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Significance of this study

What is already known on this subject?
►► Using new imaging modalities such as narrow 
band imaging, endoscopists have studied the 
potential for a ‘resect and discard’ strategy for 
management of diminutive colorectal polyps.

►► Experts have good results in general but 
community endoscopists fall short of 
Preservation and Incorporation of Valuable 
endoscopic Innovations (PIVI) guidelines.

►► Artificial intelligence (AI) is rapidly growing and 
shows promise in performing optical biopsy.

What are the new findings?
►► We show, using a type of AI known as deep 
learning, that our model is accurate at 94% 
in differentiating diminutive adenomas from 
hyperplastic polyps on unaltered videos of 
colon polyps.

►► Our model operates in quasi real-time on such 
videos, with a delay of just 50 ms per frame.

How might it impact on clinical practice in the 
foreseeable future?
If validated in planned clinical trials with patients 
during live procedures, this AI platform could 
accelerate the adoption of a ‘resect and discard’ 
strategy for diminutive colorectal polyps.If 
validated in planned clinical trials with patients 
during live procedures, this AI platform could 
accelerate the adoption of a ‘resect and discard’ 
strategy for diminutive colorectal polyps.

Abstract
Background I n general, academic but not community 
endoscopists have demonstrated adequate endoscopic 
differentiation accuracy to make the ’resect and discard’ 
paradigm for diminutive colorectal polyps workable. 
Computer analysis of video could potentially eliminate 
the obstacle of interobserver variability in endoscopic 
polyp interpretation and enable widespread acceptance 
of ’resect and discard’.
Study design and methods  We developed an 
artificial intelligence (AI) model for real-time assessment 
of endoscopic video images of colorectal polyps. A deep 
convolutional neural network model was used. Only 
narrow band imaging video frames were used, split 
equally between relevant multiclasses. Unaltered videos 
from routine exams not specifically designed or adapted 
for AI classification were used to train and validate the 
model. The model was tested on a separate series of 125 
videos of consecutively encountered diminutive polyps 
that were proven to be adenomas or hyperplastic polyps.
Results T he AI model works with a confidence 
mechanism and did not generate sufficient confidence 
to predict the histology of 19 polyps in the test set, 
representing 15% of the polyps. For the remaining 106 
diminutive polyps, the accuracy of the model was 94% 
(95% CI 86% to 97%), the sensitivity for identification 
of adenomas was 98% (95% CI 92% to 100%), 
specificity was 83% (95% CI 67% to 93%), negative 
predictive value 97% and positive predictive value 90%.
Conclusions A n AI model trained on endoscopic video 
can differentiate diminutive adenomas from hyperplastic 
polyps with high accuracy. Additional study of this 
programme in a live patient clinical trial setting to 
address resect and discard is planned.

Introduction
Endoscopists combine their knowledge of the spec-
trum of endoscopic appearances of precancerous 
lesions with meticulous mechanical exploration 
and cleaning of mucosal surfaces to maximise 
lesion detection during colonoscopy. An exten-
sion of detection is endoscopic prediction of lesion 
histology, including differentiation of precancerous 
lesions from non-neoplastic lesions, and prediction 

of deep submucosal invasion of cancer.1 2 Image 
analysis can guide whether lesion removal is neces-
sary and direct an endoscopist to the best resection 
method.1–3

Image analysis during colonoscopy has achieved 
increasing acceptance as a means to accurately 
predict the histology of diminutive lesions,4 5 
which have minimal risk of cancer,6 so that these 
diminutive lesions could be resected and discarded 
without pathological assessment or left in place 
without resection in the case of diminutive distal 
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colon hyperplastic polyps.3 Discarding most diminutive lesions 
without pathological assessment has the potential for large cost 
saving with minimal risk.7 8

Unfortunately, both lesion detection during colonoscopy9–12 
and image assessment of detected lesions during colonoscopy to 
predict histology13 14 are subject to substantial operator depen-
dence. Thus, using virtual chromoendoscopy, experts have been 
able to exceed the accuracy threshold for polyp differentiation 
recommended to permit resect and discard,4 but performance by 
community based physicians has been variable and in some cases 
below accepted performance thresholds.13 14

Accordingly, different initiatives were developed to investigate 
cost-effective approaches to derive qualitative histological infor-
mation from endoscopic images, also referred to as optical biopsy. 
Originating from such effort, a sound body of evidence suggests 
that a simple narrow band imaging (NBI)-based classification 
system, the NBI International Colorectal Endoscopic (NICE) 
classification, could enable differentiating hyperplastic from 
adenomatous polyps (including diminutive polyps). The NICE 
classification scheme was designed to enable trained endoscopists 
to recognise visual cues such as colour, presence of vessels and 
surface patterns and to be readily applicable in routine practice 
without optical magnification by endoscopists without extensive 
experience in endoscopic imaging, chromoendoscopy or pit-pat-
tern diagnosis.1 However, NICE is not perfect and does not, for 
example, address the issue of sessile serrated polyps (SSPs), which 
is clearly problematic in the efforts to deliver ‘true’ optical biopsy. 
Attempts have been made to address this problem, such as the 
workgroup on serrated polyp and polyposis (WASP) scheme from 
the Dutch Workgroup on serrated polyp and polyposis (WASP).15 
This is based on the NICE classification, but serrated lesions have 
now been added in the WASP classification. However, WASP also 
has its limitations, and very reliable optical biopsy continues to 
prove elusive in general usage.

The National Institute of Health and Care Excellence in the 
UK has very recently published evidence-based recommenda-
tions in an online document stating that virtual chromoendos-
copy using NBI, Fuji Intelligent Chromo Endoscopy or Pentax 
i-SCAN is recommended to assess polyps of 5 mm or less during 
colonoscopy, instead of histopathology, to determine whether 
they are adenomatous or hyperplastic, only if high-definition 
enabled virtual chromoendoscopy equipment is used, the endos-
copist has been trained to use virtual chromoendoscopy and 
accredited to use the technique under a national accreditation 
scheme, the endoscopy service includes systems to audit endos-
copists and provide ongoing feedback on their performance 
and, importantly, the assessment is made with high confidence 
(https://www.​nice.​org.​uk/​guidance/​dg28).

A potential solution to mitigate both the variability in endo-
scopic detection and histology prediction is to apply comput-
erised image analysis to deliver computer decision support 
solutions. Recent studies have successfully used automatic 
image analysis techniques to accurately predict histology based 
on images captured with endocytoscopy16 and magnification 
endoscopy17 or to improve lesion detection.18 Studies using 
traditional machine learning16 17 have the limitations inherent to 
hand-crafted feature extraction, guided by the desire to ‘visually 
capture what is seen’ and are inherently limited by such. Consid-
erable hand-engineering of imaging features is required for 
presentation to a support vector classifier. In addition, previous 
work has focused on high magnification endoscopy,16 17 which is 
not commonly used in clinical practice.

The European Society of Gastrointestinal Endoscopy (ESGE) 
published a technology review in 2016 in relation to advanced 

endoscopic imaging.19 In this comprehensive review, the topic 
of decision support tools, and computer-aided diagnosis (CAD) 
was covered, with questions from this paper around the role of 
CAD assistance in training for optical diagnosis or whether such 
systems would initially be a ‘second reader’ to support the endos-
copist’s diagnosis. The ESGE committee went on to further state 
that ‘the stand alone use of such systems to completely replace 
clinical judgment for decision making would require a much 
higher diagnostic performance and additional safeguards’ but 
that ‘availability of CAD combined with advanced endoscopic 
imaging is likely to emerge in clinical practice in the next few 
years’.

More recently, a field of artificial intelligence known as deep 
learning has opened the door to more detailed image analysis 
and real-time application by automatically extracting relevant 
imaging features, departing from human perceptual biases. Deep 
learning20 21 is an umbrella term for a wide range of machine 
learning models and methods, typically based on artificial neural 
networks,22 23 which aim at learning multilevel representations 
of data useful for making predictions or classifications. In partic-
ular, the development of deep convolutional neural networks 
(DCNN) has transformed the field of computer vision.23 24 In 
contrast to even recently published work in the gastroenter-
ology literature, the DCNN approach in our study works in 
almost real-time with raw, unprocessed frames from the video 
sequence captured from the endoscope. In this study, we used a 
DCNN to train a deep learning-based AI model to differentiate 
conventional adenomatous from hyperplastic polyps. We tested 
the model on unaltered videos of 125 consecutively identified 
diminutive polyps with proven histology.

Methods
We developed a deep learning-based AI model for real-time 
assessment of endoscopic video images of colorectal polyps. We 
used stored videos of unaltered endoscopic polyps provided by 
DKR to train the model. The videos used were available from a 
previous study and were deidentified, and hence the institutional 
review board waived review of this current study. We trained 
the model on videos containing NBI segments only of colorectal 
polyps captured with 190 series Olympus (Olympus Corp, 
Center Valley, Pennsylvania, USA) colonoscopes. All polyps were 
first detected in the normal ‘far focus’ mode. Then the colono-
scope was moved close to the polyp and the near focus mode 
activated. There was no effort to video the polyp in the near 
focus mode for a set time interval. Once clear views had been 
subjectively obtained in the near focus mode, the polyp was 
resected and retrieved. The training video sequences comprised 
polyps of all size ranges including many polyps >10 mm in size, 
were previously de-identified and sorted by their respective 
pathology but were not of consecutive polyps. Videos of normal 
mucosa containing no polyp were also used to train the model. 
All recordings were made using high-definition Olympus video 
recorders.

The NICE classification1 was used as the foundation for 
training the deep learning programme in association with the 
endoscopic video images. A DCNN model was used in this 
study. A convolutional neural network (CNN) is a type of artifi-
cial neural network used in deep learning and has been applied 
by several groups to analysis of visual imagery. CNNs incorpo-
rate very little preprocessing in comparison with other image 
classification algorithms, and these networks (such as used 
in our study) learn the filters that were previously hand-engi-
neered in more traditional algorithms. This independence from 
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Figure 1  Schematic of the deep convolutional neural network model used.

Figure 2  Schematic of the data preparation and training procedure of the deep convolutional neural network (DCNN) frame classifier. Raw videos 
are curated and tagged on a frame-by-frame basis. Then videos are split into disjoint databases: the larger serving as the training set and the smaller 
serving as a validation set. The purpose of the latter is to carry out ‘early stopping’ during the training procedure. Data augmentation is performed on 
the training frames only. After training, the resulting frame classification model can be used for prediction on new videos.

prior knowledge and human effort in feature design represents 
a significant advantage of neural network models over other 
types of machine learning.25 26 The DCNN model used is based 
on the inception network architecture24 (figure  1). Following 
standard procedure with DCNNs, model training was carried 
out with stochastic gradient descent from randomly  initialised 
weights to minimise a frame-level cross-entropy loss function. To 
construct each mini batch of 128 frames during training, frames 
were randomly selected from the training set such that they were 
approximately balanced across classes and source video. For 
each frame, we applied a data augmentation procedure to create 
a richer diversity of frames by a random resizing and cropping 
of the frame, followed by a random flipping along either axis. 
Training stopped when the loss started increasing on an indepen-
dent validation set.

Each frame was reviewed according to the multiclass model 
under consideration, by medical students and GI fellows 
(figure 2).

Frames (NBI only) used to train the model were split 
equally between relevant multiclasses. The processing time of 
our DCNN model required 50 ms per frame on a PC with an 
NVIDIA graphics processing unit.

The DCNN model allowed essentially real-time analysis 
of endoscopic polyp videos and calculates a probability that a 
polyp is a conventional adenoma or a serrated class lesion. The 

probability of a hyperplastic or adenomatous polyp (NICE types 
1 and 2) is displayed immediately on each endoscopic video 
image.

To give a sense of how the system operates in real-time, the 
model builds a credibility score by analysing how the NICE class 
predictions fluctuate across successive frames (figure  3). The 
idea is to mimic the human perceptual system that promotes 
longitudinal coherence over short-lived information in order 
to provide clinically relevant information to the endoscopist. 
Accordingly, the credibility is also updated in real-time, in a 
form of exponential smoothing: credibility(t)=alpha * credibil-
ity(t−1) + (1−alpha) * update(t), where update(t) is an indica-
tion of whether the model’s predictions have changed between 
frames at t−1 and t, and alpha is a parameter between 0 and 1 
that is found by searching over a validation set. If the credibility 
is below 50%, the model is considered to have insufficient confi-
dence to make a prediction. Videos with such a low credibility 
score were excluded from all accuracy calculations in a manner 
equivalent to a low confidence interpretation by an endosco-
pist. The process for determining confidence is quantitative and 
reproducible.

The training, validation, and final testing sets of endoscopic 
videos of polyps had no overlap. All frames were in NBI only and 
were a mixture of normal focus and near focus. For the training 
set, we used 223 polyp videos (29% NICE type 1, 53% NICE 
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Figure 3  Illustration of the real-time prediction on a new video. Individual frames from the video are presented to the classification model (resulting 
from the training procedure), whose output is then processed by the credibility update mechanism. The result is a class probability for each frame 
(where the class may be one of ‘NICE Type 1’, ‘NICE Type 2’, ‘No Polyp’, ‘Unsuitable’), as well as a credibility score between 0% and 100%. NICE, 
narrow band imaging International Colorectal Endoscopic.

type 2 and 18% of normal mucosa with no polyp), comprising 
60 089 frames. For the validation set, we used 40 videos (NICE 
type 1, NICE type 2 and two videos of normal mucosa). The 
final test set included 125 consecutively identified diminutive 
polyps, comprising 51 hyperplastic polyps and 74 adenomas. 
Overfitting can be a concern in such studies. To address this, 
we ensured that all test images were from a completely separate 
dataset, never seen by the model in the training or validation 
phases, such that the reported results can represent the expected 
out-of-sample accuracy.

After training the model with the high-definition videos, the 
validation dataset was used to modify/fine-tune the ‘hyper-pa-
rameters’ for the AI system architecture (number of layers in the 
neural network, size of such layers, and so on). We then tested 
the model’s accuracy on a consecutive sample of diminutive 
(≤5 mm) colorectal polyps that were video recorded in NBI and 
resected by DKR for histological analysis. DKR recorded the test 
videos for prospective use in another trial.27 All videos were fully 
deidentified.

The video recordings for the test set were typically 10–20 s 
in length (median 16 s). All included normal and near focus 
imaging and at least one short frozen segment when a photo-
graph was taken (the Olympus 190 video image freezes briefly 
when a photograph is taken). Each polyp was resected using 
cold methods (snare or forceps) and submitted to pathology 
separately.

Conventional adenomas were lesions that were dysplastic 
(high or low grade) and further characterised as tubular, tubu-
lovillous or villous. All NICE type 1 lesions in the study were 
hyperplastic polyps by pathology (sessile serrated polyps (SSPs) 
were excluded). In the test set, polyps that were reported as 
normal tissue at pathology were not recut. We used the pathology 
report provided for routine patient care. Pathologists at Indiana 
University can access endoscopy reports at their discretion, and 
these reports include photographs of lesions in many cases. 
However, to our knowledge, none of the pathologists routinely 
access the reports and none of the pathologists are trained in 
endoscopic prediction of polyp pathology. Furthermore, none 
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Table 1  Assignment of narrow band imaging International 
Colorectal Endoscopic classification (NICE) type 1 vs NICE type 
2 compared with the pathology determined histology

Predicted by the model

NICE type 1 NICE type 2

Pathology Hyperplastic 33 7

Adenoma 1 65

Figure 4  (A) Screen shot of the model during the evaluation of 
a NICE type 1 lesion (hyperplastic polyp). The display shows the 
type determined by the model (type 1) and the probability (100%). 
(B) Screen shot of the model in the evaluation of a NICE type 2 lesion 
(conventional adenoma). The display shows the type 2 determined by 
the model and the probability (100%) (see video). NICE, narrow band 
imaging International Colorectal Endoscopic.

Figure 5  Receiver operator characteristic curve for the model 
differentiation of adenomatous versus hyperplastic polyps. AUC, area 
under the curve; DCNN, deep convolutional neural network.

of the reports contained verbal descriptions of the endoscopist's 
prediction of histology. The pathologists at Indiana University 
use widely accepted terminology to describe colorectal polyps, 
including the descriptors tubular, tubulovillous, and villous as 
well as low or high grade dysplasia for conventional adenomas. 
Serrated class lesions are characterised as traditional serrated 
adenomas, hyperplastic polyps or SSPs, without or with cytolog-
ical dysplasia according to criteria recommended by a National 
Institute of Health consensus panel.28

Results
In the testing dataset, a total of 158 consecutive diminutive 
polyps were identified, video-recorded, resected, and submitted 
for pathological examination by DKR. Thirty polyps were 
excluded from the study because the pathological report was 
SSP (n=3), normal tissue or lymphoid aggregate (n=25) or 
faecal material (n=2); one video was excluded because it was 
corrupted and two had frames with multiple polyps.

Accordingly, 125 polyp videos were evaluated using the AI 
model. The final pathology of the 125 lesions was 51 hyper-
plastic polyps and 74 adenomas. Of these, the model did not 
build enough confidence to predict the histology in 19 polyps, 
leaving 106 in which the model made a high confidence predic-
tion. Table  1 shows the predictions of the model for these  
106 diminutive polyps compared with the histologies of the 
polyps. Figure 4 shows screenshots of the model as it appears in 
real-time in the evaluation of NICE type 1 and 2 lesions (unal-
tered) and for which the model reached high confidence. The 
video shows the model as it appears during colonoscopy (online 
supplementary video 1). For the 106 polyps, the accuracy of the 
model was 94% (95% CI 86% to 97%), the sensitivity for iden-
tification of adenomas was 98% (95% CI 92% to 100%), speci-
ficity was 83% (95% CI 67% to 93%), negative predictive value 
was 97% and positive predictive value was 90%.

Discussion
Colonoscopy plays a pivotal role in diagnosis and prevention 
of colorectal cancer (CRC), which is overall the third leading 
cause of cancer death in the USA.29 Unfortunately, colonoscopy 
is technically a highly operator dependent procedure, including 
detection of adenomas9 10 and serrated lesions11 12 and polyp 
resection.30 This operator dependence leads to substantial vari-
ation between endoscopists in their effectiveness in preventing 
CRC with colonoscopy,31 32 which is the fundamental goal of 
most colonoscopies. Increasingly, clinicians are advised to make 
quality measurements,33 and clinical trials address educational 
and technical adjuncts that could improve detection.34

Although not all aspects of colonoscopy performance are 
currently amenable to reduction in performance variability by 
use of software, detection of polyps and prediction of histology 
are two aspects of performance that could potentially be 
enhanced by imaging analytics. In this study, we showed that an 
AI model trained in polyp differentiation could accurately iden-
tify whether consecutive diminutive polyps were conventional 
adenomas with an overall accuracy of 94%. For conventional 
adenomas verified by pathology, the sensitivity, specificity, posi-
tive predictive value and negative predictive value were 98%, 
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83%, 97%, and 90%, respectively. Acknowledging that our study 
is on unaltered videos rather than live patients, nonetheless, the 
AI model performed as well as experts typically perform using 
the NICE criteria and better than many community endoscopists 
have performed.4 Furthermore, the computer analysis of histo-
logical prediction is available in almost real-time (delay of 50 ms 
per frame). If the model’s accuracy is verified in prospective clin-
ical trials, it could revolutionise the management of diminutive 
colorectal polyps by essentially enabling the ‘resect and discard’ 
and ‘leave distal colon hyperplastic polyps in place’ paradigms 
to be accurately executed by both academic and community 
colonoscopists.

In this study, we apply deep learning to the real-time chal-
lenge for polyp differentiation into NICE types 1 and 2, using 
non-magnification colonoscopy, and most importantly where 
computer decision support is provided in real-time on unaltered 
endoscopic video streams. Previous studies of computer decision 
support for colorectal polyps have used magnifying colonos-
copes17 or endocytoscopy,16 both of which are rarely available 
in the USA or Europe, and while acknowledging the great work 
of these investigators in this field, our DCNN approach is very 
different. Our model works with unprocessed frames and can 
operate in quasi real-time, with a frame processing time of 50 ms 
on consumer-grade hardware. Our model also works regardless 
of the polyp location in the frame (the operator does not need 
to precisely locate the polyp in the middle of the frame). The 
DCNN is trained end-to-end, meaning that the complete image 
preprocessing and classification task is solved within the same 
learning procedure, resulting in a much more robust model than 
previous work16 17 that consisted of hand-specified preprocessing 
followed by a trainable classifier. In the broader computer vision 
community, the end-to-end training of DCNNs has been, since 
2013, systematically overtaking hand-engineered features and 
support vector classification. Ongoing work will determine if 
such an AI-based clinical decision support system could aid in 
the widespread adoption of a ‘resect and discard’ strategy.

Limitations of this study are several. These include collec-
tion of the videos by a single operator who is also a recognised 
expert colonoscopist and the use of video recordings rather than 
real-time assessments of polyps. However, we expect that the 
ability to manoeuvre and stabilise the instrument to allow stable 
imaging of colorectal polyps in focus will be achievable by colo-
noscopists with a wide range of skills. Even though of course this 
is not ‘clinical’ real-time in that we have not yet used this model 
in an actual patient setting, as mentioned in detail above, the 
testing dataset is raw, untouched, colon polyp screening footage, 
and our AI model performs in almost real-time (50 ms delay).

In addition, 19 of the 125 videos (15%) of consecutive dimin-
utive polyps in the test set were excluded by the AI model, 
because it did not develop at least 50% confidence in the diag-
nosis. This low confidence determination by the model is anal-
ogous to a low confidence interpretation by an endoscopist.3 4 
There was no particular trend for a certain type of histology or 
morphology in polyps where there was not enough confidence 
generated by the model. In a resect and discard paradigm, a 
polyp that the model could not generate  >50% confidence in 
a diagnosis would be resected and sent to pathology. However, 
the videos used to train and test the model in this study were not 
originally recorded for the purpose of this study. In this retro-
spective video dataset, in some cases, images were blurred, or 
only very partial views were obtained, and the confidence in 
prediction was low. When the model is used in a true live patient 
scenario, an endoscopist would be able to move the colonoscope 
tip and change the image in an attempt to allow the model to 

build up its confidence. This is essentially no different than what 
happens in day-to-day practice right now where endoscopists 
spend additional (few seconds) time looking more closely at a 
‘possible’ polyp, washing the lens and so on. Thus, in actual clin-
ical practice, the fraction of polyps with low confidence ratings 
may be lower than observed in this study. Such a clinical study is 
currently being planned.

The NICE classification system has been criticised for not 
incorporating sessile serrated adenomas  (SSAs), and the WASP 
schema has been suggested as an improvement as it incorporates 
SSAs.15 We chose traditional adenomas and hyperplastic polyps, 
and the NICE classification, for this study as a proof of concept. 
Our AI algorithm is pathology agnostic. It is important to point 
out that we do not specify ‘a priori’ any imaging features that may 
distinguish between type 1 and type 2 polyps, for example. We 
never code within the system any features that can help distin-
guish between types 1 and 2. Our model discriminates this from 
raw pixels and nothing more. A ‘binary’ decision could easily be 
a ‘three way or a four way or more’ decision, determining if a 
polyp is a traditional adenoma, a benign hyperplastic polyp or a 
SSA, a lymphoid aggregrate or normal tissue, for example. The 
only difference in such a model would be the composition of 
the training dataset. We are already collecting datasets to work 
on this clinical question of SSAs, but in our current work, we 
chose two polyp classes with our novel AI approach. Further-
more, there is currently great difficulty in studying AI or any 
other endoscopist method to identify SSP/SSA because the 
pathology gold standard is subject to marked interobserver vari-
ation in differentiation from hyperplastic polyps. Despite this 
limitation, the AI programme described here could still be used 
to support a resect and discard paradigm for diminutive polyp 
management because experts in this field are now endorsing a 
strategy of resect and discard for diminutive adenomas anywhere 
in the colon, identify and leave in place NICE type 1 lesions in 
the rectosigmoid (which are hyperplastic in >98% of cases), and 
resect and submit to pathology for NICE type 1 lesions prox-
imal to the sigmoid (to allow the opportunity to identify SSAs by 
pathology in these lesions).

Incorporation of AI into widespread community clinical 
use will be challenging. Any new technology will have to have 
minimal impact on the workflow of the endoscopist and also 
not be distracting with its onscreen presence. The ‘form factor’ 
for incorporation of AI into clinical endoscopy will be crucial 
to its adoption and safe use. There will also be significant regu-
latory and reimbursement hurdles to overcome before artificial 
intelligence in endoscopy becomes a reality in clinical practice. 
Gaining the confidence of the physician community will be key 
to allow said physicians to gain the confidence of our patients 
that a computer can help the doctor to make a diagnosis or the 
even bigger challenge of placing trust in the exclusive decision 
making of a computer.

For the future, a similar deep learning approach also holds 
substantial potential to facilitate detection by highlighting areas 
of possible adenomatous or serrated mucosa for close inspec-
tion by the endoscopist. In addition, the strategy followed here 
for training the programme to differentiate hyperplastic polyps 
from adenomatous could potentially be used to improve diag-
nostic assessment of a variety of endoscopic images, addressing 
clinical problems such as identification of dysplasia in Barrett’s 
oesophagus and detection of intestinal metaplasia and dysplasia 
in the gastric mucosa. Furthermore, alternative endoscopic 
images such as confocal laser and endocytoscopy can potentially 
be used to train this platform to provide automatic interpreta-
tion of clinically acquired images.
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In summary, we have demonstrated that an AI model can 
achieve high accuracy in sorting diminutive colorectal polyps 
into conventional adenoma versus hyperplastic polyps when 
used on unaltered colon polyp video sequences. We are planning 
clinical trials to evaluate the potential of this imaging analytics 
AI technology in day-to-day practice.
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