is another immune checkpoint receptor

expressed on T cells that has a high affinity for CD80 and CD86,

which are necessary for T cell co-stimulation (96, 97). CTLA-4

outcompetes the co-stimulatory molecule CD28 to induce

immune suppression (97, 98). In breast cancer, TCGA

analyses suggest that TNBC patients express higher levels of

PD-L1 as compared to patients with other breast cancer subtypes

with approximately 20% of TNBC samples expressing significant

levels of PD-L1 (99). While PD(L)-1 inhibition is clinically

efficacious in many cancer types, PD-L1 expression poorly

predicts clinical benefit, emphasizing the demand for clinical
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trials evaluating efficacy as well as the need for better biomarkers

of treatment response (100).

Importantly, clinical trials have tested the efficacy of ICIs in

TNBC. The Phase Ib KEYNOTE-012 cl inical tr ia l

(NCT0184883) tested whether pembrolizumab (anti-PD-1)

was tolerable in patients with PD-L1+ advanced TNBC. This

study found that pembrolizumab had an acceptable safety

profile, with an overall response rate of 18.5% (101). In the

Phase II KEYNOTE-086 trial (NCT02447003), 254 female

patients with metastatic TNBC received pembrolizumab in

either the second line setting or the first line setting. In the

second line setting, patients unselected for PD-L1 expression

had an objective response rate (ORR) of 5.3%, while in the first

line setting, PD-L1+ patients had an ORR of 21.4%. Tolerability

was reaffirmed in both cohorts (102, 103). This trial led to the

randomized , open- labe l Phase I I I KEYNOTE-119

(NCT02555657) trial that examined the efficacy of

pembrolizumab versus single agent chemotherapy in patients

with PD-L+ metastatic TNBC. In this trial, PD-L1+ status was

characterized by patient PD-L1 combined positive scores (CPS),

defined as the ratio of PD-L1+ tumor cells, lymphocytes, and

macrophages out of total tumor cells multiplied by 100.

Pembrolizumab improved the median overall survival (OS)

from 11.6 months to 12.7 months as compared to

chemotherapy in patients with a CPS of 10 or higher (104).

KEYNOTE-119 motivated the Phase III, double-blind,

randomized trials KEYNOTE-355 (NCT02819518) and

KEYNOTE-522 (NCT03036488) (105, 106). In KEYNOTE-

355, 847 patients with metastatic TNBC or previously

untreated, locally recurrent inoperable breast cancer were

randomized 2:1 to pembrolizumab and chemotherapy

(specifically, paclitaxel, nab-paclitaxel, or gemcitabine plus

carboplatin) or placebo and chemotherapy. The co-primary

endpoints of this trial were overall survival and progression-

free survival, and patients were stratified by PD-L1 expression.

Pembrolizumab and chemotherapy improved the median

progression-free survival from 5.6 months to 9.7 months for

patients with high PD-L1+ scores, providing the clinical rationale

for using this combined therapy as a first-line treatment for

metastatic TNBC (105). Furthermore, recent data supports that

in patients with advanced TNBC with a CPS of 10 or more, the

median overall survival increased from 16.1 months in the

placebo-chemotherapy group to 23.0 months in the

pembrolizumab-chemotherapy group. Similarly, in patients

with a CPS of 1 or more, the median overall survival increased

from 16 months in the placebo-chemotherapy group to 17.6

months in the pembrolizumab-chemotherapy group (107). In

KEYNOTE-522, 1,174 patients with either previously untreated

stage II breast cancer or stage III TNBC were randomly assigned

2:1 to receive neoadjuvant and adjuvant pembrolizumab with

chemotherapy (either carboplatin or paclitaxel) or placebo with

chemotherapy. All patients also received standard of care

neoadjuvant doxorubicin–cyclophosphamide or epirubicin–
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cyclophosphamide. KEYNOTE-522 had two primary endpoints

of pathological complete response (pCR, defined as the absence

of invasive disease) and event-free survival. Pembrolizumab and

chemotherapy significantly increased the pCR compared to

chemotherapy alone (51.2% to 64.8%), and these data were

foundational to the FDA-approval for pembrolizumab use in

combination with chemotherapy for this patient population

(106). Thus, these trials have established pembrolizumab as an

important treatment for both metastatic and non-metastatic

TNBC. Additionally, preliminary data suggests atezolizumab, a

humanized anti-PD-L1 IgG1 antibody, is active in PD-L1+

locally advanced or metastatic TNBC; however, accelerated

approval was later rescinded based on subsequent

demonstration of limited clinical efficacy (108–110).

Clinical trials have also assessed the efficacy of ICIs in the

management of HR+ breast cancers. In the Phase 1b KEYNOTE-

028 study, patients with ER+, HER2- breast cancer with PD-L1+

tumors received pembrolizumab and achieved an ORR of 12%

(NCT02054806) (111). Furthermore, in the Phase 1b JAVELIN

study, which tested the safety of avelumab, 43% of patients had

HR+, HER2- breast cancer and the ORR was 3% (NCT01772004)

(112). The combination of pembrolizumab with chemotherapy

(113) and cyclin-dependent kinase inhibitors (114) in this

patient population has also not led to improvements in clinical

outcomes. These trials highlight that ICIs have limited clinical

activity in HR+ breast cancer. The poor efficacy of ICIs for the

treatment of HR+ breast cancer may be, in part, due to the

limited immune cell infiltrate in these tumors (115). The effects

of ICIs are also currently being examined for the treatment of

inflammatory breast cancer (116). A Phase II study

(NCT02411656) is currently assessing the effects of

pembrolizumab in metastatic or recurrent inflammatory breast

cancer patients. Moreover, a Phase II study is currently

examining the effect of pembrolizumab in combination with

hormone therapy during or after radiotherapy for patients with

HR+ inflammatory breast cancer who did not respond to

neoadjuvant chemotherapy alone (NCT02971748). Clinical

trials are currently recruiting patients to assess the effect of

ICIs in combination with chemotherapy (NCT03515798,

NCT05093387) for the treatment of inflammatory breast

cancer. Furthermore, a recent case study suggests clinical

promise in combining pembrolizumab and chemotherapy for

treating inflammatory breast cancer (117), while additional

studies are underway to identify novel biomarkers for anti-

PD-1 therapy in this disease, including peripheral T cell

exhaustion and clonality markers (118). Moreover, beyond the

scope of immunotherapy, current clinical trials are also

examining combined therapies of radiotherapy and PARP

inhibition for the treatment of inflammatory breast

cancer (NCT03598257).

Adoptive cell transfer (ACT) therapy functions by

transferring immune cells into cancer patients. Chimeric

antigen receptor (CAR)-T cells enable improved T cell
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recognition of cancers via bypass of the common cancer

immune evasion strategies of MHC downregulation and co-

stimulation blockade (119). CAR-T cells are composed of single-

chain variable fragments (scFv) fused to a costimulatory

molecule which is fused to the intracellular CD3z signaling

domain. The scFv recognizes antigen expressed on the surface of

tumor cells. The CD3z immunotyrosine activation motif

(ITAM) generates T cell activation signal 1 and the

intracellular costimulatory domain generates signal 2. This

allows CAR-T cells to become fully activated following

recognition of peptide without the need for MHC presentation

or additional co-stimulation. CAR-T cells, are engineered for

each individual patient by first collecting T cells from the

peripheral blood of cancer patients, transducing them ex vivo

to express the appropriate CAR, expanding, and validating these

CAR-T cells, and then reintroducing these cells into patients

(120). CAR-T cell therapies are a powerful tool for treating

cancer patients in that these modified cells can also persist in

patients for extended periods, providing significant support to

the immune systems of patients undergoing CAR-T cell therapy

(119). Currently, there are six CAR-T cell therapies approved for

clinical use in hematologic malignancies (121). However, there

are no CARs currently approved for use in breast cancer. In

developing CAR-T cell therapies, it is important that the

antigens being targeted are enriched in the tumor and not the

healthy tissues of patients to prevent “on-target off-tumor”

adverse events (119, 120). Additionally, CARs are limited in

that they can only be directed towards surface-expressed

antigens. CAR-T cells have shown limited promise in solid

tumors due to a variety of challenges, including poor T cell

infiltration into tumors and immunosuppressive tumor

microenvironments, although there is significant work

underway to overcome these obstacles. For the treatment of

breast cancer, preclinical studies are ongoing to examine the

effects of CAR-T cell therapy on various tumor specific antigens

including mucin 1 (MUC1), HER2, Lewis Y, mesothelin, and

folate receptor alpha (FR-a) (119). Clinical trials are underway
to assess the effects of CAR-T cell therapy for treating breast

cancer, including CAR-T cells recognizing epithelial cell

adhesion molecule (EpCAM) (NCT02915445), cleaved MUC1

(NCT04020575, NCT02792114), and ROR1 (NCT05274451). In

addition to CAR-T cell therapy, tumor-infiltrating lymphocytes

(TILs) are being examined as a type of adoptive cell transfer for

the treatment of breast cancer. TIL therapy involves isolating

tumor-infiltrating lymphocytes from patients, expanding them

ex vivo with large amounts of IL-2 and other cytokines, then re-

infusing them into the patient (122). Importantly, TIL therapy

does not significantly modify the lymphocytes, and, unlike CAR-

T therapy, TIL therapy assumes patient lymphocytes are able to

recognize tumor neoantigens that exist in small quantities.

Whole exome sequencing of breast cancer tissues revealed

TNBC expresses more neoantigens than non-TNBC,

suggesting TNBC patients may be good candidates for TIL
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therapy (123). An ongoing clinical trial (NCT01174121) seeks to

use TIL therapy in metastatic breast cancer, and preliminary

data has shown tumor regression in a subset of patients (124).

Collectively, these studies suggest the importance of ACT

therapies as a potential therapeutic approach for breast cancer.

Despite promise of these therapies as single-agent

therapies, additional studies are underway to find ways to

increase patient responses to ACT by combining with

radiotherapy or other forms of immunotherapy. For

example, studies are currently examining combining

radiotherapy with CAR-T cell therapy as a means to improve

patient response to adoptive T cell transfer and overcome

resistance in solid tumors (125). The effect of CAR-T cell

therapy and internal radiotherapy are beginning to be

evaluated for the treatment of liver metastases in breast

cancer patients in a Phase 1b trial (NCT02416466), and

results demonstrated some efficacy of the combination

therapy with minimal toxicities (126). Moreover, a study

recently examined the impact of combining infusion of ex

vivo expanded NK cells into a human TNBC xenograft model

with radiotherapy and found that the combination therapy

significantly decreased primary tumor growth while

minimizing toxicity (127). Combining CAR-T cell therapy

with anti-PD-1 led to reduced tumor weight and improved

CAR-T cell infiltration into the TME in a murine breast cancer

model, demonstrating this combination therapy strategy may

also be promising for treating breast cancer patients (128).

While adoptive cell transfer strategies have shown some

promise in the treatment of breast cancer in preclinical

models, there has yet to be significant clinical efficacy in

these solid malignancies.

In addition to immunotherapy, monoclonal antibodies

(mABs) directed either towards tumor-specific antigens or

mediators of oncogenic signaling have been used in breast

cancer for more than twenty years. Monoclonal antibodies that

target growth signaling can prevent cancer cell proliferation and

ultimately lead to apoptosis. Additionally, these monoclonal

antibodies can mediate antibody-dependent cellular

cytotoxicity (ADCC), engaging the immune system to

recognize cancer cells coated with antibodies bound to the

surface of the cell (129). Trastuzumab is a clinically approved

anti-HER2 mAb which improves the overall survival of patients

with HER2+ breast cancers (130). Pertuzumab targets a distinct

epitope of HER2 and is another mAB used in the management of

HER2+ breast cancer. Consequently, mABs are a promising

immunotherapy strategy for the treatment of breast cancer

patients; however, these therapies are not efficacious for the

treatment of triple negative disease that does not express the

HER2 receptor. Interestingly, even in HER2-low expression

tumors, the DESTINY-Breast04 trial recently demonstrated

improved survival in women with metastatic HER2-low

expressing tumors using the HER2 targeted therapy

trastuzumab deruxtecan (131). Whether HER2-targeted
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therapies combined with ICIs will be even more effective

remains an area of active clinical interest.
The impacts of immunotherapy and
radiotherapy in breast cancer

Unfortunately, only 10% of patients with TNBC respond to

immune checkpoint inhibitor monotherapy (85). Thus, there is an

unmet need to develop more effective therapeutic strategies to

improve patient responses to ICIs. One strategy to improve

therapeutic efficacy of ICIs may be to combine immunotherapy

with other effective breast cancer treatment modalities such as

radiotherapy. For this review, we will primarily focus on combined

approaches with immunotherapy—in the form of ICIs—and

radiotherapy. However, other reviews have examined the effects

of combining radiotherapy with cancer vaccines (132, 133), anti-

HER2 therapies (134), or CAR-T cell therapy (135).

Radiotherapy is a mainstay breast cancer therapy first used to

treat breast cancer patients in as early as the 1800s (136, 137).

Clinical radiotherapy involves the delivery of fractionated doses of

ionizing radiation to the affected cancerous breast tissue while

sparing the surrounding benign tissues. This results in targeted

disruption of tumor cells through induction of DNA damage,

alterations in the cell cycle, and ultimately cancer cell death (138–

140). Multiple randomized clinical trials have effectively established

that radiotherapy reduces local recurrence in both invasive and

noninvasive breast cancers, in addition to reducing the risk of breast

cancer death (141–143). Specifically, after breast-conserving

therapy, radiotherapy reduced the 10-year risk of a local or

distant recurrence from 35.0% to 19.3% and reduced the 15-year

breast cancer death risk from 25.2% to 21.4% (141). Despite such

benefits, radiotherapy can have pleotropic effects on the immune

system. For instance, large field and total body irradiation, which is

clinically indicated in the management of hematologic malignancies

(144), is used to induce profound lymphopenia. Meanwhile,

localized radiotherapy may promote antitumor immune

responses. An early study in the 1950s first described a

phenomenon known as the “abscopal effect” that showed a

correlation between the immune system and localized

radiotherapy (145). The abscopal effect (in Latin, ab: away from,

scopus: target) postulates that radiotherapy delivered to one part of

the body can reduce tumor size systemically, in regions outside of

where radiation is delivered (145–147). Literature suggests that this

phenomenon occurs in part through the immune system (148–

150), and immunotherapy is believed to promote abscopal effects

(151). However, studies show that the abscopal effect is rare (146,

152) and unlikely to be broadly applicable clinically. An additional

hallmark study of the late 1970s further expanded upon the

connections between radiotherapy and the immune system to

show that the efficacy of RT is dependent upon the immune

system (153). Significantly, radiotherapy and immunotherapy

provide synergistic tumor control when combined in preclinical
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models (154, 155). In fact, radiotherapy can sensitize even poorly

immunogenic cancers including pancreatic cancer (156), head and

neck squamous cell carcinoma (157), and breast cancer (158) to

ICIs—which emphasizes the promise of combined radiotherapy

and immunotherapy treatment modalities.

Notably, the effects of combination radiotherapy with ICIs in

breast cancer models have been explored. A crucial study by

Demaria et al. in 2005 illustrated the effects of combined

radiotherapy and immune checkpoint inhibition in murine

models of breast cancer (159). Specifically, combined local

radiation with anti-CTLA-4 immune checkpoint inhibition in

a poorly immunogenic murine breast cancer model resulted in

prolonged survival and decreased lung metastases (159).

Furthermore, later studies suggest that fractionated

radiotherapy—as opposed to single-dose radiotherapy—

induces systemic antitumor effects in combination with anti-

CTLA-4 treatment in murine breast cancer models (160). These

studies mutually suggest that radiotherapy combined with anti-

CTLA-4 therapy promotes antitumor immunity in preclinical

breast cancer models—providing rationale for combined use in

the clinic (159, 160). Studies suggest that these effects of

combined therapy depend on the immune cells present. In

fact, in murine breast cancer models, the effects of

radiotherapy and anti-CTLA-4 immunotherapy are dependent

upon the presence of invariant natural killer T cells (161).

Radiotherapy has also been found to induce CXCL16 release

by breast cancer cells to attract effector T cells in murine models

(162). Moreover, it has been proposed that the synergistic effects

of radiotherapy and immune checkpoint inhibitors depend upon

MTOR signaling (163) and tumor heterogeneity (164) in murine

breast syngeneic models. While these studies display the

synergistic effects of combined radiotherapy and ICIs for the

treatment of breast cancer, more research is warranted to further

understand the implications of these combined therapies.

Radiotherapy has been found to improve innate antitumor

responses, deplete immunosuppressive cell types, and augment

adaptive immune responses in combination with PD-1 blockade

(165). Functionally, it is believed that radiotherapy activates the

innate immune system via a process known as cross priming

(166). As radiotherapy induces tumor cell death, these cells

release neoantigens (167) that may be phagocytosed by nearby

APCs. APCs can then activate the adaptive immune system,

specifically CD8+ effector T cells, to kill cancer cells (166, 168).

Consequently, the efficacy of radiotherapy specifically depends

upon the presence of these cytotoxic cells (169). Interestingly,

combining radiotherapy with immunotherapy has also been

shown to jointly promote tumoral lipid oxidation-dependent

ferroptosis via SLC7A11 (170). Radiotherapy can further induce

the DNA damage response often associated with the synergistic

effects of radiotherapy and immunotherapy. Targeting ataxia

telangiectasia mutated (ATM)—a kinase that plays a role in the

DNA damage response to double stranded DNA breaks induced
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by radiotherapy—sensitizes pancreatic cancer to ICIs, providing

a mechanistic link for this observed synergy (171). Additionally,

inhibition of DNA-dependent protein kinase (DNA-PK) has

been shown to synergize with radiotherapy and modulate the

immune system in pancreatic cancer models by increasing

cytosolic double-stranded DNA and type 1 interferon

signaling. Moreover, combined anti-PD-L1 with radiotherapy

and DNA-PK inhibition further potentiates antitumoral

immunity in preclinical pancreatic cancer models (172). These

studies emphasize the complexity underlying the synergistic

effects of combined radiotherapy and immunotherapy and can

importantly be extended into the breast cancer space to

determine the underlying mechanisms of such approaches.

While the precise mechanisms underlying the synergistic

effects of radiotherapy and immunotherapy are not well

established, studies have suggested that the cGAS/STING

pathway may contribute to these combined effects as

summarized in Figure 2. As discussed above, the cGAS/STING

pathway plays a critical role in the antitumoral immune response

by inducing interferon signaling following the recognition of

cytosolic DNA (76). It is also well established that radiotherapy

induces the cGAS/STING pathway to activate interferon signaling

(173, 174). Importantly, interferon signaling can promote

antitumor T cell responses (76, 81). It was also recently

discovered that STING regulates radiotherapy sensitivity in vivo

in part through the production of reactive oxygen species (ROS)

(175). In human breast cancer cell lines and murine breast cancer

models, inhibition of ectonucleotide pyrophosphatase

phosphodiesterase 1 (ENPP1), a hydrolase of cGAMP, was

recently found to increase extracellular cGAMP levels and

synergize with radiotherapy to prevent tumor growth. The

radiotherapy-induced increased production of extracellular

cGAMP was subsequently sensed by STING and promoted the

infiltration of dendritic cells and cytotoxic T cells into the tumor.

Furthermore, depletion of extracellular cGAMP abrogated this

immune cell infiltration in breast cancer models, suggesting that

these radiation-induced immune effects are dependent upon the

presence of extracellular cGAMP and the cGAS/STING pathway

(176). Mechanistically, in human breast cancer cell lines, it has also

been shown that the cGAS/STING pathway is required for

interferon activation induced by combined radiotherapy and

anti-CTLA-4 immune checkpoint inhibition (177). In addition to

studying the effects of combined radiotherapy with anti-CTLA-4

treatments, preclinical studies suggest that radiotherapy and anti-

PD-1/L1 therapy synergistically potentiate antitumor immunity in

murine breast cancer models (178–180). Specifically, this

antitumor immunity occurs in the form of reduced

accumulation of myeloid-derived suppressor cells in the tumor

(178), promotion of CD8+ T cell expansion (179), expansion of

antigen-specific T cell responses (180), and reduction in tumor

growth in non-irradiated tumor sites (181). Importantly, additional

work is required to understand the contribution of other innate
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immune sensors and immune signaling pathways governing the

synergistic interactions between radiotherapy and immunotherapy

in breast cancer.

STING-dependent cytosolic sensing of DNA has been found

to contribute to innate immunostimulatory responses following

radiotherapy (173). However, there are also other pathways that

link DNA damage to innate immune signaling. Nucleic acids can

also be sensed by retinoic acid inducible gene-I (RIG-I)-like

receptors (RLRs), Nod-like receptors (NLRs), and Toll-like

receptors (TLRs) (182). Furthermore, the recognition of
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cytosolic DNA following viral infection has been found to

activate a type I interferon response independently from toll-

like receptors—further adding to the complexity of such

pathways (183). When RIG-1 engages single and double

stranded RNA, RIG-I complexes with mitochondrial antiviral-

signaling protein (MAVS) and activates the TBK1 complex

which ultimately promotes interferon signaling (184). In breast

cancer, RIG-I agonists have been found to induce inflammatory

transcription factors, type I interferons, and lymphocyte-

recruiting chemokines (185).
FIGURE 2

Radiotherapy and Immunotherapy Synergistically Promote Antitumor Immune Responses. One potential combined therapeutic approach is to
combine radiotherapy with immune checkpoint inhibition. Radiotherapy promotes DNA damage within cancerous cells, which can
consequently be recognized by cGAS and lead to activation of the cGAS/STING pathway to promote antitumor immunity through interferon
signaling. Likewise, immune checkpoint inhibitors, such as anti-PD-1 monoclonal antibodies, can modulate an augmented antitumor immune
response by turning off immune checkpoints. Under normal conditions, these checkpoints result in a decrease in the cytotoxic abilities of T
cells; however, when turned off, this enhances the cytotoxic effects of T cells and results in enhanced antitumoral effects. Numerous preclinical
and clinical studies suggest synergy exists in combining radiotherapy and immune checkpoint inhibitors in breast cancer patients and studies are
currently underway to determine the best ways oncologists can implement these interactions.
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The DHA-dependent protein kinase (DNA-PK) which, is

required for nonhomologous end joining (NHEJ), also serves as

another STING-independent innate immune sensor. DNA-PK

can be activated by viral DNA leading to IRF3 and IRF7

dependent innate immune sensing (186). Interestingly,

inhibition of DNA-PK has also been shown to augment

radiation-induced interferon signaling in an RNA Polymerase

III, Rig-I, and MAVS dependent fashion (172). TLRs have also

been found to contribute to innate immune signaling in breast

cancer (187). Specifically, Toll-like Receptor 9 (TLR9) can detect

DNA released by tumor cells following chemotherapy leading to

enhanced antigen presentation and improved antitumor

immune responses (188). Consequently, TLR9 agonists have

been examined as potential cancer therapeutics delivered in

combination with other therapies (189). Combined TLR9

agonism and radiotherapy promotes systemic antitumor

immunity in models of metastatic lung cancer and colon

cancer (190). In a preclinical breast cancer mouse model

resistant to PD-1, TLR9 agonists increased infiltration of CD8+

T cells into tumors and promoted IFN signaling (191).

Collectively, these studies articulate the breadth of the

pathways linking DNA damage and innate immune signaling.

While preclinical studies have illustrated the importance of

combining radiotherapy with immunotherapy, clinical trials are

also underway to assess these combined approaches. The single-

arm Phase II clinical trial (NCT02730130) assessed the

combination of pembrolizumab and radiotherapy in patients

with metastatic TNBC and observed a 17.6% overall response

rate, with minor adverse events as a result of combined therapy

(192). In this study, radiotherapy was delivered at 30 Gy at five

daily fractions to both PD-L1+ and PD-L1- patients. Of the 9

patients observed through this trial, 3 patients with baseline PD-

L1+ expression received a complete, durable response, which was

similar to responses in studies where all patients had PD-L1+

metastatic TNBC (192). Phase II trials have also evaluated the

combination of pembrolizumab and radiotherapy in patients

with HR+, HER2- heavily pretreated metastatic breast cancer

(NCT03051672). This trial observed that pembrolizumab

delivered prior to palliative radiotherapy (20 Gy in 5 fractions)

did not result in any objective responses (193). These studies

suggest that combined radiotherapy and immunotherapy may

be more efficacious for patients with triple negative disease as

opposed to HR+ breast cancers; however, additional research is

necessary to fully determine the mechanisms of resistance in

luminal breast cancer to immunotherapy.

Clinical trials are underway to study the effects of

radiotherapy and ICIs in patients with breast cancer. These

trials are summarized in Table 1. In addition to examining the

effects of combined ICIs with radiotherapy in metastatic TNBC

as discussed above (NCT02730130), such clinical trials are also

examining combined therapies in metastatic HR+ breast cancer

(NCT04756505). Importantly, many clinical trials are aimed at

determining the survival outcome of combined therapies, as well
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as understanding the immune-enhancing effects of radiotherapy

and immunotherapy in breast cancer patients. For example,

preoperative delivery of radiation boost is being examined in

combination with ICIs to enhance ICI efficacy in operable breast

cancer (NCT04454528) and in TNBC and HR+/HER2- breast

tumors (NCT03366844) (194). Another study is assessing the

effects of ICIs on the tumor microenvironment of TNBC

patients prior to intraoperative radiotherapy (IORT)

(NCT02977468). Trials are also examining the effects of novel

therapeutic immune agents, including an antagonistic OX40

monoclonal antibody (NCT01862900) and the STING agonist

TAK-676 (NCT04879849) combined with radiotherapy for

the treatment of breast cancer patients. While many studies

are examining the effects of the ICI pembrolizumab, studies

are also examining the effects of the ICI nivolumab in

combination with radiotherapy for the treatment of metastatic

breast cancer brain metastases (NCT03807765) and patients

with TNBC (NCT03818685). Together, these studies will help

understand the effects of combined radiotherapy and ICIs in

breast cancer patients and provide clinical rationale for

combining these therapeutics with other available therapies

such as chemotherapy.
The clinical and preclinical promise of
combining immunotherapy,
radiotherapy, and chemotherapy in
breast cancer

Importantly, one potential multimodal therapeutic approach

is combining immunotherapy, radiotherapy, and chemotherapy.

This approach is summarized in Figure 3. The combination of

chemotherapy, radiotherapy, and surgery is the standard of care

for breast cancer treatment, while numerous studies support the

therapeutic potential of combining radiotherapy with

chemotherapy for treating breast cancer patients. The evidence

supporting the integration of radiotherapy with chemotherapy

has been more extensively reviewed elsewhere (140, 195, 196).

Importantly, many chemotherapies function by inducing DNA

damage, consequently resulting in synergistic effects when

combined with radiotherapy in the preclinical and clinical

setting (140, 197). Cytotoxic chemotherapeutic agents—such

as platinums, taxanes, and antimetabolites—have been found

to promote synergistic, radiosensitizing effects in breast cancer

(198). Platinum chemotherapies—such as cisplatin and

carboplatin—are alkylating agents delivered to breast cancer

patients that bind to and crosslink DNA to inhibit proper

replication, leading to the formation of double stranded breaks

in the DNA (199, 200). Consequently, when platinum therapies

are combined with radiotherapy, studies support that this

promotes radiosensitization in various subsets of breast cancer,

including metastatic IBC (201) and early-stage TNBC (202).

Taxanes—such as paclitaxel and docetaxel—inhibit microtubule
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TABLE 1 Trials examining the effects of combined radiotherapy and immune checkpoint inhibitors.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

NCT02730130 A Multicenter Single
Arm Phase II Study to
Assess the Efficacy of
Pembrolizumab Plus
Radiotherapy in
Metastatic Triple
Negative Breast Cancer
Patients

- Breast cancer
- Metastatic triple negative
breast cancer

- Pembrolizumab
(200 mg
intravenous)
(anti-PD-1)

- 30 Gy radiotherapy
delivered in 5, 6 Gray (Gy)
× 5 fractions

- Phase II
- 17
participants
- Clinical trial

- Active, not
recruiting

NCT03051672 A Phase II Study Of
Pembrolizumab In
Combination With
Palliative Radiotherapy
For Metastatic
Hormone Receptor
Positive Breast Cancer

- Metastatic breast cancer - Pembrolizumab
(200 mg
intravenous)

- Palliative radiotherapy, 20
Gy in × 5 fractions

- Phase II
- 8
participants
- Clinical trial

- Terminated

NCT04756505 REINA: A Phase I Study
of Radiation Enhanced
IL 12-Necrosis
Attraction in Hormone
Receptor Positive, HER2
Negative Metastatic
Breast Cancer Patients

- Stage IV breast cancer
- Hormone receptor positive
breast adenocarcinoma
- Metastatic/ metastatic
HER2- breast carcinoma
- Stage IV breast cancer

- Bintrafusp Alfa
(intravenous)
-
Immunocytokine
NHS-IL12
(subcutaneous)

- Radiotherapy - Phase I
- 20
participants
- Clinical trial

- Recruiting

NCT04454528 Preoperative Use of
Radiation Boost to
Enhance Effectiveness of
Immune Checkpoint
Blockade Therapy in
Operable Breast Cancer

- Operable breast cancer - Pembrolizumab
(200 mg
intravenous)

- Hypofractionated
radiotherapy boost of 7 Gy
x 1 fraction

- Phase 1b/2
- 27
participants
- Clinical trial

- Recruiting

NCT03366844 Preoperative
Combination of
Pembrolizumab and
Radiation Therapy in
Patients With Operable
Breast Cancer

- Breast cancer - Pembrolizumab - Radiotherapy boost, 8 Gy
x 3 fractions

- Phase I and
II
- 60
participants
- Clinical trial

- Active, not
recruiting

NCT02977468 Effects of MK-3475
(Pembrolizumab) on the
Breast Tumor
Microenvironment in
Triple Negative Breast
Cancer With and
Without Intra-operative
RT: a Window of
Opportunity Study

- Triple negative breast
cancer

- Pembrolizumab
(MK-3475)
(intravenous)

- Intraoperative
radiotherapy (IORT) on
day of surgery

- Phase I
- 15
participants
- Clinical trial

- Recruiting

NCT01862900 Phase I/II Study of
Stereotactic Body
Radiation Therapy to
Metastatic Lesions in
the Liver or Lung in
Combination With
Monoclonal Antibody to
OX40 (MEDI6469) in
Patients With
Progressive Metastatic
Breast Cancer After
Systemic Therapy.

- Metastatic breast cancer
- Lung metastases
-Liver metastases

- Biological:
MEDI6469 (anti-
OX40) (0.4 mg/
kg intravenous)

- Stereotactic body
radiotherapy (SBRT)
- Three arms:
15 Gy, 20 Gy, or 25 Gy
SBRT

- Phase I/II
- 14
participants
- Clinical trial

- Completed

NCT04879849 An Open-label, Phase I,
Dose-escalation Study to
Evaluate the Safety and

- Triple negative breast
neoplasms
- Non-small-cell lung

- Pembrolizumab
(200 mg
intravenous)

- Image-guided
radiotherapy

- Phase I
- 65

- Recruiting

(Continued)
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function, inducing cell cycle arrest at the G2/M Phase,

consequently leading to cancer cell death (203). Combining

taxane chemotherapy with radiotherapy has been examined in

several settings. Combined paclitaxel and radiotherapy led to a

34% complete response in patients with early-stage breast cancer

(204). When tested in patients with locoregional recurrence,

radiotherapy combined with taxanes or with taxanes combined

with cisplatin found increased recurrence-free survival

regardless of whether cisplatin was added (205). In the context

of locally advanced breast cancer, paclitaxel treatment with

concurrent radiotherapy improved disease-free survival and

overall survival (206). Antimetabolite chemotherapeutic agents

—such as fluoropyridines or gemcitabine—are well-established

radiosensitizers that function by mimicking natural metabolites

found in the body to become incorporated into DNA or RNA,

leading to DNA damage (207, 208). These antimetabolite
Frontiers in Oncology 13
therapeutics have also been examined in combination

with radiotherapy. When treating breast cancer chest

wall recurrences with combined gemcitabine and radiotherapy,

100% locoregional control was achieved, although normal tissue

toxicity limits this combination clinically (209). Chemotherapy

resistant breast cancer treated with capecitabine and

radiotherapy was retrospectively analyzed to find that there

were no increased toxicities associated with the combination

therapy (210). Patients with advanced, non-TNBC treated with

capecitabine and radiotherapy led to 73% partial or complete

response (211). Collectively, these studies provide the rationale

for combining chemotherapy with radiotherapy for the

treatment of breast cancer patients.

Chemotherapy, like radiotherapy, has pleotropic effects on

the immune system. It is well established that chemotherapy is

immunosuppressive, rendering patients undergoing treatment
TABLE 1 Continued

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

Preliminary Antitumor
Activity of TAK-676
With Pembrolizumab
Following Radiation
Therapy in the
Treatment of Non-
small-cell Lung Cancer,
Triple-negative Breast
Cancer, or Squamous-
cell Carcinoma of the
Head and Neck That
Has Progressed on
Checkpoint Inhibitors

carcinoma
- Squamous cell carcinoma of
head and neck

- TAK-676 (0.2
mg and above
intravenous)

participants
- Clinical trial

NCT03807765 Phase Ib Study of
Stereotactic Radiation
and Nivolumab in the
Management of
Metastatic Breast
Cancer Brain Metastases

- Metastatic breast cancer
brain metastases

- Nivolumab
(anti-PD-1) (480
mg intravenous)

- Stereotactic radiosurgery
delivered to brain
metastases

- Phase I
- 14
participants
- Clinical trial

- Active, not
recruiting

NCT03818685 A Multicenter,
Randomised, Open-label
Phase II Study to
Evaluate the Clinical
Benefit of a Post-
operative Treatment
Associating
Radiotherapy +
Nivolumab +
Ipilimumab Versus
Radiotherapy +
Capecitabine for Triple
Negative Breast Cancer
Patients With Residual
Disease After
Neoadjuvant
Chemotherapy

- Breast cancer
- Triple negative breast
neoplasms

- Nivolumab
(360 mg
intravenous)
- Ipilimumab
(anti-CTLA4)
(1mg/kg
intravenous)
- Capecitabine
(1000mg/m2)

- Radiotherapy delivered
per standard practice

- Phase I
- 114
participants
- Clinical trial

- Active, not
recruiting
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more susceptible to infection (212). However, chemotherapy—

particularly in the neoadjuvant setting—has also been found to

result in pro-inflammatory, antitumor effects. Neoadjuvant

chemotherapy induces immune responses in breast cancer

patients, including increasing concentrations of TILs and

CD8+ T cells (213, 214). Furthermore, the immune response

induced by neoadjuvant chemotherapy predicts survival of

breast cancer patients and may prime tumors for treatment

with immunotherapy (213, 214). The presence of TILs is

predictive of response to chemotherapy in breast cancer,

further supporting the complex interaction between the

immune system and chemotherapy (215). DNA damage

immune response signatures have also been confirmed as

prognostic biomarkers in TNBC patients treated with adjuvant

doxorubicin and cyclophosphamide (216). Additionally,

activation of immune responses mediated by the cGAS/STING

pathway have been found to predict patient response to

neoadjuvant chemotherapy (217). Collectively, these studies

support the complex interactions that exist between

chemotherapy and the immune system in breast cancer

patients. Moreover, these studies also emphasize the
Frontiers in Oncology 14
importance of further understanding these complex

interactions in both preclinical and clinical breast cancer models.

Many clinical trials are currently evaluating the

combination of chemotherapy and immunotherapy in

breast cancer patients (218). While the focus of this review

is trimodal combinations, primarily with radiotherapy,

immunotherapy, and additional agents, others have

extensively reviewed the effects of combined chemotherapy

and immunotherapy (218–220) . The I-SPY2 tr ia l

(Investigation of Serial Studies to Predict Your Therapeutic

Response With Imaging And Molecular Analysis 2) is one

such important trial examining ICIs in combination with

chemotherapy. This randomized, adaptive clinical trial aims

to assess the effects of novel agents combined with standard

therapies for stage II or stage III breast cancer patients

(NCT01042379) with high-risk MammaPrint scores, a gene

signature used to predict breast cancer patient clinical

outcomes (221, 222). The primary endpoint for I-SPY 2 is

pCR. One arm of I-SPY 2 examined the therapeutic effects of

combining pembrolizumab with neoadjuvant chemotherapy

in approximately 250 patients. Pembrolizumab more than
FIGURE 3

Chemotherapy Has Immunomodulatory Effects on the Tumor Microenvironment and May Promote Synergy in Combination with Radiotherapy
and Immune Checkpoint Inhibitors. Chemotherapy is a standard of care therapy for the treatment of breast cancer and has significant
implications on the immune response. Studies suggest that single-agent chemotherapy can recruit immune cells to the microenvironment of
breast cancer tumors. Additionally, in breast cancer patients, response to chemotherapy is dependent upon the presence of tumor-infiltrating
lymphocytes. When chemotherapy is combined with radiotherapy, this can induce radiosensitization in preclinical and clinical models, resulting
in enhanced cancer cell death. Clinical promise may exist in combining immune checkpoint inhibitors, radiotherapy, and chemotherapy for the
treatment of breast cancer. When chemotherapy is combined with immunotherapy, this enhances its efficacy and increases patient survival.
Clinical trials are currently underway to ascertain the effects of combined approaches in breast cancer patients.
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doubled the pCR rate in the HR+, HER2-negative subset (13%

to 30%) as well as the TNBC subset (22% to 60%) (223).

Jointly, these studies support the clinical promise of

combining chemotherapy and immunotherapy.

Clinical trials are currently underway to assess the

effectiveness of combining chemotherapy with immunotherapy

and/or radiotherapy as summarized in Table 2. Trials are

currently evaluating the effects of preoperative pembrolizumab

combined with neoadjuvant chemotherapy (paclitaxel,

carboplatin, cyclophosphamide, doxorubicin, and/or

capecitabine) for TNBC or HR+, HER2- breast cancer

(NCT04443348), in addition to radiotherapy combined with

chemotherapy (nab-pacl i taxe l and pacl i taxe l ) and

pembrolizumab in PD-L1+ TNBC (NCT05233696). Moreover,

a Phase III trial is examining the effects of adjuvant

pembrolizumab in combination with radiotherapy on disease-

free survival in TNBC patients (NCT02954874). The priming

effects of radiotherapy on breast cancer patients prior to

neoadjuvant chemotherapy are also being examined to further

understand the role of the immune response following

radiotherapy (NCT03978663). The TONIC trial is a Phase II,

randomized, open-label trial examining whether chemotherapy

or radiotherapy prior to immune checkpoint inhibition with

nivolumab induces an inflamed tumor microenvironment in

metastatic TNBC patients (NCT02499367). In this study,

chemotherapy resulted in the most significant patient

responses, where cisplatin treated patients had an ORR of 23%

and doxorubicin treated patients had an ORR of 35% in addition

to an increase in immune cell infiltration. Interestingly, patients

pretreated with radiotherapy did not see an increase in immune

cell infiltration in the form of CD8+ T cells and TILs. However,

results from this study suggest that delivering chemotherapy

prior to PD-1/PD-L1 inhibition can prime tumors for response

to immune checkpoint inhibition (224). These studies highlight

the clinical promise of combining chemotherapy, ICIs, and

radiotherapy for treating breast cancer patients, and the

important research underway to understand the clinical effects

of these combined approaches.
The clinical and preclinical promise of
combining immunotherapy,
radiotherapy, and PARP inhibitors

Another approach for improving the efficacy of

immunotherapy exists in combining immunotherapy and

radiotherapy with DNA damage inhibitors, as summarized in

Figure 4. Poly(ADP-ribose) polymerase (PARP) proteins help

mediate effective DNA damage responses, and PARP inhibitors

hold promise for the treatment of breast cancer by inhibiting

this repair process (225). Mechanistically, PARP proteins are

recruited to sites of damaged DNA and complete a
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posttranslational modification termed PARylation (225, 226).

PARylation recruits DNA repair proteins to induce repair of

single-strand breaks (SSBs) (140, 225, 226). PARP inhibitors

prevent the accumulation of DNA damage repair proteins,

resulting in increased DNA double-strand breaks (DSBs) (225,

226). Approximately 5% of breast cancer patients carry a

deleterious mutation in the Breast Cancer (BRCA1/2) genes,

which are required for proper DNA damage repair and

correlate with increased risk of developing breast cancer

(225, 227, 228). In patients with BRCA deleterious

mutations, PARP inhibitors cause “synthetic lethality,”

wherein loss of multiple DNA repair pathways results in

synergistic tumor cell death (229). The PARP inhibitors

olaparib and talazoparib are currently FDA-approved for the

treatment of HER2-negative, BRCA-mutated breast cancer

(225). Combining PARP inhibitors with radiotherapy can

promote breast cancer cel l death. Mechanistical ly ,

radiotherapy induces DNA damage, while PARP inhibitors

prevent DNA damage repair (140). PARP1 inhibition was

found to radiosensitize breast cancer models to ionizing

radiotherapy preclinically (230, 231). Thus, there is a strong

preclinical rationale to combine radiotherapy and PARP

inhibitors for the treatment of breast cancer clinically.

Clinical trials have begun to evaluate the combination of

PARP inhibitors with radiotherapy and/or immunotherapy,

which are summarized in Table 3. The PARP inhibitor

veliparib has been combined with radiotherapy for breast

cancer patients with inflammatory disease or locoregionally

recurrent disease (NCT01477489) and is currently being

examined in breast cancer patients in combination with

preoperative radiotherapy (NCT01618357). The PARP

inhibitor rucaparib is also currently being investigated in

combination with radiotherapy for TNBC patients who do not

respond to chemotherapy (NCT03542175). Furthermore,

studies are also combining olaparib and radiotherapy

(NCT03109080, NCT03598257) . For example , the

RADIOPARP Phase I trial examined the effects of olaparib

combined with 50 Gy radiotherapy for patients with

inflammatory, metastatic, or locoregionally advanced TNBC

(NCT03109080) (232). While trimodality therapy can cause an

increase in acute self-limited adverse events, overall, the

combination is well tolerated (233). However, more research is

needed to continue monitoring potential toxicities caused by this

treatment modality in patients over time (232, 234).

In addition to contributing to radiation-induced DNA

damage, studies also suggest that PARP inhibition regulates

antitumor immunity (226). Many studies suggest a connection

between BRCA mutations, PARP inhibition, and the immune

system in breast cancer. In BRCA-deficient TNBCmodels, PARP

inhibition with olaparib induces a CD8+ T cell response in vivo

through the activation of the cGAS/STING pathway (235).

PARP inhibition also modulates immunosuppressive
frontiersin.org

https://doi.org/10.3389/fonc.2022.1022542
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jungles et al. 10.3389/fonc.2022.1022542
TABLE 2 Trials currently assessing combined immune checkpoint inhibition, chemotherapy, and/or radiotherapy.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

NCT04443348 P-RAD: A Randomized Study
of Preoperative Chemotherapy,
Pembrolizumab and No, Low
or High Dose RADiation in
Node-Positive, HER2-Negative
Breast Cancer

- Triple negative breast cancer
- Hormone receptor positive
breast cancer
- Biopsy-proven, positive
lymph nodes

- Pembrolizumab
- Paclitaxel
- Carboplatin
-
Cyclophosphamide
- Doxorubicin
- Capecitabine

- Radiotherapy
boost

- Phase II
- 120
Participants
- Clinical trial

- Recruiting

NCT05233696 Phase II Study of Radiotherapy
in Combination With
Chemotherapy and
Immunotherapy in Patients
With PD-L1-Positive
Metastatic Triple-Negative
Breast Cancer

- Triple negative breast cancer
- Locally advanced breast
cancer
- Unresectable breast
carcinoma
- Metastatic breast cancer

- Nab-paclitaxel
(100 mg/m2
intravenous)
- Paclitaxel (80 mg/
m2 intravenous)
- Pembrolizumab
(200 mg)

- One to four
metastatic sites
will be treated at
the discretion of
the radiation
oncologist

- Phase II
- 29 participants
- Clinical trial

- Recruiting

NCT03978663 Evaluating the Use of
Stereotactic Radiation Therapy
Prior to Neoadjuvant
Chemotherapy for High-risk
Breast Carcinoma (a SIGNAL
Series Clinical Trial): Three
Fraction Radiation to Induce
Immuno-Oncologic Response
(TRIO Trial)

- High risk cancer
- Locally advanced breast
cancer

- Neoadjuvant
anthracycline and
taxane based
chemotherapy

- Neoadjuvant
radiotherapy
- 8 Gy x 3
fractions, with a
fall off dose of 4
Gy x 3 fractions

- N/A
- 40 participants
- Clinical trial

- Recruiting

NCT02499367 Adaptive Phase II Randomized
Non-comparative Trial of
Nivolumab After Induction
Treatment in Triple-negative
Breast Cancer (TNBC)
Patients: TONIC-trial

- Breast cancer - Nivolumab
(3 mg/kg)
- Low dose
doxorubicin
(15 mg)
-
Cyclophosphamide
(50 mg oral)
- Cisplatin
(40 mg/m2)

- Radiotherapy;
20 Gy to
metastatic lesions

- Phase II
- 84 participants
- Clinical trial

- Active, not
recruiting

NCT02954874 A Randomized, Phase III Trial
to Evaluate the Efficacy and
Safety of Pembrolizumab (MK-
3475) as Adjuvant Therapy for
Triple Receptor-Negative
Breast Cancer With &gt;/= 1
CM Residual Invasive Cancer
or Positive Lymph Nodes
(ypN1mi, ypN1-3) After
Neoadjuvant Chemotherapy

- Invasive breast carcinoma
- Stage 0-III breast cancer
- Triple negative breast
carcinoma

- Pembrolizumab
(intravenous)

- Radiotherapy
within 12 weeks
post treatment or
12 weeks of last
breast cancer
operation

- Phase III
- 1155
participants
- Clinical trial

- Active, not
recruiting

NCT02971748 A Phase II Study of Anti-PD-1
(Pembrolizumab) in
Combination With Hormonal
Therapy During or After
Radiation in Patients With
Hormone Receptor (HR)-
Positive Localized
Inflammatory Breast Cancer
(IBC) Who Did Not Achieve a
Pathological Complete
Response (pCR) to
Neoadjuvant Chemotherapy

- Stage III breast cancer
- Breast inflammatory
carcinoma

- Pembrolizumab
(intravenous)

- Radiotherapy - Phase II
- 37 participants
- Clinical trial

- Active, not
recruiting

NCT03515798 A Prospective Multicenter
Open-label, Randomized Phase
II Study of Pembrolizumab in
Combination With

- HER2-negative, inflammatory
breast cancer

- Epirubicine-
cyclophosphamide
(EC) paclitaxel
chemotherapy

- None - Phase II
- 81 participants
- Clinical trial

- Recruiting

(Continued
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macrophages in the TME of BRCA1-associated TNBC models

and treating these models with CSF-1R antibodies combined

with PARP inhibitors overcomes PARP inhibitor acquired

resistance (236). Moreover, knock down of BRCA2 in human

breast cancer cells activates the cGAS/STING pathway (237).
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Surprisingly, PARP inhibition in some BRCA proficient ovarian

and colorectal cancer models can also activate immune

responses through the STING pathway (238). Moreover,

combining PARP inhibitors with anti-PD-L1 improves tumor

control in preclinical breast cancer models (239). These
FIGURE 4

PARP Inhibitors Prevent DNA Damage Repair and May Synergize with Both Radiotherapy and Immune Checkpoint Inhibition. Mechanistically,
PARP proteins are recruited to regions of DNA damage to assist in the repair of single-strand breaks. When PARP proteins are inhibited, this
prevents proper DNA repair and promotes the accumulation of double-strand breaks. In patients that express the BRCA1/2 genes, this damage
can be repaired; however, in patients with a deleterious BRCA1/2 mutation, this results in synthetic lethality due to the absence of multiple DNA
repair pathways. It is well established that radiotherapy induces DNA damage. When radiotherapy is combined with PARP inhibitors, this
prevents DNA damage repair in BRCA mutant cancers. Furthermore, the DNA damage induced by radiotherapy that is then not repaired
following PARP inhibition can result in the production of cytosolic DNA molecules. As single agents, immune checkpoint inhibitors illicit immune
responses by turning off immune checkpoints, resulting in pro-inflammatory, antitumor effects. Studies are currently underway to determine
whether combined PARP inhibition, radiotherapy, and immune checkpoint inhibition will promote enhanced antitumor immunity and be
efficacious for the treatment of breast cancer patients.
TABLE 2 Continued

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase and
patients

Status
(at time of
publication)

Neoadjuvant EC-Paclitaxel
Regimen in HER2-negative
Inflammatory Breast Cancer.

- Pembrolizumab
(MK3475)
(intravenous)

NCT05093387 A Pilot Study of SGT-53 With
Carboplatin and
Pembrolizumab in Metastatic
Triple Negative Inflammatory
Breast Cancer

- Metastatic, triple negative
inflammatory breast cancer

- Carboplatin
(intravenous)
- Pembrolizumab
(intravenous)
- SGT-53
(Transferrin
Receptor-Targeted
Liposomal p53
cDNA)
(intravenous)

- None - Phase I
- 9 participants
- Clinical trial

- Not yet
recruiting
fr
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TABLE 3 Clinical trials assessing the effects of PARP inhibitors combined with radiotherapy and/or immune checkpoint inhibitors.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase
and patients

Status
(at time of
publication)

NCT01477489 A Phase I Study of
Veliparib Administered
Concurrently With Chest
Wall and Nodal Radiation
Therapy in Patients With
Inflammatory or Loco-
regionally Recurrent Breast
Cancer

- Breast cancer - Veliparib (50
mg – 200 mg)

- Standard radiotherapy
(limited to 60 Gy)

- Phase I
- 33 participants
- Clinical trial

- Completed

NCT01618357 Pre-Operative PARPi and
Irradiation (POPI) in
Women With an
Incomplete Response to
Neo-Adjuvant
Chemotherapy for Breast
Cancer

- Breast cancer - Lumpectomy/
Mastectomy
- Veliparib

- Radiotherapy; 2.35 Gy
per fraction for 16
fractions for a total of
37.5 Gy

- Phase I
- 41 participants
- Clinical trial

- Suspended

NCT03542175 A Phase I Study of
Rucaparib Administered
Concurrently With
Postoperative Radiotherapy
in Patients With Triple
Negative Breast Cancer
With an Incomplete
Pathologic Response
Following Neoadjuvant
Chemotherapy

- Breast cancer - Rucaparib (300
mg, 400 mg, 500
mg, or 600 mg)

- Radiotherapy; 50 Gy
in 2 Gy per fraction,
plus 10 Gy boost to
lumpectomy cavity

- Phase I
- 30 participants
- Clinical trial

- Recruiting

NCT03109080 A Phase I of Olaparib With
Radiation Therapy in
Patients With
Inflammatory, Loco-
regionally Advanced or
Metastatic TNBC (Triple
Negative Breast Cancer) or
Patient With Operated
TNBC With Residual
Disease

- Malignant and triple-
negative breast neoplasms

- Olaparib - Radiotherapy - Phase I
- 24 participants
- Clinical trial

- Active, not
recruiting

NCT03598257 A Phase II Randomized
Trial of Olaparib (NSC-
747856) Administered
Concurrently With
Radiotherapy Versus
Radiotherapy Alone for
Inflammatory Breast
Cancer

- Breast inflammatory
carcinoma

- Olaparib (oral) - Radiotherapy - Phase II
- 300 participants
- Clinical trial

- Recruiting

NCT02657889 Phase 1/2 Clinical Study of
Niraparib in Combination
With Pembrolizumab (MK-
3475) in Patients With
Advanced or Metastatic
Triple-Negative Breast
Cancer and in Patients
With Recurrent Ovarian
Cancer

- Triple negative breast
cancer
- Breast cancer
- Metastatic breast cancer
- Advanced breast cancer
- Stage IV breast cancer
- Neoplasms
- Ovarian cancer
- Fallopian tube cancer
- Peritoneal cancer

- Niraparib (up
to 300 mg/day
oral)
- Pembrolizumab
(200 mg
intravenous)

- None - Phase I/II
- 122 participants
- Clinical trial

- Completed

NCT03544125 A Pilot Study of Olaparib
and Durvalumab in Patients
With Metastatic Triple
Negative Breast Cancer

- Stage IV breast cancer
- Estrogen receptor negative
- HER2 negative
- Progesterone receptor
negative
- Stage IV breast cancer

- Durvalumab
(intravenous)
- Olaparib (oral)

- None - Phase I
- 3 participants
- Clinical trial

- Completed

(Continued)
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preclinical data suggest that PARP inhibition may promote

antitumor immunity.

Furthermore, studies have examined the mechanisms

underlying the interactions between resistance to PARP

inhibitors and ICIs. PARP inhibitors have been found to

upregulate PD-L1 expression, resulting in immunosuppression

(240). Glycosylation of PD-L1 is required for its interaction with

PD-1 and subsequent suppression of T cell activity (240, 241).

However, inhibition of PD-L1 glycosylation via 2-deoxyglucose (2-

DG) promotes T-cell mediated cytotoxicity and potent antitumor
Frontiers in Oncology 19
activity in combination with PARP inhibitors (240). Human and

murine TNBC cell lines resistant to PARP inhibitors display an

increase in epithelial-mesenchymal transition and upregulation of

PD-L1 (242). These effects are abrogated by the application of

metformin to block pAkt S473—potentially providing a synergistic

approach to increase PARP inhibition and immunotherapy

efficacy (242). In short, various studies suggest that PD-L1

upregulation may regulate PARP inhibitor resistance.

Clinical trials are beginning to report the efficacy of PARP

inhibition combined with ICIs in breast cancer patients. In the
TABLE 3 Continued

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic
agent(s)

Radiotherapy Phase
and patients

Status
(at time of
publication)

- Triple-negative breast
carcinoma

NCT03025035 Open Label, Phase II Pilot
Study of Immune
Checkpoint Inhibition With
Pembrolizumab in
Combination With PARP
Inhibition With Olaparib in
Advanced BRCA-mutated
or HDR-defect Breast
Cancers

- Breast cancer - Pembrolizumab
(intravenous)
- Olaparib (oral)

- None - Phase II
- 20 participants
- Clinical trial

- Recruiting

NCT02849496 A Phase II Open-Label,
Randomized Study of
PARP Inhibition (Olaparib)
Either Alone or in
Combination With Anti-
PD-L1 Therapy
(Atezolizumab;
MPDL3280A) in
Homologous DNA Repair
(HDR) Deficient, Locally
Advanced or Metastatic
Non-HER2-Positive Breast
Cancer

- Locally advanced -
unresectable breast
carcinoma
- Metastatic breast
carcinoma
- Stage III breast cancer
- Stage IV breast cancer

- Atezolizumab
(intravenous)
- Olaparib (oral)

- None - Phase II
- 81 participants
- Clinical trial

- Suspended

NCT04683679 A Phase II Study of
Pembrolizumab and
Ablative Radiotherapy With
or Without Olaparib in
Metastatic Triple-Negative
Breast Cancers : Initial Test
Cohorts of a Platform Trial
to Sequentially Investigate
Combinations of DNA-
Damage Response
Inhibitors and
Immunotherapy for the
Augmentation of Immune
Responses

- Triple negative breast
cancer

- Pembrolizumab
(200 mg
intravenous)
- Olaparib (600
mg oral)

- 8-9 Gy x 3 fractions or
30 Gy in 6 Gy per
fraction for larger
tumors

- Phase II
- 56 participants
- Clinical trial

- Recruiting

NCT04837209 A Phase II Study of
NirAparib, Dostarlimab and
Radiotherapy in Metastatic,
PD-L1 Negative or
Immunotherapy-Refractory
Triple-Negative Breast
Cancer (NADiR)

- Breast cancer
- Triple negative breast
cancer

- Niraparib (oral)
- Dostarlimab
(anti-PD-1)
(intravenous)

- Radiotherapy - Phase II
- 32 participants
- Clinical trial

- Recruiting
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TOPACIO/KEYNOTE-162 trial, the PARP inhibitor niraparib

was combined with pembrolizumab for the treatment of

advanced or metastatic TNBC (NCT02657889). Preliminary

results from this study suggest that combining PARP

inhibition with ICIs may be effective in metastatic TNBC

regardless of BRCA status (243). Additionally, ongoing studies

are examining the combination of olaparib and durvalumab for

patients with metastatic TNBC (NCT03544125) (244), as well as

examining the combination of pembrolizumab and olaparib in

patients with DNA damage response pathway mutations

(NCT03025035). Furthermore, a Phase II, open-label,

randomized trial was recently underway to assess the effects of

olaparib alone and in combination with atezolizumab in HDR

deficient locally advanced or metastatic non-HER2+ breast

cancer, although it was recently suspended (NCT02849496)

(245). To conclude, these clinical data suggest that PARP

inhibition may enhance patient responses to immunotherapy;

however, additional research is merited.

Based upon the promise of combining both PARP inhibition

with radiotherapy and PARP inhibition with immunotherapy,

trials are also examining trimodal approaches with radiotherapy,

ICIs, and PARP inhibition. A Phase II trial is currently recruiting

patients to ascertain the efficacy and safety of talazoparib

combined with radiotherapy and atezolizumab (anti-PD-L1)

for PD-L1+ metastatic TNBC patients (NCT04690855).

Additionally, a randomized, Phase II study is recruiting breast

cancer patients to understand the effects of radiotherapy in

combination with pembrolizumab and olaparib to treat

patients with triple negative disease (NCT04683679).

Moreover, a Phase II trial is currently assessing the effects of

combined niraparib, dostarlimab (anti-PD-1), and radiotherapy

in metastatic, PD-L1-, or immunotherapy-refractory TNBC

(NCT04837209). Importantly, more time is necessary to define

the tolerability and efficacy of these trimodal approaches in

breast cancer patients.
Safety, tolerability, and cost-effectiveness
of combined therapy approaches

Importantly, while combining targeted therapies with

radiotherapy and immune checkpoint inhibitors is a promising

approach for the treatment of breast cancer patients, more studies

are warranted to further examine the safety and tolerance of such

combinations. All pharmaceutical agents are associated with

potential adverse events and combining therapeutic agents and

modalities can heighten the risk of toxicity. Combining therapeutics

also has the potential of reducing toxicity if combined therapies are

synergistic and require lower doses of these agents in combination

compared to when delivered as monotherapies. Clinical and

preclinical studies are currently underway to screen for potential

adverse effects and unwanted toxicities of combined approaches for

the treatment of breast cancer.
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Collectively, in breast cancer patients, single agent targeted

therapies can result in various toxicities, including

cardiovascular (246, 247), endocrine, dermatologic, and

pulmonary toxicities (248). While advancements in the

delivery of radiotherapy as a monotherapy have allowed for

the precise delivery of radiation rays directly to cancerous

lesions, radiotherapy can also damage nearby, non-malignant

cells, resulting in acute and late-onset toxicities (249). ICIs are

associated with idiosyncratic inflammatory adverse events which

can occur in potentially any organ system, emphasizing the

importance of closely monitoring patients receiving such

therapies (250). Anti-CTLA-4 immunotherapies are associated

with a higher incidence of immune-related adverse events

(irAEs) compared to inhibitors of the PD-1 axis, which may

coincide with their different mechanisms of action (249). Anti-

PD-1 therapies (i.e., pembrolizumab) may be associated with

fewer adverse events than anti-PD-L1 therapies (i.e.,

atezolizumab) in breast cancer patients (250, 251). Collectively,

as more patients receive ICIs as part of their treatment regimens,

more screening is warranted to understand why these adverse

events take place and how these events can be prevented in

patients undergoing treatment.

Combination therapies involving the application of both

radiotherapy and ICIs may result in complex effects on the

immune system which may promote enhanced therapy efficacy

and also therapy toxicity. To date, the combination of

radiotherapy and ICIs has been found to be safe and well-

tolerated in patients undergoing treatment (249, 252).

Combined anti-PD-1 and anti-CTLA-4 ICIs with palliative

radiotherapy was found to be associated with few adverse events

in patients with non-small cell lung cancer, melanoma, renal cell

cancer, and breast cancer (192, 253). Toxicity can also occur in

studies combining chemotherapy with ICIs. For instance, in the

KEYNOTE-522 trials, while combination of chemotherapy and

pembrolizumab improved pathological complete response in

patients with early TNBC, this therapy resulted in 78% of

patients having grade 3 or higher adverse events, compared to

only 73% of patients in the placebo-chemotherapy group (106).

Targeted therapy can also cause adverse events. Single-agent

PARP inhibition has been found to be less toxic compared to

single-agent chemotherapy; however, when PARP inhibitors are

used in combination with radiotherapy, toxicity must be closely

monitored (248). In a study that combined PARP inhibition

(veliparib) with radiotherapy in patients with inflammatory or

locoregionally recurrent breast cancer, 1 year post treatment

resulted in grade 3 toxicity of 10%. However, 3 years following

combined therapy, 46.7% of patients experienced grade 3 toxicity,

with 6 out of a total 15 patients having severe fibrosis in the field of

treatment (233). Collectively, more studies are needed to screen

for such toxicities and determine the proper doses of targeted

therapies, ICIs, and radiotherapy that can be efficacious, while

inducing minor adverse events and low toxicities in patients with

aggressive forms of breast cancer,
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While the safety profiles of combined approaches are

important to consider when determining the optimal

treatment plan, another important aspect to consider is the

cost-effectiveness of such therapeutics. Financial toxicity is a

growing concern in breast cancer care (254). While ICIs are an

emerging and promising therapeutic option for cancer patients,

they are costly services for patients, which is a critical factor

when patients are deciding what course of therapy to pursue. In

a study assessing the cost effectiveness of immunotherapy in

non-small cell lung cancer, the median yearly cost of ICIs was

$148,431. Importantly, while the costs of ICIs may vary based

upon drug rand and mechanism of action, overall, prolonged

usage of such therapies beyond two years was not found to be

financially feasible for patients (255). Consequently, numerous

studies are focused on accessing the cost-effectiveness (CE) of

immunotherapies, which is often measured as the incremental

cost-effectiveness ratio (ICER), a ratio that represents the cost

required for one additional year of life (256). In breast cancer,

results from studies assessing the cost-effectiveness of

immunotherapies are often mixed and are drug-dependent—

supporting the need to further analyze the benefit of prescribing

ICIs to cancer patients—especially in combination with other

targeted therapies. In solid tumors, ICIs provide significant

clinical benefits to patients and certain types of ICIs have been

found to be cost-effective in different types of cancer compared

to chemotherapy treatment alone (256). In PD-1+, metastatic

TNBC, the combination of pembrolizumab with chemotherapy

was found to be cost-effective (257). Combined chemotherapy

and pembrolizumab was also cost-effective in high risk, early-

stage TNBC (258). Combining ICIs with radiotherapy is also

cost-effective in non-small cell lung cancer; however, this has not

been examined as thoroughly in the context of breast cancer and

more studies are warranted (259). More work is also necessary to

determine how cost-effective trimodal approaches are for breast

cancer patients—such as for combined ICIs, radiotherapy, and

targeted therapy. Furthermore, this also starts conversations

regarding the overall cost of therapeutics and accessibility to

affordable healthcare—which may vary based upon where

patients are receiving their cancer care and influence their

decisions to receive such therapies.
Future directions

Future clinical trials are focused on assessing whether

combination approaches increase immunotherapy efficacy in

patients with breast cancer as demonstrated in Table 4 (260).

CDK4/6 inhibitors are mainstay treatments for women with

metastat ic HR+, HER2- breast cancer and induce

radiosensitization in preclinical models of ER+ breast cancer

and TNBC (261, 262). Furthermore, the CDK4/6 inhibitor
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abemaciclib enhances the efficacy of anti-PD-L1 ICIs by

augmenting antigen presentation and T cell activation in

human breast cancer cells (263). These data motivate the

assessment of combining CDK4/6 inhibitors with radiotherapy

and ICIs in future studies. Currently, the effects of combined

stereotactic body radiation (SBRT), ICIs, and hormone therapies

are being examined in ER+ breast cancer (NCT04563507). In

addition to analyzing the effects of already developed

pharmacological agents with radiotherapy and ICIs, future

studies should investigate the combined effects of novel cancer

therapeutic agents. For instance, combining a phosphoinositide

3-kinase d (PI3Kad) inhibitor with radiotherapy and anti-PD-1

was found to increase CD8+ T cell accumulation and delay

tumor growth in a murine syngeneic TNBCmodel (264). STING

agonists are also currently being examined in preclinical breast

cancer models in combination with ubiquitinated protein

nanovaccines (265), anti-CD47 monoclonal antibodies (266),

and CAR-T cell therapy (267). These studies suggest that

combining STING agonists, ICIs, and radiotherapy may have

clinical potential.

Additional studies are crucial to determine the most effective

radiotherapy dose and fractionation in patients. The optimal

dose fractionation to induce effective antitumor immune

responses has not yet been determined, with preclinical

literature supporting both ablative single fractions (268) as

well as moderate hypofractionation (160, 166). For example,

ablative stereotactic body radiotherapy delivered at 15 Gy

delivered in 3 fractions or 30 Gy radiotherapy delivered in 1

fraction combined with immunotherapy decreased primary

tumor size in a 4T1 murine breast cancer model, while

ablative radiotherapy delivered at 1 fraction of 30 Gy

transforms the tumor suppressive microenvironment of colon

tumors into a pro-inflammatory, CD8+ T cell enriched

environment (268, 269). Hypofractionated radiotherapy

delivered at 9.18 Gy in 3 fractions or 6.43 Gy in 5 fractions

also induces systemic antitumor effects and promotes synergy in

combination with anti-PD-1 in syngeneic breast cancer models

(270). Conversely, radiotherapy delivered at doses above 12-18

Gy induces Trex1 in other breast cancer models, which can

hinder the pro-immune effects of radiotherapy by degrading

cellular DNA upstream of the cGAS/STING pathway (177).

Prospective clinical evaluations are needed to define the optimal

radiotherapy regimens in patients.

In addition to better understanding themechanisms involved in

radiotherapy, it is also critical to further understand the underlying

mechanisms involved in immunotherapy efficacy and patient

response to immunotherapy. Importantly, many factors play a

role in the efficacy of ICIs, such as age (85), sex (NCT04435964),

gut microbiome (NCT03383107, NCT05037825), and oncogenic

signaling/mutations (NCT01351103) (271). Immunotherapy

efficacy may also depend on sites of metastatic involvement. In
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TABLE 4 Additional studies assessing combinatorial therapies for the treatment of breast cancer.

ClinicalTrials.gov
identifier

Study title Conditions Therapeutic agent(s) Radiotherapy Phase and
patients

Status (at
time of

publication)

NCT04563507 CIMER: Combined
Immunotherapies in
Metastatic ER+ Breast
Cancer

- Breast
cancer

- Letrozole (2.5 Mg tablet)
- Palbociclib (125 mg)

- SBRT at 50 Gy
× 5 fractions

- Phase II
- 102
participants
- Clinical trial

- Recruiting

NCT04435964 Gender Difference in sidE
eFfects of ImmuNotherapy: a
Possible Clue to Optimize
cancEr tReatment

- Breast
Cancer
- Melanoma
- Lung cancer
- Head and
neck cancer
- Urogenital
neoplasms

- Immune checkpoint inhibitors as a
monotherapy or in combination with
radiotherapy and/or chemotherapy

- Varies - 400
participants
-
Observational
trial

- Recruiting

NCT03383107 Effect of Radiotherapy
Variables on Circulating
Effectors of Immune
Response and Local
Microbiome

- Breast
cancer
- Prostate
cancer

- Radiotherapy (For breast cancer)
- Standard
fractionation breast
and nodal
radiotherapy to 50
Gy in × 25
fractions
- Partial breast RT
to 30 Gy in × 25
fractions and × 5
fractions

- 66
participants
-
Observational
trial

- Completed

NCT05037825 The Gut Microbiome and
Immune Checkpoint
Inhibitor Therapy in Solid
Tumors

- Triple-
negative breast
cancer
- Non-small-
cell lung
carcinoma
- Malignant
melanoma
- Renal cell
carcinoma

- Anti-PD-1, anti-PD-L1, or anti-
CTLA-4 in combination with other
checkpoint inhibitors or agents
including radiotherapy, surgery, and/
or chemotherapy

- Varies - 800
participants
-
Observational
trial

- Recruiting

NCT01351103 A Phase I, Open-label, Dose
Escalation Study of Oral
LGK974 in Patients With
Malignancies Dependent on
Wnt Ligands

- Triple
negative breast
cancer
- Pancreatic
cancer
- BRAF
mutant
colorectal
cancer
- Melanoma
- Head and
neck
squamous cell
cancer
- Cervical
squamous cell
cancer
- Esophageal
squamous cell
cancer
- Lung
squamous cell
cancer

- Drug: LGK974 (PORCN inhibitor)
- Biological: PDR001 (anti-PD-1)

- None - Phase I
- 185
participants
- Clinical trial

- Recruiting
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both patients and preclinical models, liver metastases are associated

with diminished immunotherapy efficacy (272). Moreover, it is

essential to continue investigating the effects of the cGAS/STING

pathway and its implications in both the radiotherapy response and

immune response in human cancers. Numerous studies are

currently investigating the preclinical implications of the cGAS/

STING pathway in cancer and how other mediators of this pathway

can be modulated to promote pro-immune, antitumor effects. In all,

the mechanisms underlying combined therapies are complex and

more research is justified to further understand these interactions.

Moreover, it is also critical to define treatment tolerance

since adverse events may occur following combined treatments.

Finally, another crucial future direction is developing predictive

and prognostic biomarkers indicative of response to

combination therapies. While studies suggest TILs, tumor

mutation burden (TMB), and immune gene signatures may be

potential biomarkers for response to ICIs in breast cancer,

biomarkers indicative of combined therapy efficacy have not

yet been identified (273, 274). In short, more research is

necessary to discover biomarkers to help identify which

patient populations will respond best to these novel

therapeutic approaches.
Discussion

Breast cancer is the leading non-cutaneous cancer diagnosed

among females and is a heterogeneous disease that can result in

poor clinical outcomes, especially in patients with triple negative

disease. Immunotherapy is an emerging therapeutic option for

aggressive forms of breast cancer and combining immunotherapy

with radiotherapy may hold clinical benefit. Preclinical studies are

underway to understand the potential benefit of combining

radiotherapy with immune checkpoint inhibitors and to examine

the molecular mechanisms that contribute to potential synergy

between these therapies. Additional studies are needed to develop

therapeutic approaches targeting canonical and noncanonical

regulators of innate immunity in conjunction with radiotherapy

and immunotherapy. Clinical trials are currently examining the

prognostic benefits of combined ICIs and radiotherapy with other

available cancer therapeutics in breast cancer patients. Collectively,

these studies support the importance of improving combined

therapy efficacy with the ultimate goal of improving outcomes in

breast cancer.
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19. Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in
triple-negative breast cancer-how we can rise to the challenge. Cells (2019) 8(9):1–
32. doi: 10.3390/cells8090957

20. Wein L, Loi S. Mechanisms of resistance of chemotherapy in early-stage
triple negative breast cancer (TNBC). Breast (2017) 34:S27–30. doi: 10.1016/
j.breast.2017.06.023

21. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley
EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I
expression, and induces successful antitumor immunotherapy. J Exp Med (2006)
203(5):1259–71. doi: 10.1084/jem.20052494

22. Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation
therapy and anti-tumor immunity: exposing immunogenic mutations to the
immune system. Genome Med (2019) 11(40):1–10. doi: 10.1186/s13073-019-
0653-7
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