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Over the past decades, massive amounts of protein-protein interaction (PPI) data have been
accumulated due to the advancement of high-throughput technologies, and but data quality
issues (noise or incompleteness) of PPI have been still affecting protein function prediction
accuracy based on PPI networks. Although twomain strategies of network reconstruction and
edge enrichment have been reported on the effectiveness of boosting the prediction
performance in numerous literature studies, there still lack comparative studies of the
performance differences between network reconstruction and edge enrichment. Inspired
by the question, this study first uses three protein similarity metrics (local, global and sequence)
for network reconstruction and edge enrichment in PPI networks, and then evaluates the
performance differences of network reconstruction, edge enrichment and the original
networks on two real PPI datasets. The experimental results demonstrate that edge
enrichment work better than both network reconstruction and original networks.
Moreover, for the edge enrichment of PPI networks, the sequence similarity outperformes
both local and global similarity. In summary, our study can help biologists select suitable pre-
processing schemes and achieve better protein function prediction for PPI networks.
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1 INTRODUCTION

Over the past decades, massive amounts of un-annotated protein sequence data have been
accumulated with the advancement of high-throughput biological technologies. Due to high
costs and time-consummation of experimental determining protein function annotation, the
proportion of annotated proteins has been still relatively low (Sharan et al., 2007; Barrell et al.,
2009). The increasing efforts have been made to predict protein functions.

As the best-known and early method of protein function prediction, homology-based prediction
method indeed gave rise to a series of protein function predictionmethods based on protein sequence
or structural similarity (Sleator andWalsh, 2010). At the same time, the emerging of available protein
databases, such as FATCAT (Ye and Godzik, 2004), PAST (Täubig et al., 2006) and PROCAT
(Wallace et al., 1996), has further helped to improve the effectiveness of protein prediction. However,
the low sequence similarity scores often occur when comparing target protein sequences with source
protein sequences (Ofran et al., 2005), and thus this significantly reduces the effective application of
homology-based prediction methods.
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With the increasing amounts of the measured protein-
protein interaction (PPI) data, more and more protein
function prediction methods based on PPI networks are
proposed and generally outperform the above homology-
based prediction methods. In PPI networks, proteins and
protein-protein interactions are represented by nodes and
edges, respectively (Sharan et al., 2007; Chen et al., 2020;
Wu et al., 2020; Waiho et al., 2021). Up to now, numerous
algorithms have been used in protein function prediction
based on PPI networks, such as edge-betweenness clustering
(Dunn et al., 2005), Graphlet-based edge clustering (Solava
et al., 2012), clique percolation (Adamcsek et al., 2006),
GRAAL (Kuchaiev et al., 2010), hybrid-property based
method (Hu et al., 2011), and IsoRank (Singh et al., 2008).
Moreover, advanced machine learning and deep learning
techniques have also been used for protein function
prediction, including collective classification (Xiong et al.,
2013; Wu et al., 2014), active learning (Xiong et al., 2014),
DeepInteract (Sunil et al., 2017), ConvsPPIS (Zhu et al., 2020),
PhosIDN (Yang et al., 2021) and WinBinVec (Abdollahi et al.,
2021), etc.

The above methods mainly use existing PPI data. However,
current PPI data mainly generated by high-throughput or
TAP-MS techniques (Berggard et al., 2007), are often in
presence of noise and incompleteness, and this unavoidably
causes adverse effects on the prediction performance. Two
main methods of network reconstruction and edge enrichment
are proposed to effectively boost the prediction performance.
Different strategies are used for network reconstruction or
edge enrichment. For example, Bogdanov and Singh (2010)
presented a network reconstruction approach by extracting
functional neighborhood features using random walk with
restart. Chua et al. (2007) used weighting strategies to
enrich PPI networks, and adopted a local prediction method
to predict the functions of un-annotated proteins. Xiong et al.
(2013) applied collective classification to PPI networks with
enriched edges to predict protein functions.

Although the above two types of approaches achieve
promising performance improvements, there still lack
comparative studies of the performance differences between
network reconstruction and edge enrichment. We do not still
know which one is better in performance, or specifically, which
one should be applied for different situations. Inspired by the
question, we conducte a comprehensive comparison of two
network transformation of network reconstruction and edge
enrichment for boosting the performance of PPI network-
based protein functional annotation. Concretely, we first use
three different protein similarity metrics for network
reconstruction and edge enrichment of PPI networks, and
then evaluate the performance differences between the two
transformed networks (network reconstruction and edge
enrichment) and original networks on two real PPI datasets.
The results of experiments demonstrate that edge enrichment
work better than both network reconstruction and original
networks. Moreover, for the edge enrichment of PPI networks,
the sequence similarity outperformes both local and global
similarity. More detailed work will be presented in later sections.

2 MATERIALS AND METHODS

2.1 Similarity Metrics
As we point out above, the noise and incompleteness of PPI
network data adversely affects the performance of protein
functional annotation. Network reconstruction and edge
enrichment are major approaches to improve PPI data quality.
In this work, we carry out comparison study on these two
approaches by reconstructing and enriching original networks
using various protein similarity metrics, including sequence
similarity, local similarity and global similarity. In what
follows, we describe and discuss these similarity measures in
detail.

2.1.1 Protein Sequence Similarity
BLAST method (Altschul et al., 1997) is used to measure the
similarity between any two proteins in this study. The similarity
of a given protein Vx with other proteins is defined as

S(Vx) � [Sx,1, Sx,2, . . . , Sx,i, . . . , Sx,n] (1)

where Sx,i is the similarity score between the pair of proteins Vx

and Vi. Due to ignoring self-similarity, Sx,i � 0 is set when x � i.

2.1.2 Local Similarity Indices
Weconsider three kinds of local similarity indices, includingCommon
Neighbors (CN), Jaccard Index and Functional Similarity (FS).

Common Neighbors. Given nodes u and v, their neighboring
sets are Nu and Nv, respectively. The CN is defined as the
neighborhood overlap of the nodes (Newman, 2001). The
more identical neighbors two nodes have, the higher the CN
value is. The measure of CN is as follows:

SCN(u, v) � Nu ∩ Nv| | (2)

Jaccard Index. Given nodes u and v and their corresponding
neighboring sets of Nu and Nv, Jaccard index is used to measure
the similarity between the Nu and Nv sets, and it is calculated as:

SJaccard(u, v) � Nu ∩ Nv| |
Nu ∪ Nv| | (3)

Functional Similarity (FS). For a PPI network, FS index was
first used to measure the similarity of any pair of proteins (Chua
et al., 2006), and it is defined as follows:

SFS(u, v) � 2 Nu ∩ Nv| |
Nu −Nv| | + 2 Nu ∩ Nv| | + λu,v

× 2 Nu ∩ Nv| |
Nv −Nu| | + 2 Nu ∩ Nv| | + λv,u

(4)

where λu,v � max(0, navg − (|Nu −Nv|) + |Nu ∩ Nv|)), and by
using the λu,v factor, similarity weights between protein pairs
are penalized when their common neighbors are too few. navg is
the average number of close neighbors that each node has in the
network. In a weighted PPI network, the labeled weights of edges
mean interaction confidences between pairs of proteins. Thus, we
can modify the FS index to take into account the confidence of
each interaction. The extended FS index for weighted PPI
networks, named FS.R, is defined as follows:
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SFS.R(u, v) �
2∑w∈(Nu ∩ Nv)ru,wrv,w

∑w∈Nu
ru,w +∑w∈(Nu ∩ Nv)ru,wrv,w + λu,v

×

2∑w∈(Nu ∩ Nv)ru,wrv,w

∑w∈Nv
rv,w +∑w∈(Nu ∩ Nv)ru,wrv,w + λv,u

.

(5)

2.1.3 Global Similarity Indices
Two global similarity indices are considered in this paper, they
are Katz index and random walk with restart.

Katz Index. This index is proposed by Lü and Zhou (2011). It
sums the set of paths directly and deals with the paths by length so
that the shorter paths get more weights. Formally,

SKatz(u, v) � ∑
∞

L�1
βL · paths<L>uv

∣∣∣∣ ∣∣∣∣
� βAuv + β2(A2)uv + β3(A3)uv + . . . (6)

where paths<L>uv is the set of the paths, which connect the nodes of u
and v with a path length of L. The parameter of β controls the path
weights.

RandomWalkwith Restart (RWR). Tong et al. (2008) used RWR
index to measure the relevance score between node j and node i in
a PPI network. Given the adjacency matrixWn,n of a PPI network,
a random walker transmits from the starting node i to one of its
neighbors at random with probability c, and returns to the node i
with the probability 1 − c. Finally, the walker will stay stably at
node j with probability Ri,j. The steady-state probability Ri,j is
defined as RWR index. We have

Ri
→ � c ~W

T
Ri
→+ (1 − c) ei→ (7)

where ei
→ is the starting vector, the ith element is 1 and the other

elements are 0. ~W is a weighted matrix. For an unweighted network,
~Wij � 1/m (wherem is the number of neighbors that node i has) if i
and j are connected, and ~Wij � 0 otherwise. For a weighted network,

~Wij � Wij/∑
n

j�1
Wij, if i and j are connected.

~Wij � 0, otherwise.

⎧⎪⎪⎨
⎪⎪⎩ (8)

2.2 Network Reconstruction and Edge Enrichment
Network reconstruction is carried out as follows: First, the similarity
scores between protein pairs in the original PPI network are calculated
according to the above similarity indexes. Next, some interactions are
selected to reconstruct the PPI network based on the similarity scores.
As in Liben-Nowell and Kleinberg (2007), an appropriate score
threshold is used such that the number of protein pairs with
higher scores than the threshold is as same as possible to the
interaction number of the original network. Then, a new network
is formed by using the protein pairs with higher scores over the
threshold. However, this approach may lead to absence of some
proteins in the new network. Alternatively, for any node Ni in the
original network, we first remove all its interactions.We find the top k
neighbors most similar to the node Ni. Then, the k edges from the
node Ni to its top k neighbors are created, and their similarity scores
are used as edge weights in the new network. Thus, we have

S(Ni)k � [Si,1, Si,2, . . . , Si,k]. (9)

Edge enrichment is also performed in two steps as in
network reconstruction, the only difference is that all
interactions in the original network are preserved. An
enriched network has two types of edges: explicit edges (old
edges) and similarity-inferred edges (new edges). Here, there
are two questions to be addressed: One is how to combine the
edge weights with different semantics, and another is how
many edges are added for each protein, that is, how to optimize
the parameter k (see Eq. 9). The questions will be discussed in
the following sections.

2.3 Protein Function Prediction Approaches
In this study, protein function predictions on two real PPI
datasets are performed using two different approaches.The
first one is majority method, which is a local neighbor
counting approach (Schwikowski et al., 2000). The second
is a global protein function prediction approach, which is
common called collective classification (Xiong et al., 2013).
Details of this approach are presented in the following
subsections.

2.4 Gibbs Sampling Based Collective
Classification
Gibbs sampling (GS) includes two main processes of
bootstrapping and iterative classification (Sen et al., 2008). The
pseudo-code is illustrated below.

2.4.1 Bootstrapping
The closer the proteins to each other, the more similar their
functions become in a PPI network. For an unannotated protein,
its probability distribution is estimated using a weighted voting
method. In the original or reconstructed network, there is only
one kind of annotated neighbors to vote. An unannotated protein
Vx has the corresponding explicit neighbors of Nx or k similarity-
inferred neighbors. For the above neighbor sets, we have their
edge weights as follows:

N w
x � [wx1, wx2, . . . , wxi, . . . , wxNx]

N s
x � [Sx,1, Sx,2, . . . , Sx,i, . . . , Sx,k] (10)

The probability of Vx having the jth function Fj (VxFj) is
calculated as follows:

ALGORITHM 1 | Gibbs sampling
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Pj
x �

1
Zw

x

∑
Nx

i�1
wx,ifi,j Pj

x �
1
Zs

x

∑
k

i�1
Sx,ifi,j (11)

where Zw
x and Zs

x are the normalizers:

Zw
x � ∑

m

j�1
∑
Nx

i�1
wx,ifi,j Zs

x � ∑
m

j�1
∑
k

i�1
Sx,ifi,j (12)

However, in the enriched network, there are both old (explicit)
and new (similarity-inferred) neighbors which need to be voted. So,
the parameter λ ∈ (0, 1) is used to combine the two types of different
neighbors. Given a query protein Vx, the VxFj probability is
calculated as follows:

Pj
x � λ

1
Zw

x

∑
Nx

i�1
wx,ifi,j + (1 − λ) 1

Zs
x

∑
k

i�1
Sx,ifi,j (13)

A higher Pj
x value indicates a higher probability that protein

Vx is more likely to have jth function Fj. The VxFj probability
distribution is represented as:

ax
�→ � [P1

x, P
2
x, . . . , P

m
x ] (14)

2.4.2 Iterative Classification
Iterative classification has two main steps of burn-in and
sampling. In burn-in period, iteration number is fixed, and ax

�→
is updated in each iteration. In sampling period, we update ax

�→ in
each iteration, and also count how many times the jth function Fj
for protein Vx are sampled. Considering each protein with one or
more functions, therefore, we define the most likely function of
the protein Vx as follow:

bjx � argmaxj∈[1,m]Pj
x (15)

where bjx represents the jth most likely function of the protein Vx,
that is the jth-rank result. We further use bxi

�→
vector to record all

ranking results in the ith iteration.

bxi
�→ � [b1xi, b2xi, . . . , bmxi]. (16)

The matrix Mx with s rows and m columns is produced after
running the predetermined s number of iterations.

Mx � [bx1�→
, bx2
�→

, . . . , bxs
�→]T. (17)

Finally, we obtain the required m-dimensional vector cx
→ for

query protein Vx:

cx
→ � [c1x, c2x, . . . , cmx ]. (18)

where c1x is the first ranked prediction in the ith column of Mx.

3 RESULTS AND DISCUSSION

3.1 Data Preprocessing and Experimental
Workflow
The two PPI datasets of A and B are used in our study. The datasets
A and B are downloaded from the databases of BioGRID (Stark et al.,
2011) and STRING (Szklarczyk et al., 2011), respectively. The
datasets A and B are annotated as in Ashburner et al. (2000).
The datasets in this study are based on Gene Ontology (GO)
annotation. GO annotations consist of three basic namespaces:
molecular function, biological process and cellular component.
We construct one protein interaction network for each GO
namespace using only physical interactions.Therefore, there are
totally six PPI networks (three for S.cerevisiae and the other three
for M.musculus) in Dataset A. For Dataset B, we construct two PPI
networks (one for S.cerevisiae and another for M.musculus).More
detailed information was listed in the supplementary material
(Supplementary Table S1).

The comparison of the function prediction performance on
the reconstructed and enriched networks with that on the original
networks is first performed using the cross validation of leave-
one-out method (LOOM). LOOM takes each protein in turn as a
query protein, and carries out function prediction with the
remaining proteins in the network. As the bootstrapping in
Gibbs sampling based collective classification does not result in
updating of the query protein, therefore we use the majority
method to predict protein functions in LOOM cross validation.
Then, the annotated protein proportion is changed from 10% to
90%, and the average performance of 10 experiments is reported
for each of all proportions. Themajoritymethod is not suitable in
this setting because it is a local neighbor counting approach and

TABLE 1 | Comparison of performance differences between similarity indices (Dataset A: M.musculus).

Indices Molecular function Biological process Cellular component

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 4th rank 1st rank 2nd rank 3rd rank

Origin 0.28 0.12 0.10 0.39 0.23 0.13 0.09 1.63 0.45 0.24

CN 0.21 0.09 0.07 0.27 0.22 0.14 0.09 1.44 0.47 0.16
Jaccard 0.30 0.16 0.11 0.49 0.30 0.129 0.11 1.94 0.56 0.25

FS 0.33 0.15 0.15 0.47 0.28 0.16 0.12 2.13 0.61 0.27
CN+ 0.27 0.14 0.10 0.37 0.26 0.14 0.11 1.70 0.54 0.21

Jaccard+ 0.35 0.16 0.12 0.54 0.34 0.15 0.12 2.03 0.62 0.27
FS+ 0.38 0.16 0.15 0.52 0.30 0.16 0.14 2.23 0.69 0.29

Katz 0.29 0.13 0.12 0.45 0.23 0.17 0.11 1.70 0.54 0.28
RWR 0.32 0.15 0.13 0.49 0.26 0.16 0.12 2.23 0.61 0.30

Katz+ 0.31 0.16 0.14 0.47 0.26 0.19 0.14 2.13 0.59 0.27
RWR+ 0.35 0.15 0.16 0.52 0.28 0.17 0.12 2.45 0.64 0.33
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does not work well in sparsely-labeled network. Thus, the Gibbs
sampling based collective classification is used to predict protein
functions. The main hardware configuration of an Inter dual-core
processor (3 GHz) and 16GB RAM, with a Linux operating
system, and Python 3.0 is as the programming environment
for running the algorithms.

Finally, as in Bogdanov and Singh (2010), the ratio of the
number of true positive (TP) predictions to the number of false
positivepredictions (FP) is produced in the cross validation, i.e.
TP/FP is used to assess prediction accuracy of PPI networks. We
define the overall ith rank true positive (TP) as the number of
proteins whose ith rank predicted function cix is one of the true
functions of protein Vx, and the overall ith rank false positive (FP)

as the number of proteins whose ith rank predicted function cix is
not one of the true functions of protein Vx.

3.2 Similarity Index Selection and the Effect
of the Parameters k and λ
In this study, in addition to sequence similarity, the PPI networks are
reconstructed and enriched by using three local similarity indices
(CN, Jaccard and FS)and two global similarity indices (Katz and
RWR). In order to choose the best ones for the following
experiments, the performance differences between the five
similarity indices are evaluated over the two datasets of A and B.
The experimental results over the dataset A are presented in

TABLE 2 | Comparison of performance differences between similarity indices (Dataset B).

Indices S.cerevisiae M.musculus

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank

Origin 2.23 0.75 0.49 1.94 1.49 0.82

CN 1.50 0.54 0.29 1.28 0.69 0.43

Jaccard 1.55 0.62 0.39 1.51 1.13 0.79
FS 1.70 0.64 0.41 1.56 1.22 0.75

CN+ 1.85 0.67 0.43 1.63 1.27 0.72

Jaccard+ 1.95 0.65 0.49 1.78 1.33 0.78
FS+ 2.13 0.72 0.47 1.92 1.51 0.81

Katz 1.63 0.62 0.41 1.70 1.33 0.75
RWR 1.78 0.67 0.43 1.78 1.27 0.79

Katz+ 1.86 0.64 0.47 1.86 1.51 0.79
RWR+ 2.23 0.75 0.52 2.03 1.49 0.85

TABLE 3 | The influence of the parameter of k (M.musculus in Dataset A).

Indices Molecular function Biological process Cellular component

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 4th rank 1st rank 2nd rank 3rd rank

Origin 0.28 0.12 0.10 0.39 0.23 0.13 0.09 1.63 0.45 0.24

BLAST 1 0.34 0.19 0.09 0.30 0.16 0.08 0.04 0.79 0.34 0.13

BLAST 5 0.43 0.26 0.13 0.45 0.22 0.12 0.08 0.98 0.38 0.18

BLAST 10 0.45 0.27 0.11 0.43 0.18 0.13 0.09 0.96 0.35 0.17

BLAST 15 0.41 0.21 0.13 0.42 0.20 0.11 0.09 0.92 0.33 0.19

BLAST+1 0.39 0.24 0.15 0.47 0.26 0.15 0.12 1.71 0.49 0.27

BLAST+5 0.47 0.29 0.23 0.56 0.30 0.18 0.14 2.02 0.67 0.32

BLAST+10 0.49 0.24 0.21 0.54 0.32 0.14 0.11 1.94 0.58 0.29

BLAST+15 0.46 0.27 0.20 0.49 0.34 0.15 0.12 1.86 0.62 0.33

FS 10 0.30 0.14 0.12 0.42 0.24 0.14 0.09 1.71 0.54 0.23

FS 30 0.33 0.15 0.15 0.47 0.28 0.16 0.12 2.13 0.61 0.27

FS 50 0.35 0.16 0.17 0.46 0.30 0.18 0.14 2.04 0.64 0.28
FS 100 0.32 0.18 0.12 0.45 0.27 0.17 0.15 1.95 0.57 0.26

FS+10 0.32 0.14 0.12 0.26 0.14 0.14 0.10 1.95 0.58 0.25

FS+30 0.39 0.16 0.15 0.52 0.30 0.16 0.14 2.23 0.70 0.30

FS+50 0.41 0.15 0.11 0.54 0.24 0.14 0.14 2.21 0.67 0.25

FS+100 0.38 0.18 0.16 0.50 0.27 0.16 0.13 2.07 0.64 0.27

RWR 10 0.25 0.13 0.11 0.41 0.21 0.14 0.09 1.86 0.54 0.24

RWR 30 0.32 0.15 0.13 0.49 0.26 0.16 0.11 2.23 0.61 0.30
RWR 50 0.31 0.16 0.11 0.47 0.21 0.17 0.12 2.33 0.58 0.27

RWR 100 0.29 0.15 0.15 0.44 0.22 0.16 0.14 2.12 0.55 0.30

RWR+10 0.29 0.14 0.13 0.47 0.23 0.15 0.12 2.13 0.57 0.29

RWR+30 0.35 0.15 0.16 0.52 0.28 0.18 0.12 2.45 0.64 0.33

RWR+50 0.34 0.16 0.15 0.49 0.28 0.14 0.13 2.36 0.62 0.32

RWR+100 0.31 0.15 0.15 0.46 0.25 0.16 0.12 2.23 0.58 0.36
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FIGURE 1 | The performance evaluation by leave-one-out validation over the PPI networks (Dataset A: S.cerevisiae andM.musculus). Here, the sub figures
in the horizontal and vertical directions represent the experimental results for the PPI networks of different data sets and function types, respectively.
Horizontally, the top three subplots represent ones on S.cerevisiae, and the bottom for ones on M.musculus. (A) and (D) Molecular function, (B) and (E)
Biological process, (C) and (F) Cellular component.

TABLE 4 | The effect of the parameter k (Dataset B).

Indices S.cerevisiae M.musculus

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank

Origin 2.23 0.75 0.49 1.94 1.49 0.82

BLAST 1 0.96 0.37 0.17 1.28 0.59 0.35
BLAST 5 1.18 0.43 0.28 1.63 0.75 0.45
BLAST 10 1.21 0.39 0.24 1.70 0.72 0.41
BLAST 15 1.15 0.42 0.26 1.56 0.70 0.50

BLAST+1 2.11 0.64 0.45 2.15 1.51 0.82
BLAST+5 2.83 0.82 0.64 2.45 1.63 0.87
BLAST+10 2.57 0.75 0.65 2.33 1.57 0.85
BLAST+15 2.40 0.69 0.62 2.28 1.49 0.76

FS 10 1.53 0.55 0.38 1.33 1.06 0.68
FS 30 1.72 0.64 0.41 1.56 1.22 0.75
FS 50 1.75 0.57 0.38 1.64 1.19 0.79
FS 100 1.63 0.61 0.37 1.68 1.18 0.73

FS+10 1.93 0.65 0.40 1.85 0.42 0.79
FS+30 2.13 0.72 0.47 1.92 1.51 0.81
FS+50 2.05 0.70 0.44 1.83 1.40 0.76
FS+100 1.90 0.67 0.49 1.92 1.45 0.78

RWR 10 1.50 0.57 0.36 1.57 1.08 0.69
RWR 30 1.78 0.67 0.43 1.78 1.27 0.79
RWR 50 1.72 0.63 0.40 1.69 1.31 0.74
RWR 100 1.70 0.61 0.45 1.64 1.17 0.82

RWR+10 2.00 0.70 0.46 1.88 1.40 0.69
RWR+30 2.23 0.75 0.52 2.03 1.49 0.85
RWR+50 2.11 0.72 0.49 1.94 1.43 0.82
RWR+100 1.94 0.81 0.48 1.82 1.45 0.75
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Supplementary Table S3 and Table 1, and ones over the Dataset B
listed in Table 2. Using FS as the local similarity index and RWR as
the global similarity index generally achieve the best performance.
Hence, FS and RWR are selected as the local similarity index and
global similarity index, respectively in the following experiments.

The effect of two parameters on the performance of network
reconstruction and edge enrichment are also examined in our study.
The first one is the number of similarity-inferred edges k. The
prediction performance on the Datasets of A and B is listed in
Supplementary Table S4, Table 3, and Table 4, with the varying
values of k. For both the datasets A and B, experimental results show
that BLAST roughly achieves the best performance by setting k � 5.
When the values of k � {10, 30, 50, 100} are used for FS and RWR,
using k � 30 or k � 50 generally works best in most cases, and the
overall performance is relatively robust for the reconstructed or
enriched networks. Hence, in the following experiments, the

parameter value of k is used as 5, 30, 30 for BLAST, FS and
RWR, respectively.

The second parameter λ dominates the tradeoff between
explicit edges and similarity-inferred edges. Further, the
effect of the parameter λ is evaluated on the prediction
performance when it varies from 0.1 to 0.9. The results on
the Dataset A are listed in Supplementary material (see
Supplementary Table S5) and Table 5, and ones on the
Dataset B in Table 6, respectively. Generally, the λ value has
a relatively small impact on prediction accuracy, unless it is too
large or too small. In the following experiments, the λ value is set
uniformly at 0.7.

3.3 Performance Evaluation on Dataset A
The performance comparison of reconstructed and enriched
networks with that of the original networks is first carried out by

TABLE 5 | The influence of the parameter λ (M.musculus in Dataset A).

Indices Molecular function Biological process Cellular component

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank 4th rank 1st rank 2nd rank 3rd rank

Origin 0.28 0.12 0.10 0.39 0.23 0.13 0.09 1.63 0.45 0.24

BLAST+0.1 0.38 0.21 0.11 0.43 0.24 0.12 0.13 1.52 0.41 0.20
BLAST+0.3 0.40 0.25 0.18 0.49 0.29 0.17 0.11 1.65 0.54 0.25
BLAST+0.5 0.44 0.30 0.16 0.537 0.27 0.15 0.15 1.85 0.62 0.28
BLAST+0.7 0.47 0.29 0.23 0.56 0.32 0.16 0.14 2.02 0.67 0.34
BLAST+0.9 0.33 0.16 0.15 0.42 0.23 0.13 0.10 1.76 0.55 0.27

FS+0.1 0.31 0.14 0.12 0.49 0.24 0.15 0.13 1.94 0.59 0.27
FS+0.3 0.35 0.16 0.16 0.53 0.33 0.13 0.10 1.86 0.68 0.25
FS+0.5 0.37 0.15 0.13 0.49 0.31 0.18 0.11 2.04 0.63 0.28
FS+0.7 0.39 0.16 0.15 0.52 0.30 0.16 0.14 2.23 0.70 0.30
FS+0.9 0.30 0.13 0.10 0.42 0.222 0.14 0.11 1.86 0.57 0.26

RWR+0.1 0.30 0.13 0.12 0.47 0.29 0.16 0.12 2.12 0.59 0.28
RWR+0.3 0.33 0.15 0.14 0.50 0.31 0.11 0.08 2.22 0.64 0.32
RWR+0.5 0.35 0.13 0.17 0.50 0.24 0.16 0.10 2.32 0.74 0.30
RWR+0.7 0.37 0.17 0.14 0.52 0.28 0.18 0.12 2.45 0.64 0.33
RWR+0.9 0.30 0.13 0.10 0.43 0.26 0.14 0.10 1.94 0.57 0.27

TABLE 6 | The influence of the parameter λ (Dataset B).

Indices S.cerevisiae M.musculus

1st rank 2nd rank 3rd rank 1st rank 2nd rank 3rd rank

Origin 2.23 0.75 0.49 1.94 1.49 0.82

BLAST+0.1 1.56 0.63 0.41 1.76 1.28 0.72
BLAST+0.3 1.89 0.70 0.58 2.01 1.44 0.78
BLAST+0.5 2.56 0.75 0.66 2.34 1.37 0.82
BLAST+0.7 2.83 0.82 0.64 2.45 1.63 0.87
BLAST+0.9 2.36 0.79 0.56 2.12 1.51 0.85

FS+0.1 1.86 0.66 0.42 1.70 1.33 0.74
FS+0.3 1.93 0.64 0.45 1.86 1.38 0.81
FS+0.5 2.06 0.69 0.43 2.02 1.44 0.87
FS+0.7 2.13 0.72 0.47 1.92 1.51 0.84
FS+0.9 1.99 0.75 0.41 1.88 1.62 0.79

RWR+0.1 1.82 0.62 0.42 1.65 1.38 0.77
RWR+0.3 1.94 0.65 0.48 1.83 1.44 0.83
RWR+0.5 2.02 0.71 0.54 1.95 1.46 0.73
RWR+0.7 2.23 0.75 0.52 2.03 1.49 0.82
RWR+0.9 2.12 0.69 0.47 1.92 1.43 0.77
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leave-one-out validation. The top protein function prediction is
selected according to the average number of useful functions per
protein in the PPI networks. Therefore, only the top 2 predictions are
performed on the PPI networks of S.cerevisiae in the Dataset A, and
the top 3 or 4 predictions are examined forM.musculus in Dataset A.

Obviously, edge enrichment gains more accurate
predictions than network reconstruction and original
networks, due to the combination of explicit and implicit
(similarity-inferred) edges (Figure 1). The results clearly
indicate that edge enrichment indeed gains better prediction

performance by adding similarity-inferred edges to PPI
networks. BLAST-enriched networks always worke best,
while BLAST-reconstructed networks always work worst.
This is because BLAST-inferred edges are based on protein
sequence information that is short in the original networks.
The useful information in the original network greatly
increases by adding BLAST-inferred edges, and
consequently boosts prediction accuracy. However, in the
reconstructed networks, the original PPI edges are put aside
first, BLAST-reconstructed networks contain only protein

FIGURE 2 | The performance evaluation over the sparsely-labeled networks (Dataset A: S.cerevisiae). Here, the sub figures in the horizontal and vertical directions
represent the experimental results for the PPI networks of different function types and rank predicted functions, respectively. Horizontally, the top two subplots represent
ones of molecular function, the middle for ones of biological process, and the bottom for ones of cellular component (A), (C) and (E) first rank predicted function, (B), (D)
and (F) second rank predicted function.
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FIGURE 3 | The performance evaluation over the sparsely-labeled networks (Dataset A:M.musculus). Here, the sub figures in the horizontal and vertical directions
represent the experimental results for the PPI networks of different function types and rank predicted functions, respectively. Horizontally, the top three subplots
represent ones on the PPI networks of molecular function, the middle for ones of biological process, and the bottom for ones of cellular component (A), (D) and (G) first
rank predicted function, (B), (E) and (H) second rank predicted function, (C), (F) and (I) third rank predicted function.

FIGURE 4 | The performance evaluation by leave-one-out validation over the PPI networks (Dataset B: S.cerevisiae andM.musculus) (A) S.cerevisiae (B)M.musculus.
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sequence information, and thus performe worst. The
experimental results also validate that FS-reconstructed
networks and RWR-reconstructed networks work better
than the original networks in most cases. This is because
the reconstructed networks filter out noisy or spurious
interactions in the original PPI networks.

We further evaluate prediction accuracy of these three kinds of
networks by using Gibbs Sampling in sparse-labeled PPI
networks. Concretely, in PPI networks, the annotated protein
proportion is changed from 0.1 to 0.9, and the remaining protein
functions are predicted. For each proportion of the annotated
proteins, the average prediction accuracy of running 10
experiments is presented on the PPI networks of S.cerevisiae
(Figure 2)and M.musculus (Figure 3), respectively. The
enrichment gains more accurate predictions than network
reconstruction and original networks. The BLAST-enriched
networks always work the best, while the BLAST-
reconstructed networks always perform the worst. As expected,
the experimental results also validate that FS-reconstructed
networks and RWR-reconstructed networks generally performe
better than the original networks. As the annotated protein
proportion in the original networks increases, the prediction
performance gets better for most networks, especially for the
1-st rank function. However, the prediction performance of the
original network slightly declines as its annotated protein
proportion increases (Figure 3G, H).

3.4 Performance Evaluation on Dataset B
As above, the performance of reconstructed and enriched
networks is first compared with that of the original networks

by leave-one-out validation. Here, the top 3 protein function
predictions are considered for both PPI networks of S. cerevisiae
and M. musculus. As expected, edge enrichment gaines higher
accurate predictions than network reconstruction and original
networks. Moreover, BLAST-enriched networks get best, while
the BLAST-reconstructed networks always work worst
(Figure 4). The reasons are the same as for the dataset A.

Next, we evaluate the prediction performance of these
networks in sparse-labeled conditions with the collective
classification method. Similarly, the average prediction
performance is generated over running 10 experiments, with
the annotated-protein proportion varying from 0.1 to 0.9.
Generally, the experimental results present a similar trend to
the above for the dataset A (Figure 5). However, FS-
reconstructed networks and RWR-reconstructed networks do
not outperform the original networks, due to the quality
properties of the dataset itself. This is mainly because many
informative interactions are deleted and the prediction
performance is impaired when reconstructing the networks
based on similarity.

To validate this point, 10% and 50% interactions of the original
network of the dataset B are randomly selected to construct two sparse
networks. The leave-one-out validation is then performedover the two
sparse networks. The selection process have two steps: First, a random
weight is assigned to each edge of the original network, and a
minimum spanning tree is constructed on the new network. The
randomness of the minimum spanning tree (MST) is ensured by the
random weights, and MST ensures the connectivity of the sparse
network. Second, theMST is expanded by adding a number of edges,
which are randomly selected from the original network (but not

FIGURE 5 | The performance evaluation over the sparsely-labeled networks (Dataset B: S.cerevisiae andM.musculus). Here, the sub figures in the horizontal and vertical
directions represent the experimental results for different data types and rank predicted functions, respectively. Horizontally, the top three subplots represent ones over the dataset
of S.cerevisiae, and the bottom for ones of M.musculus. (A) and (D) first rank predicted function, (B) and (E) second rank predicted function, (C) and (F) third rank predicted
function.
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already on the MST). Hence, the number of edges in the sparse
network is equal to 10% or 50% of edges in the original network. The
sparse network preserves the basic topological properties of the
original network.

The final experimental results also confirm the above-
mentioned phenomenon. For example, in Figure 6, the FS-
reconstructed networks and the RWR-reconstructed networks
work better than the original networks when the networks are
very sparse (e.g. 10%). However, as the networks become denser,
the FS-reconstructed networks and the RWR-reconstructed
networks get worse than the original networks.

4 CONCLUSION

The systematic comparison of two network transformation
approaches (network reconstruction and edge enrichment) is
performed using three different protein similarity metrics
(sequence similarity, local and global similarity). In summary, edge
enrichment performs better than network reconstruction and original
networks, while network reconstruction is more effective on relatively
small and incomplete PPI networks. The edge enrichment of PPI
networks based on sequence similarity outperforms those based on
both local and global similarity. As the PPI networks become more
and more complete, the effectiveness of both edge enrichment and
network reconstruction will decrease or relatively decrease.

Research efforts will be further expanded in future, which
include: 1) how the removal of noisy edges and addition of
informative edges affect the prediction performance; 2) a
combining approach that combines the best properties of all

these indices is developed since the similarity indices considered
here have different properties and performances.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: (1) Datasets A: BioGRID, https://downloads.
thebiogrid.org/BioGRID. (2) Datasets A: STRING, https://string-
db.org.

AUTHOR CONTRIBUTIONS

JZ, JG, WX and JG, JH designed and performed the experiments.
JZ, JG, WX and YW analyzed the data. The manuscript was
written by JZ, JG and WX and approved by all authors.

FUNDING

This work was supported byNational Natural Science Foundation of
China (NSFC) under Grants Nos. 41877009, 61772367, 62172300,
U1936205 and by the Fundamental Research Funds for the Central
Universities.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.758131/
full#supplementary-material

FIGURE 6 | The performance evaluation by leave-one-out validation over the PPI networks (Dataset B: S.cerevisiae andM.musculus). Here, the sub figures in the
horizontal and vertical directions represent the experimental results for different data types and rank predicted functions, respectively. Horizontally, the top three subplots
represent ones over the dataset of S.cerevisiae, and the bottom for ones of M.musculus (A) and (D) first rank predicted function, (B) and (E) second rank predicted
function, (C) and (F) third rank predicted function.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 75813111

Zhou et al. Network Reconstruction and Edge Enrichment

https://downloads.thebiogrid.org/BioGRID
https://downloads.thebiogrid.org/BioGRID
https://string-db.org
https://string-db.org
https://www.frontiersin.org/articles/10.3389/fgene.2021.758131/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.758131/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Abdollahi, S., Lin, P.-C., and Chiang, J.-H. (2021). Winbinvec: Cancer-Associated
Protein-Protein Interaction Extraction and Identification of 20 Various Cancer
Types and Metastasis Using Different Deep Learning Models. IEEE J. Biomed.
Health Inform. 25, 4052–4063. doi:10.1109/JBHI.2021.3093441

Adamcsek, B., Palla, G., Farkas, I. J., Derényi, I., and Vicsek, T. (2006). CFinder:
Locating Cliques and Overlapping Modules in Biological Networks.
Bioinformatics 22, 1021–1023. doi:10.1093/bioinformatics/btl039

Altschul, S., Madden, T., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.
(1997). Gapped BLAST and PSI-BLAST: a New Generation of Protein Database
Search Programs.Nucleic Acids Res. 25, 3389–3402. doi:10.1093/nar/25.17.3389

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25,
25–29. doi:10.1038/75556

Barrell, D., Dimmer, E., Huntley, R. P., Binns, D., O’Donovan, C., and Apweiler, R.
(2009). The GOA Database in 2009--an Integrated Gene Ontology Annotation
Resource. Nucleic Acids Res. 37, D396–D403. doi:10.1093/nar/gkn803

Berggård, T., Linse, S., and James, P. (2007). Methods for the Detection and
Analysis of Protein-Protein Interactions. Proteomics 7, 2833–2842. doi:10.1002/
pmic.200700131

Bogdanov, P., and Singh, A. K. (2010). Molecular Function Prediction Using
Neighborhood Features. Ieee/acm Trans. Comput. Biol. Bioinf. 7, 208–217.
doi:10.1109/TCBB.2009.81

Chen, Y., Wang, W., Liu, J., Feng, J., and Gong, X. (2020). Protein Interface
Complementarity and Gene Duplication Improve Link Prediction of Protein-
Protein Interaction Network. Front. Genet. 11, 291. doi:10.3389/fgene.2020.00291

Chua, H. N., Sung, W.-K., andWong, L. (2007). An Efficient Strategy for Extensive
Integration of Diverse Biological Data for Protein Function Prediction.
Bioinformatics 23, 3364–3373. doi:10.1093/bioinformatics/btm520

Chua, H. N., Sung, W.-K., and Wong, L. (2006). Exploiting Indirect Neighbours
and Topological Weight to Predict Protein Function from Protein-Protein
Interactions. Bioinformatics 22, 1623–1630. doi:10.1093/bioinformatics/btl145

Dunn, R., Dudbridge, F., and Sanderson, C. M. (2005). The Use of Edge-
Betweenness Clustering to Investigate Biological Function in Protein
Interaction Networks. BMC Bioinformatics 6, 39. doi:10.1186/1471-2105-6-39

Hu, L., Huang, T., Shi, X., Lu, W.-C., Cai, Y.-D., and Chou, K.-C. (2011). Predicting
Functions of Proteins in Mouse Based onWeighted Protein-Protein Interaction
Network and Protein Hybrid Properties. PLOS ONE 6, e14556. doi:10.1371/
journal.pone.0014556

Kuchaiev, O., Milenković, T., Memišević, V., Hayes, W., and Pržulj, N. (2010).
Topological Network Alignment Uncovers Biological Function and Phylogeny.
J. R. Soc. Interf. 7, 1341–1354. doi:10.1098/rsif.2010.0063

Liben-Nowell, D., and Kleinberg, J. (2007). The Link-Prediction Problem for Social
Networks. J. Am. Soc. Inf. Sci. 58, 1019–1031. doi:10.1002/asi.20591

Lü, L., and Zhou, T. (2011). Link Prediction in Complex Networks: A Survey. Physica
A: Stat. Mech. its Appl. 390, 1150–1170. doi:10.1016/j.physa.2010.11.027

Newman, M. E. J. (2001). Clustering and Preferential Attachment in Growing
Networks. Phys. Rev. E 64, 025102. doi:10.1103/PhysRevE.64.025102

Ofran, Y., Punta, M., Schneider, R., and Rost, B. (2005). Beyond Annotation
Transfer by Homology: Novel Protein-Function Prediction Methods to Assist
Drug Discovery. Drug Discov. Today 10, 1475–1482. doi:10.1016/S1359-
6446(05)03621-4

Patel, S., Tripathi, R., Kumari, V., and Varadwaj, P. (2017). Deepinteract: Deep
Neural Network Based Protein-Protein Interaction Prediction Tool. Cbio 12,
551–557. doi:10.2174/1574893611666160815150746

Schwikowski, B., Uetz, P., and Fields, S. (2000). A Network of Protein-Protein
Interactions in Yeast. Nat. Biotechnol. 18, 1257–1261. doi:10.1038/82360

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008).
Collective Classification in Network Data. AIMag 29, 93–106. doi:10.1609/
aimag.v29i3.2157

Sharan, R., Ulitsky, I., and Shamir, R. (2007). Network-based Prediction of Protein
Function. Mol. Syst. Biol. 3, 88. doi:10.1038/msb4100129

Singh, R., Xu, J., and Berger, B. (2008). Global Alignment of Multiple Protein
Interaction Networks with Application to Functional Orthology Detection.
Proc. Natl. Acad. Sci. 105, 12763–12768. doi:10.1073/pnas.0806627105

Sleator, R. D., and Walsh, P. (2010). An Overview of In Silico Protein Function
Prediction. Arch. Microbiol. 192, 151–155. doi:10.1007/s00203-010-0549-9

Solava, R. W., Michaels, R. P., and Milenković, T. (2012). Graphlet-based Edge
Clustering Reveals Pathogen-Interacting Proteins. Bioinformatics 28,
i480–i486. doi:10.1093/bioinformatics/bts376

Stark, C., Breitkreutz, B.-J., Chatr-Aryamontri, A., Boucher, L., Oughtred, R.,
Livstone, M. S., et al. (2011). The Biogrid Interaction Database: 2011 Update.
Nucleic Acids Res. 39, D698–D704. doi:10.1093/nar/gkq1116

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P.,
et al. (2011). The String Database in 2011: Functional Interaction Networks of
Proteins, Globally Integrated and Scored. Nucleic Acids Res. 39, D561–D568.
doi:10.1093/nar/gkq973

Täubig, H., Buchner, A., and Griebsch, J. (2006). Past: Fast Structure-Based
Searching in the PDB. Nucleic Acids Res. 34, W20–W23. doi:10.1093/nar/
gkl273

Tong, H., Faloutsos, C., and Pan, J.-Y. (2008). Random Walk with Restart: Fast
Solutions and Applications. Knowl Inf. Syst. 14, 327–346. doi:10.1007/s10115-
007-0094-2

Waiho, K., Afiqah-Aleng, N., Iryani, M. T. M., and Fazhan, H. (2021). Protein-
protein Interaction Network: an Emerging Tool for Understanding Fish Disease
in Aquaculture. Rev. Aquacult. 13, 156–177. doi:10.1111/raq.12468

Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1996). Derivation of 3D
Coordinate Templates for Searching Structural Databases: Application to Ser-
His-Asp Catalytic Triads in the Serine Proteinases and Lipases. Protein Sci. 5,
1001–1013. doi:10.1002/pro.5560050603

Wu, Q., Ye, Y., Ng, M. K., Ho, S.-S., and Shi, R. (2014). Collective Prediction of
Protein Functions from Protein-Protein Interaction Networks. BMC
Bioinformatics 15, S9. doi:10.1186/1471-2105-15-S2-S9

Wu, Z., Liao, Q., and Liu, B. (2020). A Comprehensive Review and Evaluation of
Computational Methods for Identifying Protein Complexes from Protein-
Protein Interaction Networks. Brief. Bioinform. 21, 1531–1548. doi:10.1093/
bib/bbz085

Xiong, W., Liu, H., Guan, J., and Zhou, S. (2013). Protein Function Prediction by
Collective Classification with Explicit and Implicit Edges in Protein-Protein
Interaction Networks. BMC Bioinformatics 14, S4. doi:10.1186/1471-2105-14-
S12-S4

Xiong, W., Xie, L., Zhou, S., and Guan, J. (2014). Active Learning for Protein
Function Prediction in Protein-Protein Interaction Networks. Neurocomputing
145, 44–52. doi:10.1016/j.neucom.2014.05.075

Yang, H., Wang, M., Liu, X., Zhao, X.-M., and Li, A. (2021). PhosIDN: an
Integrated Deep Neural Network for Improving Protein Phosphorylation
Site Prediction by Combining Sequence and Protein-Protein Interaction
Information. Bioinformatics, btab551. doi:10.1093/bioinformatics/btab551

Ye, Y., and Godzik, A. (2004). FATCAT: a Web Server for Flexible Structure
Comparison and Structure Similarity Searching. Nucleic Acids Res. 32,
W582–W585. doi:10.1093/nar/gkh430

Zhu, H., Du, X., and Yao, Y. (2020). Convsppis: Identifying Protein-Protein
Interaction Sites by an Ensemble Convolutional Neural Network with
Feature Graph. Cbio 15, 368–378. doi:10.2174/1574893614666191105155713

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhou, Xiong, Wang and Guan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 75813112

Zhou et al. Network Reconstruction and Edge Enrichment

https://doi.org/10.1109/JBHI.2021.3093441
https://doi.org/10.1093/bioinformatics/btl039
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkn803
https://doi.org/10.1002/pmic.200700131
https://doi.org/10.1002/pmic.200700131
https://doi.org/10.1109/TCBB.2009.81
https://doi.org/10.3389/fgene.2020.00291
https://doi.org/10.1093/bioinformatics/btm520
https://doi.org/10.1093/bioinformatics/btl145
https://doi.org/10.1186/1471-2105-6-39
https://doi.org/10.1371/journal.pone.0014556
https://doi.org/10.1371/journal.pone.0014556
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1002/asi.20591
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1016/S1359-6446(05)03621-4
https://doi.org/10.1016/S1359-6446(05)03621-4
https://doi.org/10.2174/1574893611666160815150746
https://doi.org/10.1038/82360
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1038/msb4100129
https://doi.org/10.1073/pnas.0806627105
https://doi.org/10.1007/s00203-010-0549-9
https://doi.org/10.1093/bioinformatics/bts376
https://doi.org/10.1093/nar/gkq1116
https://doi.org/10.1093/nar/gkq973
https://doi.org/10.1093/nar/gkl273
https://doi.org/10.1093/nar/gkl273
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.1111/raq.12468
https://doi.org/10.1002/pro.5560050603
https://doi.org/10.1186/1471-2105-15-S2-S9
https://doi.org/10.1093/bib/bbz085
https://doi.org/10.1093/bib/bbz085
https://doi.org/10.1186/1471-2105-14-S12-S4
https://doi.org/10.1186/1471-2105-14-S12-S4
https://doi.org/10.1016/j.neucom.2014.05.075
https://doi.org/10.1093/bioinformatics/btab551
https://doi.org/10.1093/nar/gkh430
https://doi.org/10.2174/1574893614666191105155713
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Protein Function Prediction Based on PPI Networks: Network Reconstruction vs Edge Enrichment
	1 Introduction
	2 Materials and Methods
	2.1 Similarity Metrics
	2.1.1 Protein Sequence Similarity
	2.1.2 Local Similarity Indices
	2.1.3 Global Similarity Indices
	2.2 Network Reconstruction and Edge Enrichment

	2.3 Protein Function Prediction Approaches
	2.4 Gibbs Sampling Based Collective Classification
	2.4.1 Bootstrapping

	2.4.2 Iterative Classification

	3 Results and Discussion
	3.1 Data Preprocessing and Experimental Workflow
	3.2 Similarity Index Selection and the Effect of the Parameters k and λ
	3.3 Performance Evaluation on Dataset A
	3.4 Performance Evaluation on Dataset B

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


