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Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date

several types of adipose tissue have been identified, namely white, brown, and beige,

that reside in various specific anatomical locations throughout the body. The cellular

composition, secretome, and location of these adipose depots define their function

in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional,

promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that

contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that

result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by

mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional

adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue

depot-specific adipokines, inflammatory profiles, andmetabolism, will be the focus of this

review. The impact that various T2DM and CVD treatment strategies have on adipose

tissue function and body weight also will be discussed.

Keywords: adipokines, subcutaneous white adipose tissue, visceral white adipose tissue, brown adipose tissue,

beige adipose tissue, metabolic syndrome, insulin resistance

INTRODUCTION

Obesity has now reached epidemic proportions, with over 60% of the US population classified
as overweight or obese (defined by a body mass index ≥ 25 or 30 kg/m2, respectively) (1). The
incidence of type 2 diabetes mellitus (T2DM) has also risen in parallel to the obesity epidemic,
and thus is considered a major co-morbidity associated with obesity (2, 3). Recent epidemiological
evidence has shown that 85% of type 2 diabetic adults are also obese (4), and it has been projected
that more than 300 million people worldwide will have T2D as a consequence of obesity by 2025
(5). While much recent research has aimed to delineate the precise cause(s) of obesity-associated
T2DM, the primary mechanism is believed to be insulin resistance that derives from white adipose
tissue, liver, and/or skeletal muscle, accompanied by impaired insulin secretion by pancreatic β-
cells (6). Furthermore, both obesity and T2DM increase the risk of cardiovascular disease (CVD),
increasing morbidity andmortality by greater than 2-fold (7–10). The distribution of adipose tissue
is of great importance with regards to these co-morbidities. Insulin resistance often occurs when
fat accumulates in intra-abdominal depots and is associated with a constellation of CVD risk
factors, in what is known as the metabolic syndrome (11). Simply measuring body weight, waist
circumference, or calculating BMI does not portray a clear picture of body composition nor fat
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distribution. Thus, other indices have become more useful for
assessing body fat distribution, such as waist-to-hip ratios, as
well as methods for assessing body composition, including
anthropometry, dual-energy X-ray absorptiometry (DEXA), and
computed tomography (CT) scanning. A clear picture of body
fat distribution in obese subjects is critical for determining
how susceptible they are or will be to developing diabetes
and/or cardiovascular disease. In this comprehensive review, the
complex and interrelated associations between obesity, diabetes,
and CVD will be explored in greater detail.

TYPES OF ADIPOSE TISSUE

Adipose tissue can be classified by morphology into white,
brown, or beige subsets. In addition, white adipose tissue
(WAT) can be broadly classified by location, largely defined
as subcutaneous (located under the skin) and visceral/omental
(located intra-abdominally, adjacent to internal organs). Adipose
tissue is comprised of many different cell types, which
coordinately secrete numerous cytokines, chemokines, and
hormones. Approximately one third of the cells within adipose
tissue are adipocytes, with the rest represented by fibroblasts,
endothelial cells, macrophages, stromal cells, immune cells,
and pre-adipocytes. In most lean, healthy individuals, WAT
is confined to defined depots. But in certain conditions
such as obesity and lipodystrophy, WAT mass can increase
ectopically in areas that may influence the susceptibility to
comorbidities such as diabetes and atherosclerosis. Such ectopic
WAT areas are mostly located within the visceral cavity,
and include intrahepatic (discussed in the section on Ectopic

Abbreviations: ALT, Alanine transaminase; M2, Alternatively activated
macrophages; AMPK, AMP-activated protein kinase; ARG1, arginase-1; AST,
aspartate transaminase; β-AR, beta-adrenergic receptor; BMI, body mass index;
BAT, brown adipose tissue; CRP, C-reactive protein; CVD, cardiovascular disease;
CT, computed tomography; DAGs, diacylglycerols; DEXA, dual-energy X-ray
absorptiometry; eNOS, endothelial nitric oxide synthase; epiWAT, epicardial
white adipose tissue; ECM, extracellular matrix; FXR, farnesoid X receptor;
FGFs, fibroblast growth factors; FGF21, fibroblast growth factor 21; FDG, 2-
[18F]fluoro-2-deoxyglucose; FFA, free fatty acid; TGR5, G-protein-coupled bile
acid receptor; GLP-1, glucagon-like peptide-1; HDL, high-density lipoprotein;
HMG-CoA reductase, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase;
HOMA-IR, homeostatic model assessment of insulin resistance; HSL, hormone
sensitive lipase; IKK, IkB kinase; IRS-1, insulin receptor substrate-1; ICAM-1,
intercellular adhesion molecule-1; IFNγ, interferon γ; IRF3, interferon regulatory
factor 3; IL-1Ra, interleukin-1 receptor antagonist; IL-6, interleukin-6; JNK, c-Jun
N-terminal kinase; LEPR, leptin receptor; LXR, liver X receptor; LDL, low-density
lipoprotein; MGL1, macrophage galactose type C-type Lectin/CD301a/CLEC10A;
MHC, major histocompatibility complex; CD206, mannose receptor; MWAT,
mesenteric white adipose tissue; MMe, metabolically activated macrophage; MHO,
metabolically healthy obesity; MUHO, metabolically unhealthy obesity; MCP-1,
monocyte chemotactic protein-1; NKT cells, natural killer T cells; NAFLD,
non-alcoholic fatty liver disease; NE, norepinephrine; NFκB, nuclear factor
kappa-B; OWAT, omental white adipose tissue; PVAT, perivascular adipose tissue;
PPARα, peroxisome proliferator-activated receptor alpha; PPARγ, peroxisome
proliferator-activated receptor gamma; RWAT, retroperitoneal white adipose
tissue; SAA, serum amyloid A; SCFA, short-chain fatty acids; SGLT-2, sodium
glucose co-transporter-2; SCD1, steroyl-CoA desaturase-1; SNS, sympathetic
nervous system; TZDs, thiazolidinediones; TLR4, toll-like receptor 4; TNFα,
tumor necrosis factor alpha; T2DM, type 2 diabetes mellitus; UCP-1, uncoupling
protein-1; VCAM-1, vascular cell adhesionmolecule-1; VEGF, vascular endothelial
growth factor; VLDL, very low-density lipoprotein; WAT, white adipose tissue.

Fat below), epicardial (epiWAT, between the heart and the
pericardium), perivascular (PVAT, surrounding major blood
vessels), mesenteric fat (MWAT, contiguous with digestive organs
in the viscera), omental fat (OWAT, an apron of fat that stretches
over the intestines, liver, and stomach), and retroperitoneal
fat (RWAT, surrounding the kidneys). The latter three depots
(MWAT, OWAT, and RWAT) will be classified together herein
as “visceral fat” (12). In addition to WAT depots, brown adipose
tissue (BAT) represents a distinct type of adipose tissue that is
characterized by its morphology and function, with concentrated
mitochondria giving it a characteristic brown appearance. Beige
fat represents a third new classification of adipose tissue, in which
brown adipocytes appear within classical WAT depots. Each of
these adipose depots will be discussed in more detail below.

ADIPOSE TISSUE DISTRIBUTION

Subcutaneous Fat
Primarily localized to upper and lower body depots in humans,
subcutaneous WAT is the most prominent WAT depot in
lean, healthy subjects, making up ∼80% of all adipose tissue
(13). Thus, more than any other depot, subcutaneous WAT
represents a physiological buffer for excess energy intake during
times of limited energy expenditure. Subcutaneous WAT acts
as a metabolic “sink” for excess lipid storage (14). When
this storage capacity is exceeded, either due to an inability
to generate sufficient new adipocytes (limited hyperplasia) or
an inability to further expand existing adipocytes (limited
hypertrophy), fat begins to accumulate ectopically in areas
outside the subcutaneous WAT (see sections on Ectopic and
Visceral Fat below). Additionally, subcutaneous WAT functions
as an insulator to prevent heat loss, as a barrier against dermal
infection, and as a protective cushion against physical external
stress (15).

Subcutaneous WAT likely arises from adipocyte precursor
cells that are distinct from adipocytes that arise ectopically,
for example in visceral fat (16). Elegant work by Kahn et al.
has demonstrated that pre-adipocytes isolated from mouse and
human subcutaneous WAT expresses developmental genes that
are present prior to the development of WAT in a pattern that is
maintained throughout adulthood, suggesting a cell-autonomous
function (16). Thus, WAT distribution has a strong heritable
component (17).

The beneficial effects of subcutaneous WAT to glucose
metabolism have been demonstrated in numerous ways.
However, subcutaneous WAT can be further subdivided into
“upper” and “lower” regions, located primarily in the trunk and
gluteo-femoral regions, respectively. Upper subcutaneous WAT
is often lumped together with visceral WAT, classified together
as “abdominal fat.” The distinction between upper and lower
subcutaneous WAT and how they contribute to metabolic health
will be discussed in later sections.

Epicardial Fat
Epicardial adipocytes share embryonic origins with mesenteric
and omental adipocytes (18). epiWAT (also termed pericardial
WAT) is in close proximity to the myocardium, enabling a shared
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microcirculation between epiWAT and certain areas of the heart
(19). Due to its proximity to the heart, epiWAT is thought to be
approximately twice as metabolically active as otherWAT depots,
with higher levels of fatty acid uptake and fatty acid release due
to lipolysis (20). As a metabolically active WAT depot, epiWAT
secretes several adipokines and vasoactive substances such as
adiponectin, resistin, vascular endothelial growth factor (VEGF),
and inflammatory cytokines and chemokines that impact the
adjacent myocardium (21). In fact, due to the complete lack of
a fibrous fascial layer between epiWAT and the myocardium,
diffusion of fatty acids and other bioactive hormones from
epiWAT to myocytes and coronary vessels is easily facilitated
(22). Most humans possess a small amount of epiWAT, which
provides fatty acids through lipolysis of its triglyceride stores
for energy use by the heart. However, obese humans possess an
enlarged epiWAT depot, which is clinically related to features of
the metabolic syndrome (discussed in later sections).

Perivascular Fat
Fat that surrounds blood vessels is termed perivascular fat
(PVAT). It has now been recognized that PVAThas characteristics
that resemble both BAT and WAT, and is considered to be an
active participant in vascular homeostasis (23). PVAT produces
many bioactive molecules that influence vascular reactivity,
including adipokines (e.g., leptin, adiponectin, omentin, visfatin,
resistin, and apelin), cytokines/chemokines [e.g., interleukin-
6 (IL-6), tumor necrosis factor α (TNFα), and monocyte
chemotactic protein-1 (MCP-1)], and vasoactive molecules (e.g.,
nitric oxide, prostacyclin, and angiotensin II) (24). Thus, PVAT
can directly contribute to vascular tone, in addition to playing
a supportive role in maintaining vessel structure. It has been
suggested that PVAT in the thoracic aorta resembles BAT, while
PVAT in the abdominal aorta exhibits properties of both BAT and
WAT (24). Thus, if PVAT becomes dysfunctional in the setting of
obesity, it can pivot from providing an atheroprotective role to
promoting atherosclerosis. This concept will be evaluated further
in later sections.

Visceral Fat
Fat localized within the visceral compartment has been classified
as omental, mesenteric, and retroperitoneal. Lean, healthy
individuals do not have large amounts of visceral fat, which
largely falls into the category of ectopic fat. Visceral fat is highly
metabolically active and is constantly releasing free fatty acids
(FFA) into the portal circulation. As such, visceral fat content
contributes to various features of the metabolic syndrome, such
as hyperinsulinemia, systemic inflammation, dyslipidemia, and
atherosclerosis (25), to be discussed in more detail in later
sections pertaining to obesity.

Brown Fat
BAT is localized to distinct anatomical regions that have been
well-characterized in rodents (26). By taking up circulating fatty
acids, BAT functions to generate heat by uncoupling chemical
energy production (ATP) via oxidative phosphorylation into heat
production (non-shivering thermogenesis), thereby contributing
to the clearance of plasma triglycerides and the mitigation of

ectopic lipid storage (27). While originally believed to be a
depot exclusive to hibernating and small mammals, and present
to some degree in human infants, adult humans have recently
been shown to have functional and inducible levels of BAT
that respond to cold and sympathetic nervous system activation
(28–30). Such BAT represents between 1 and 2% of total fat
stores in humans, and is localized primarily in the cervical,
axillary, and paraspinal regions (26, 31, 32). Similarly to WAT,
BAT synthesizes and secretes “batokines” such as fibroblast
growth factors (FGFs) including FGF21, neuregulin 4, VEGF, and
cytokines such as IL-6 (33). Given the relatively small amount
of BAT present in humans, the endocrine potential of batokines
is relatively unknown, but it is clear that factors secreted from
BAT exert paracrine and autocrine functions. While the relative
BAT mass in humans and rodents is small compared to other
adipose depots, its relative contribution to metabolic health may
be higher.

In rodents and other small mammals, the primary BAT depots
are located in the interscapular space and supraclavicular regions,
among many others (26, 34). With prolonged stimulation, i.e.,
cold exposure, the size and activity of these BAT depots will
increase, a term called BAT recruitment. BAT recruitment is
associated with enhanced proliferation and differentiation of BAT
precursor cells.

Beige Fat
In addition to WAT and BAT, a third fat type has been described,
termed “browned,” “beige,” or “brite” (brown-in-white) fat. As
the name suggests, beige fat has been described as the presence
of brown adipocytes within classic WAT depots. While beige
fat shares some features of classical BAT such as systemic
triglyceride-lowering, beige fat is thought to be physiologically
distinct from BAT, with differential expression of certain genes
involved in metabolism, inflammation, and transcription (35,
36). Moreover, human BAT exhibits similar morphology and
function as both rodent BAT and beige tissue (30, 37–39),
complicating comparisons between the two species. In rodents,
subcutaneous WAT is the most susceptible depot to browning,
while in humans it is visceral WAT (40). It is generally believed
that the majority of WAT depots can develop browning under
particular conditions, but more work is needed in this area. There
is a growing list of physiological stressors that can promote the
browning of WAT, including cold exposure, exercise, bariatric
surgery, cancer cachexia, severe burns, as well as pharmacological
and dietary components such as conjugated linoleic acid, short-
chain fatty acids, capsaicin, non-caffeinated green tea extract,
thiazolidinediones (TZDs), and β-adrenergic receptors (41–52).

There is some debate regarding the origins of beige
adipocytes, as well as their impact on energy homeostasis. Beige
adipocytes may arise from de novo adipogenesis from specific
progenitor cells when initially stimulated by cold exposure
(36, 53), but then may lie “dormant” until stimulated again
(54). This theory suggests that dormant beige adipocytes can
become quickly and readily activated when needed, reminiscent
of an immune response. This newly defined relative flux
between “dormant” and “active” beige cells may be what has
been previously termed “transdifferentiation” of white-to-beige
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adipocytes (54). Beige adipocytes were initially thought to arise
from transdifferentiation from white adipocytes, with the ability
to de-differentiate back into white adipocytes (55, 56). Additional
studies in vitro suggest that this is likely not the case (57).
The identity of committed beige adipocyte precursors has not
been fully elucidated, but there is evidence from isolated WAT
stromal cells that beige adipocyte precursors are distinct from
white adipocyte precursors (36, 39, 58). It has been suggested that
strategies that increase the number of beige adipocytes in mouse
WAT also protect them from diet-induced obesity (59–63).

NORMAL ADIPOSE TISSUE FUNCTION

White Adipose Tissue: Energy Storage and
Distribution
Adipose tissue is an essential organ for the regulation of energy
homeostasis. Primarily tasked with storing excess energy as
triglycerides, adipocytes undergo hyperplasia to increase the
number of adipocytes and hypertrophy to increase the size of
each adipocyte, allowing adipose tissue to expand in times of
nutrient excess. As needed, i.e., during fasting and exercise,
triglycerides stored in adipose tissue are mobilized to provide
fatty acids for energy utilization by the rest of the body. Stored
triglycerides are therefore in a constant state of flux, whereby
energy storage and energy mobilization are determined largely
by hormonal fluctuations. Thus, adipose tissue functions as an
energy balance “hub” that integrates and services the energy
requirements of diverse organ systems, such as the liver, skeletal
and heart muscle, pancreas, and brain (64).

In healthy lean individuals, the majority of adipose
tissue resides in subcutaneous depots, where it serves a
thermoregulatory function, and from which stored triglycerides
can be readily mobilized when needed (65). Conditions that
favor adipose tissue expansion, if endured chronically, will
eventually exceed the storage capacity of defined adipose tissue
depots, leading to the ectopic deposition of triglycerides in other
tissues, including intra-abdominal depots (discussed in more
detail in later sections).

Non-shivering Thermogenesis
BAT plays an important role in thermoregulation in mammals,
including adult humans (66). BAT tissue is rich in mitochondria
and uniquely expresses uncoupling protein-1 (UCP-1), which
enables heat production by uncoupling ATP synthesis. BAT-
mediated thermogenesis has garnered substantial attention
recently, as increasing BAT mass or activity could be an effective
strategy to combat obesity.While the primary function ofWAT is
to manage energy storage, brown adipocytes efficiently burn fatty
acids released from WAT during adaptive thermogenesis (67).
BAT plays an active role in metabolism in animals and humans
(28); therefore, strategies that increase BAT mass and/or activity
could promote fat loss in obese populations. In addition, beige fat
could also contribute to fat catabolism, potentially reducingWAT
stores. Human brown adipogenesis occurs in response to chronic
or repeated cold stimulation, or in response to pharmacologic
compounds such as beta adrenergic receptor (β-AR) agonists
(68, 69). However, these browning-inducing methods mediated

by the sympathetic nervous system are not practical as a weight
loss strategy for several reasons: (1) the browning effects of cold
exposure are rapidly reversible, (2) repeated cold exposure is too
time- and energy-consuming to be a practical therapeutic, and
(3) β-ARs promote adverse cardiometabolic events. Therefore,
mechanisms of WAT browning that are long lasting and act
independently from the sympathetic nervous system are highly
sought after. A new mechanism of WAT browning that does
not involve the sympathetic nervous system (SNS) has recently
been described. Adipose tissue resident macrophages can secrete
norepinephrine (NE), the neurotransmitter that is also secreted
by sympathetic neurons to activate BAT andWATbrowning (70).
Several follow up studies have suggested that eosinophils, type 2
cytokines, and alternatively activated macrophages play critical
roles in supporting WAT browning with concomitant increased
energy expenditure and weight loss (71–79). However, the notion
that immune cells can influence WAT browning has recently
been challenged, using different murine and in vitro approaches
(80). As such, there is some discordance regarding the role of
macrophages in WAT browning, necessitating further studies.

Secretion of Hormones and Adipokines
Originally classified as a simple energy storage organ, adipose
tissue is now known to function as a major endocrine system that
secretes adipokines, growth factors, cytokines, and chemokines
(81). The secretion pattern of adipokines appears to vary by
adipose tissue depot and is dependent on the energy status of the
adipose depot, leading to variable paracrine/autocrine effects of
adipokines within particular depots. Adipokines are important
mediators of various metabolic processes such as fatty acid
oxidation, de-novo lipogenesis, gluconeogenesis, glucose uptake,
insulin signaling, and energy expenditure in metabolically active
tissues such as the liver, skeletal muscle, and brain (81).
The various adipokines secreted from adipose tissue and their
functions will be described in more detail below. The discussion
will be limited to adipokines that are known to be produced to a
large extent by adipocytes, in addition to other cell types within
adipose tissue such as immune cells.

Leptin
Discovered in 1994, leptin is a peptide hormone that is expressed
exclusively by adipocytes and is essential for body weight
regulation. Leptin, adiponectin, and omentin (the latter two will
be described below) are the only generally accepted adipokines
with true endocrine function, meaning they are released from
adipose tissue and exert effects on distant target organs. Leptin is
encoded by the obesity gene (ob). Leptin-deficient (ob/ob) mice
become spontaneously obese due to unrestricted food intake,
highlighting the importance of this adipokine in suppressing
appetite through the central nervous system (82). Rodents and
humans that lack either leptin or the leptin receptor (LEPR)
are not only extremely obese, but are also hyperglycemic and
extremely insulin resistant (83). In lean and obese animals
and humans, circulating leptin levels positively correlate with
adiposity (84). Prolonged fasting is associated with a sharp drop
in plasma leptin levels, which drives food intake (85). While
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leptin is expressed in all adipose depots, including BAT, its
expression is highest in subcutaneous WAT (86).

Adiponectin
As one of the first adipokines discovered in the mid-1990s (87–
90), adiponectin is a well-described insulin-sensitizing hormone
that impacts a wide range of tissues. Adiponectin is a distinctly
unique adipokine, as its expression and circulating levels are
inversely proportional to adiposity levels, in stark contrast
to leptin. Adiponectin expression levels vary between sexes,
with higher levels observed in females than males (91–93),
and between adipose tissue depots, with higher expression
in subcutaneous than visceral WAT (94, 95). The insulin
sensitivity-promoting properties of adiponectin are well-known,
and are exemplified by the development of insulin resistance in
adiponectin-deficient mice (96), and the preservation of insulin
sensitivity in adiponectin-overexpressing mice (97). Adiponectin
signals through two related receptors, ADIPOR1 and ADIPOR2,
followed by docking of the adaptor protein APPL1 (98).
The resulting signaling pathway, mediated through peroxisome
proliferator-activated receptor alpha (PPARα), leads to metabolic
improvements involving decreased hepatic gluconeogenesis,
increased liver and skeletal muscle fatty acid oxidation, increased
glucose uptake in skeletal muscle and WAT, and decreased
WAT inflammation (99). Thus, adiponectin receptors are highly
expressed in skeletal muscle, liver, and adipose tissue. In addition,
adiponectin receptors are expressed in the pancreas, where
adiponectin functions to mitigate β-cell loss by neutralizing
inflammatory and lipotoxic ceramides and diacylglycerols (100).
In addition to β-cells, adiponectin has also been shown to exhibit
strong anti-inflammatory effects on other cell types such as
macrophages and fibrogenic cells (99, 101, 102). Taken together,
adiponectin plays a protective role in mitigating features of the
metabolic syndrome.

Resistin
Resistin is a polypeptide that is secreted by obese adipose tissue.
It was originally described as an adipocyte-specific hormone,
but it is now thought to originate from macrophages residing
in inflamed adipose tissue in mice (103) and from circulating
monocytes and tissue macrophages in humans (104, 105).
Human resistin is only 59% homologous to mouse resistin (106),
which has raised some controversy over the pathogenic role of
resistin, and limits comparisons between animal models and
human disease (107). Resistin is so named due to its ability
to “resist,” or interfere with insulin action (108), based on
initial studies in mouse models. Evidence for this comes from
an initial study in which it was observed that plasma resistin
levels are elevated in a diet-induced obese mouse model, that
blocking resistin action using a neutralizing antibody improves
insulin sensitivity, and that recombinant resistin administration
to healthy mice promotes insulin resistance (108). These initial
studies led to the suggestion that resistin plays an important
role in modulating insulin resistance in the context of obesity,
and it has been shown to correlate with insulin resistance in
mice and humans (109). Plasma resistin levels have been shown
to be increased in obese animal models and humans (110–113)

and to decrease with weight loss in humans (114). Conversely,
some studies have shown that adipose tissue-derived resistin is
suppressed in obesity (115–117), inciting the controversy over
what role resistin plays in obesity that persists today. Evidence
suggests that visceral fat is the largest contributor to circulating
resistin levels (113), supporting the case for an association
between resistin and insulin resistance. Moreover, resistin is
believed to be an active participant in propagating inflammatory
responses. Resistin can upregulate inflammatory cytokines such
as TNFα and IL-6 in monocytes and macrophages in a
nuclear factor kappa-B (NFκB)-dependent manner (118), and
is positively associated with circulating inflammatory markers
such as C-reactive protein (CRP) and TNFα (107). Thus, while
resistin is an established adipokine and has been shown in some
cases to be associated with adverse health conditions such as
obesity and insulin resistance, a clear role for resistin is still under
active investigation.

Omentin
Initially described as an adipokine secreted from omental WAT
(119), it is now generally accepted that omentin is also expressed
in other WAT depots such as epicardial fat, and that it derives
specifically from the stromal vascular fraction ofWAT (119, 120).
Omentin is a true endocrine hormone that circulates in the
blood (121, 122). Omentin levels are reduced in subjects with
obesity (123) and T2DM (124, 125), leading investigators to
speculate that omentin may be involved in glucose homeostasis.
Indeed, studies using in vitro models showed that omentin
enhances insulin-stimulated glucose uptake in human adipocytes
by activating Akt signaling pathways (119), and studies in
humans show a significant negative correlation between serum
omentin levels as well as adipose omentin mRNA levels with
insulin resistance (124, 126, 127). Omentin levels have been
shown to gradually increase in response to weight loss (128, 129).
Additional studies suggest that omentin has anti-inflammatory
properties. Omentin blunts cytokine expression in endothelial
cells (130), vascular smooth muscle cells (131, 132), macrophages
(133), cardiomyocytes (134), and adipose tissue itself (135), and
is negatively associated with systemic inflammatorymarkers such
as TNF and IL-6 (136). Thus, omentin is considered to be
a biomarker for metabolic health that may function to blunt
obesity-related cytokine effects (137).

Fibroblast Growth Factor 21 (FGF21)
FGF21 is an endocrine hormone that is involved in the regulation
of lipid, glucose, and energy homeostasis (138). FGF21 has
received a lot of attention for its insulin-sensitizing and weight
loss-inducing effects when administered pharmacologically
(139). The liver is the primary source of circulating FGF21,
induced by metabolically stressful conditions such as fasting, a
ketogenic diet, protein restriction, and bariatric surgery (140),
while the brain and adipose tissue are primary FGF21 targets
(141, 142). Other tissues are known to also secrete FGF21,
including the pancreas and skeletal muscle (143, 144). However,
under certain metabolic conditions such as obesity, WAT and
BAT may also produce FGF21 (145). This is supported by several
studies showing that BMI and adiposity positively correlate with
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circulating FGF21 levels in mice and humans (145–149). It is
clear that FGF21 levels become elevated as obesity develops
in mice and humans, and are positively correlated with BMI,
adiposity, and FGF21 expression levels in adipose tissue (145–
149). While many studies have shown that adipose tissue
expresses FGF21 in rodents (145, 150–154), there is still some
debate about whether FGF21 is readily expressed in human
adipose tissue. There are a handful of studies that suggest
that adipose tissue FGF21 mRNA expression is below detection
levels (155) or not expressed by adipose tissue (156). However,
numerous additional studies have found detectable FGF21
mRNA expression in visceral WAT (157, 158), subcutaneous
WAT (145, 157, 158), epicardial WAT (159), cervical adipose
tissue (160, 161), and PVAT (162, 163), with the latter two
depots containing both WAT and BAT. FGF21 protein has
also been detected in adipose tissue by Western blot and
immunohistochemistry (162). It is not clear why some but
not all groups have been able to detect FGF21 expression in
human adipose tissue, but could depend on the metabolic and/or
nutritional status of the subjects sampled (e.g., whether subjects
were fasting or fed).

Some studies suggest that adipose-derived FGF21 is a marker
of metabolic stress, as it has been shown to correlate with
features of the metabolic syndrome (145, 164, 165). Regardless,
a clearly-defined function of adipose-derived FGF21 has not yet
been established, nor whether adipose-derived FGF21 promotes
primarily local effects or contributes to the circulating FGF21
pool under particular metabolic conditions. Elegant studies using
tissue-specific Fgf21 KOmice show that adipocyte-derived Fgf21
is not involved in obesity-associated insulin resistance, and
that adipose-derived Fgf21 doesn’t circulate, instead acting in a
paracrine fashion (140). However, the mice used in that study
were fasted for 24 h, introducing a metabolic stress that would
likely only induce liver-derived Fgf21 that may have masked
any contribution from adipose-derived Fgf21. In later studies, a
thermogenic role for adipose-derived Fgf21 has been described,
in which the browning of WAT was shown to require adipocyte-
Fgf21 (141, 166). Thus, it is possible that hepatic- and adipose-
derived FGF21 are induced by different stimuli, and that more
studies are required to conclusively define a role for adipose-
derived FGF21.

OBESITY

Obesity results when energy intake chronically exceeds energy
expenditure. Many factors are involved, including genetic,
epigenetic, hormonal, and lifestyle factors that are beyond the
scope of this review. Adipocyte number is believed to be tightly
regulated and determined during childhood (167). However,
during the development of obesity, adipose tissue can expand by
either hypertrophy (an increase in adipocyte size) or hyperplasia
(an increase in adipocyte number due to the recruitment of new
adipocytes). Obesity is characterized by dysfunctional adipose
tissue, in which adipocytes initially become hypertrophic during
periods of caloric excess and secrete adipokines that result in
the recruitment of additional pre-adipocytes, which differentiate

into mature adipocytes as compensatory protection against some
of the adverse metabolic consequences of obesity (168). This
concept is supported by observations in AdipoChaser mice,
a model for tracking adipogenesis (169). AdipoChaser mice
fed a high fat diet display evidence of hypertrophy of visceral
WAT within 1 month, while hyperplasia occurs after 2 months.
Importantly, subcutaneous WAT does not undergo hyperplasia,
and hypertrophy lags behind the visceral compartment, with
evidence of subcutaneous WAT hypertrophy after 2 months
of high fat feeding (170). However, when the capacity for
adipocyte recruitment and hypertrophy is overwhelmed, fat
accumulates in ectopic sites such as visceral depots, the liver,
skeletal muscle, and pancreatic beta cells. These changes are
accompanied by inflammation, insulin resistance and other
features of the metabolic syndrome, and have been termed
metabolically unhealthy obesity (MUHO) (171, 172). In contrast
to MUHO, some people accumulate fat mainly in subcutaneous
depots, a condition that has been termed metabolically healthy
obesity (MHO). MHO is not accompanied to any great extent by
insulin resistance, adipose tissue and systemic inflammation, and
other features of the metabolic syndrome such as dyslipidemia
and hypertension (173–176). Thus, the distribution of fat
accumulation is a major determinant of metabolic complications
associated with obesity, which can increase the risk of CVD.
Various features that contribute to dysfunctional WAT in obesity
will be discussed in the sections that follow.

Metabolically Healthy Obesity (MHO)
A sub-group of obese individuals remain insulin-sensitive, and
exhibit normal metabolic and hormonal profiles despite having
a BMI that would characterize them as obese (177, 178).
Such individuals have been classified as having “metabolically
healthy obesity” (MHO), and appear to be distinct from those
with “metabolically unhealthy obesity” (MUHO) in that they
remain insulin sensitive and do not have much adipose tissue
inflammation or other features of the metabolic syndrome
(179, 180). Therefore, MHO individuals have a lower risk for
developing T2DM and cardiovascular disease (174). MHO is
sometimes defined as having 2 or less features of the metabolic
syndrome or based on homeostatic model assessment of insulin
resistance (HOMA-IR) measures, but consensus on a precise
definition does not exist (176). Thus, some individuals classified
as having MHO rather fall somewhere between metabolically
healthy and unhealthy. Moreover, individuals with so-called
MHO can progress to develop features of the metabolic
syndrome with time (181–184). Because CVD outcomes in
general relate to the number of metabolic abnormalities present
in individuals with MUHO (185–188), there is less CVD in
individuals with MHO than those with the metabolic syndrome.
In addition, while MHO individuals are so defined due to
a healthier cardiometabolic profile than those with MUHO,
the true clinical benefits of MHO remain in question, as
the cardiometabolic profile and insulin sensitivity of MHO
individuals typically does not improve significantly with weight
loss (179, 189–192). Nevertheless, evidence from animal models
and cultured adipocytes do suggest that the preservation of the
capacity for subcutaneous WAT expansion mitigates extensive
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visceral and hepatic fat accumulation, potentially driving the
MHO phenotype (76, 97, 193).

Metabolically Unhealthy Obesity (MUHO)
Visceral Adiposity and the Metabolic Syndrome
Other obese individuals tend to accumulate fat mainly intra-
abdominally in visceral depots, which is also known as central
obesity. Visceral adiposity is associated with insulin resistance,
a predisposition to diabetes, local and systemic inflammation,
dyslipidemia [characterized by hypertriglyceridemia, a
preponderance of small, dense low-density lipoprotein
(LDL) particles and reduced high-density lipoprotein (HDL)-
cholesterol levels], insulin resistance, dysglycemia [a broad term
that refers to an abnormality in blood sugar stability], adipose
tissue and systemic inflammation, hypertension, a thrombogenic
profile and non-alcoholic fatty liver disease (NAFLD) (194).
This constellation of CVD risk factors associated with visceral
obesity is widely known as the metabolic syndrome and is a
hallmark of MUHO, illustrated in Figure 1. Visceral obesity and
the metabolic syndrome are associated with an increased risk
of developing CVD, which is exacerbated when overt diabetes
develops as a result of insulin secretion failing to adequately
compensate for insulin resistance. Interestingly, even normal
weight individuals who accumulate fat intra-abdominally have
these metabolic abnormalities (195, 196), including an increased
risk of CVD. Asians and Asian-Americans are particularly
prone to accumulate intra-abdominal fat and have features of
the metabolic syndrome despite having normal weights and
BMI values by Western standards (196), raising the question of
whether different normal values should apply to individuals of
Asian ancestry. Moreover, this raises the question of the validity
of body weight or body mass index (BMI -weight in kg/height
in m2) as an index of obesity or adiposity, since these measures
do not differentiate the 2 major types of obesity. Measures
such as waist circumference, waist/hip ratio and weight to
height ratio have been used. These indexes are notable for their
inclusion of upper subcutaneous WAT, which some consider
to contribute as much, if not more, to metabolic syndrome
than visceral WAT alone (197). CT scanning at the level of the
umbilicus has been found to be useful but is expensive and not
practical other than for research purposes at present. Lower
body subcutaneous WAT does not correlate with risk factors
for the metabolic syndrome, potentially due to a slower FFA
turnover, higher levels of adipocyte hyperplasia, and lower levels
of inflammation (198–201).

Notable differences in the adipokine profile between MHO
and MUHO subjects have been reported, which could contribute
to their respective risks for T2DM and CVD. Leptin has
been shown to be higher in MUHO than MHO obese
Chinese children in one study (202), but was not found to
differ between adult groups in several other studies (203–
205). By contrast, adiponectin has consistently been shown
to be higher in subjects with MHO than in those with
MUHO, despite both populations having lower adiponectin than
metabolically healthy lean controls (203, 205–209). Resistin and
FGF21 levels tend to be highest in the MUHO population
(148, 208). Data on whether omentin levels differ between

MHO and MUHO has been inconsistent, with one study
suggesting that MUHO subjects have higher omentin levels
than MHO subjects (210), and other suggesting the opposite,
that omentin levels are negatively correlated with the metabolic
syndrome (122, 211). Cytokines such as TNFα and IL-6 as
well as the chemokines SAA and MCP-1 have been shown
to be elevated in MUHO (208). These adipokine differences
between subjects with MHO and MUHO are depicted in
Figure 1.

White Adipose Tissue Inflammation

Macrophages and inflammation
Adipose tissue expansion in obesity is accompanied by
inflammatory changes within adipose tissue, contributing to
chronic low-grade systemic inflammation that is characterized
as mildly elevated levels of circulating cytokines, chemokines,
and acute phase reactants. In mice fed a high fat diet,
obesity is associated with the induction of a large number
of inflammatory pathways, constituting as many as 59% of
total pathways that are differentially regulated (212). Expansion
of adipose tissue depots during weight gain is accompanied
by an infiltration of new inflammatory cells, the major one
initially being macrophages. Reported to represent ∼5–10% of
total cells within lean adipose tissue, macrophages in obese
adipose tissue represent up to 60% of all cells present (213).
These pro-inflammatory cells are recruited in response to
chemokines such as monocyte chemotactic protein-1 (MCP-
1) produced by hypertrophic adipocytes (213, 214). Studies
in mice have demonstrated that most macrophages in obese
adipose tissue are derived from circulating monocytes (213),
although a small percentage appear to derive from proliferation
of resident tissue macrophages (215). Resident macrophages
that are present in normal adipose tissue express markers
of “alternatively activated,” or M2 macrophages such as the
mannose receptor (CD206), macrophage galactose type C-
type Lectin/CD301a/CLEC10A (MGL1), and arginase-1 (ARG1).
These anti-inflammatory macrophages are believed to be
responsible for maintaining tissue homeostasis (216). It remains
unclear whether the derivation of adipose tissue macrophages is
the same in human obesity.

Macrophage accumulation occurs to a greater extent
in visceral than in subcutaneous adipose depots in both
rodents and humans (217–220). Macrophages are seen in
crown-like clusters, where they are thought to represent an
immune response to dead and dying adipocytes (219). These
recruited macrophages demonstrate a phenotypic switch from
being anti- to pro-inflammatory, and develop some features
similar to “classically activated,” or “metabolically-activated”
macrophages (MMe) (221–223). However, use of genetic
markers show that these cells have significant differences from
classical M1 macrophages and alternate nomenclatures have
been suggested for these pro-inflammatory cells. Morris and
Lumeng have divided adipose tissue macrophages into several
populations based on cell surface markers and expression
profiling (224). Using a proteomics approach, Kratz et al.
showed that markers of classical activation were absent on
ATMs from obese humans. Stimulation of macrophages with
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FIGURE 1 | Metabolically healthy obesity (MHO) vs. metabolically unhealthy obesity (MUHO). In comparison with lean metabolically healthy subjects, those with MHO

have increased adiposity and BMI, but with reduced systemic inflammation and retained insulin sensitivity, thus defining them as not having metabolic syndrome

(MetS). MHO subjects have elevated subcutaneous white adipose tissue (WAT) levels, without excessive accumulation of visceral fat. Their adipokine profile is similar

to lean subjects, but with increased leptin, resistin, and FGF21, and decreased adiponectin, which limits their risk of developing type 2 diabetes mellitus (T2DM) and

cardiovascular disease (CVD) in the short term. By contrast, those with MUHO exhibit elevated insulin resistance and systemic inflammation in addition to increased

adiposity and BMI over lean controls, contributing to MetS. MUHO individuals have excess subcutaneous and intra-abdominal adipose tissue, with increased hepatic

fat and fat distributed amongst other visceral organs. This leads to a dysfunctional adipokine profile, characterized by reduced adiponectin and omentin, with further

elevated leptin, resistin, FGF21, and cytokines when compared to lean controls. Thus, MUHO subjects are at risk for developing T2DM and CVD.

glucose, insulin, and palmitate resulted in the production
of a “metabolically activated” MMe phenotype distinct from
classical activation. Such markers of metabolic activation were
expressed by pro-inflammatory macrophages in adipose tissue
from obese humans and mice and correlated with the extent of
adiposity (225).

Other immune cells
In addition to macrophages, T-cells also are present in normal
adipose tissue and demonstrate phenotypic change during weight
gain. Both CD4+ and CD8+ T cells are found in adipose tissue
and are increased in the obese state. Th2 cytokines (e.g., IL-4
and IL-13) are responsible for generating “alternatively activated”
(M2) macrophages in lean adipose tissue. With weight gain
in mice there is a shift away from a predominance of TH2T
cells present in lean adipose tissue and toward more TH1 and
cytotoxic T cells as well as a reduction in regulatory T cells (Tregs)
(226). Interferon γ (IFNγ)–expressing Th1 polarized T cells
appear to promote adipose tissue inflammation and increased
IFN-γ activity has been reported in adipose tissue in both mice
and humans (227, 228). T-cell activation involves peptide antigen
presentation via major histocompatibility complex (MHC) class
II (CD4+) or MHC class I (CD8+). A subset of T cells called
natural killer T (NKT) cells respond to lipid or glycolipid antigens
(229–231). The number of invariant NKT (iNKT) numbers has
been observed to be reduced in adipose tissue and livers from
obese mice and humans (232–235). B-cells and mast cells also
are increased in adipose tissue in the obese state (227, 236, 237).
Use of specific cell surface markers has also demonstrated the
presence of dendritic cells in adipose tissue, and studies indicate

that dendritic cells are independent contributors to adipose tissue
inflammation during obesity (238, 239).

Chronic inflammation in obesity
Adipose tissue inflammation in obesity differs from typical
inflammatory responses employed in host defense in that
it is chronic, sterile, low grade, and affects the metabolic
control of nutrient flow in adipose tissue, liver, muscle and
pancreas, and has been termed “meta-inflammation.” One way
it affects nutrient flow is by causing insulin resistance. There
is good evidence to support the notion that the systemic
inflammation that is associated with obesity and contributes
to insulin resistance begins with adipose tissue inflammation.
The regulation of hepatic C-reactive protein (CRP) and serum
amyloid A (SAA) is likely in response to IL-6 secretion from
visceral adipose tissue that directly targets the liver via the
portal circulation (240–244). CRP is a prominent biomarker for
insulin resistance and CVD (245–247), and SAA antagonizes
insulin action in adipocytes, thus contributing to systemic insulin
resistance (248). SAA also has been associated with CVD in
some rodent and human models (218, 249–253). In summary,
the discovery of elevated secretion of inflammatory cytokines
by obese adipose tissue provides evidence that obesity directly
mediates systemic inflammation, which contributes to insulin
resistance and CVD (discussed further in later sections).

Cytokines and Chemokines
Obesity is associated with elevated circulating levels of IL-6
and TNFα, which are subsequently decreased with weight loss
(254, 255). Adipose tissue is a major source of these cytokines
(256) as well as the chemokine MCP-1, which is important
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for recruitment of inflammatory cells such as macrophages
to expanding adipose tissue (257). While such inflammatory
mediators that originate from adipose tissue could technically be
classified as adipokines, they are also produced by the majority
of cell types in the body and will therefore be described in
further detail in this section. It should be noted that cytokine
and chemokine production is limited in lean adipose tissue and in
subjects with MHO. Many cell types synthesize and secrete these
cytokines and chemokines, including several that make up the
adipose tissue milieu such as monocytes, macrophages, dendritic
cells, B cells, and T cells. As such, they play a prominent role in
adipose tissue pathophysiology associated with obesity.

IL-6
Much research has been devoted to the role that adipose-
derived IL-6 plays in the etiology of obesity. The expansion of
adipose tissue is accompanied by excessive adipocyte lipolysis
and subsequently elevated FFA levels, which promotes adipocyte
IL-6 secretion (258, 259). Omental fat produces 2 to 3-fold higher
levels of IL-6 than subcutaneous fat (260), providing a potential
mechanism for the higher contribution of omental WAT to
insulin resistance (261). Most studies in vitro and in mice suggest
that adipose-derived IL-6 promotes hepatic insulin resistance
and glucose intolerance (259, 262, 263), while some indicate
that in certain contexts IL-6 signaling in WAT and liver may
be protective against metabolic disease (264, 265). For example,
mice with genetic disruption of the IL-6 receptor specifically in
the liver exhibit exacerbated hepatic inflammation and impaired
glucose tolerance (264), suggesting that IL-6 may also function
to limit hepatic inflammation. Thus, the context in which IL-6
signaling is studied is critically important for the interpretation
of its function.

TNFα
In addition to its secretion from inflammatory cells such
as monocytes and macrophages, TNFα was first described
as an adipokine in 1993 (266). As with IL-6, TNFα levels
positively correlate with adiposity, BMI, insulin levels, and
insulin resistance (267, 268). While adipocytes themselves can
secrete TNFα, the majority of TNFα secreted from adipose tissue
is derived from immune cells in the stromal vascular fraction,
and that obesity-associated increases in TNFα largely reflect the
infiltration of pro-inflammatory macrophages within expending
adipose tissue (213). One mechanism by which adipose-derived
TNFα may promote insulin resistance is by directly activating
hormone sensitive lipase (HSL), thereby increasing FFA release
from adipocytes which promotes insulin resistance in the liver
and skeletal muscle (269). Another mechanism is via autocrine
activation of insulin receptor substrate-1 (IRS-1), which prevents
insulin from interacting with its receptor (270).

MCP-1
Monocyte chemotactic protein-1 (MCP-1) is a potent
chemotactic factor that promotes monocyte and macrophage
recruitment into sites of inflammation during tissue injury and
infection. It is secreted by adipocytes during the development of
obesity and leads to infiltration of monocytes, which differentiate

to become adipose tissue macrophages. The macrophages in
turn secrete additional MCP-1 leading to further recruitment of
inflammatory cells (271, 272). Body mass index and adiposity
strongly correlate with adipose CCL2 (the gene encoding
MCP-1) expression levels, and MCP-1 decreases following
weight loss in humans (273). Ob/ob mice, a commonly used
mouse strain that spontaneously develops obesity due to leptin
deficiency-induced hyperphasia, as well as diet-induced obese
mice, display elevated levels of plasma Mcp-1 and Ccl2 adipose
tissue expression (213, 274, 275). In addition, mice engineered
to express elevated levels of Ccl2 specifically from adipocytes
exhibit increased macrophage recruitment into adipose tissue,
and subsequently increased insulin resistance, effects that were
not observed in diet-induced obese mice that were deficient
in Ccl2 (274). Potential mechanisms by which adipose-derived
MCP-1 could increase insulin resistance include changes in
liver mRNA expression of genes involved in lipid and glucose
metabolism in response to elevated FFA (274), or more likely
due to increased recruitment of macrophages into adipose tissue
(described in the section on “Obesity and insulin resistance”).
Evidence suggests that human visceral WAT secretes higher
levels of MCP-1 than subcutaneous WAT (276). These studies
and others have prompted the suggestion that MCP-1 could
be a viable therapeutic target for the treatment of obesity and
associated insulin resistance.

Serum amyloid A (SAA)
While well-described as an acute phase protein secreted by
the liver in response to pro-inflammatory cytokines, SAA is
also expressed in adipocytes and macrophages and correlates
with adiposity (244, 277–281). There are 4 subtypes of SAA:
SAA1–4. SAA1 and SAA2 are highly upregulated in response
to inflammation, while SAA4 is largely constitutively expressed.
SAA3 is a pseudogene in humans, replaced by SAA1 and
SAA2 in extra-hepatic tissues. While the best defined cell
source of SAA1 and SAA2 is hepatocytes, SAA1 and SAA2
are also expressed from adipocytes and macrophages under
inflammatory conditions in metabolic diseases such as obesity,
insulin resistance, and cardiovascular disease (250). SAA3
expression is increased during hypertrophy of cultured mouse
adipocytes (214) and in gonadal fat in obese mice (218, 282).
Inducible forms of SAA also are expressed in both subcutaneous
(277) and omental WAT (283) from obese humans. Thus, the
increased adipocyte size and number that accompanies obesity
is also associated with elevated adipose tissue-derived SAA levels,
likely in part due to increased hepatic secretion in response to
cytokines produced in adipose tissue.

Ectopic Fat
In obesity, white adipose tissue may become dysfunctional and
unable to properly expand to store excess ingested energy,
triggering storage of triglycerides in sites where the primary
function is not fat storage. Ectopic fat that is localized to major
glucose regulatory organs such as the liver, skeletal muscle,
and pancreas is commonly regarded as being “lipotoxic,” since
this ectopic fat can interfere with normal insulin signaling and
promote insulin resistance and increase the risk for T2D (284,
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285). Excessive amounts of visceral fat also is considered to be
a form of ectopic fat, and as noted earlier, is associated with
features of the metabolic syndrome and an increased risk of
T2DM and cardiovascular complications (286). In animal models
as well as in humans, it has been shown that the accumulation
of lipotoxic diacylglycerols (DAGs) and ceramide, as occurs
with visceral obesity, leads to impaired insulin signaling and
reduced glucose uptake in skeletal muscle and liver (287–290).
More specific mechanisms by which ectopic fat accumulation in
particular tissues promotes insulin resistance will be explained in
the following sections.

Hepatic lipid accumulation and inflammation
Several studies have reported an inverse relationship between
hepatic lipid content and whole-body insulin sensitivity (291–
293). The liver is a major target for the excessively produced
inflammatory cytokines and FFAs released from obese WAT
(294) (see later). It has been estimated that nearly 60% of ectopic
hepatic triglycerides in obese NAFLD patients derive from FFA
released from adipose tissue (295). FFA-derived triglycerides
accumulate in the cytoplasm of hepatocytes in the form of lipid
droplets. While the lipid droplets may not be lipotoxic per se,
various intermediate lipid moieties generated during triglyceride
synthesis (e.g., DAGs and ceramide) have been shown to promote
lipotoxicity and enhance hepatic insulin resistance (296), likely
by inhibiting insulin signaling pathways (297, 298). Selective
upregulation of ceramide degradation pathways in the liver
has been shown to reverse hepatic lipid accumulation and
improve glucose tolerance in diet-induced obese mice (299).
Moreover, obesity-associated reductions in adiponectin have also
been shown to contribute to hepatic steatosis, presumably by
blunting hepatic fatty acid oxidation, a process regulated by
adiponectin (300–302).

It also has been suggested that adipose tissue inflammation
contributes to hepatic lipid accumulation. Kanda et al. showed
that overexpressing Ccl2 from adipocytes in mice led to
macrophage accumulation in adipose tissue and subsequent
hepatic steatosis and hepatic insulin resistance, without an obese
phenotype (274). Similarly, mice in which Ccl2 had been deleted
showed resistance to high fat diet-induced insulin resistance and
hepatic steatosis, an effect that was accompanied by reduced
expression of TNFα in adipose tissue (274). Additional evidence
to support the notion that adipose tissue inflammation promotes
hepatic steatosis derives from studies showing that adipose-
derived cytokines promote lipolysis of WAT stores (303, 304),
thus increasing circulating FFA levels.

Kupffer cells are liver-resident macrophages, and reportedly
comprise 80–90% of all tissue-resident macrophages in the
body (305). In the healthy liver, the role of Kupffer cells is
to phagocytose pathogens and toxins and to maintain tissue
homeostasis and repair, akin to an M2 macrophage (306,
307). In contrast with adipose tissue macrophages, hepatic
Kupffer cell numbers do not increase with adiposity, but
instead become “activated,” akin to M1 or MMe macrophages
(308). The primary stimuli for Kupffer cell activation likely
derive from dysfunctional adipose tissue, including FFA,
cytokines, and adipokines (309). Adipokine imbalance such

as the hypoadiponectinemia that results from visceral adipose
tissue expansion fails to suppress hepatic inflammation and
oxidative stress, contributing to Kupffer cell activation. Thus,
signals from dysfunctional obese adipose tissue propagate
hepatic inflammation by activating resident Kupffer cells, which
then themselves secrete pro-inflammatory cytokines, further
amplifying systemic inflammation (310).

Ectopic fat in skeletal muscle
Lipids also can be stored within skeletal muscle when the
capacity for fat storage by WAT is exceeded (311). Lipids
can be stored either between muscle fibers (as adipocytes,
or extramyocellular lipids), or within muscle cells (cytosolic
triglycerides, or intramyocellular lipids) (312). Pre-adipocytes
have been identified within skeletal muscle, providing evidence
that distinct adipocyte cells may reside between skeletal muscle
fibers (313). There is an association between ectopic skeletal
muscle fat and insulin resistance that is largely dependent on
BMI, but this association persists when BMI is statistically
accounted for (314–316). It remains to be determined whether
skeletal muscle fat is simply a marker of metabolic dysfunction or
if it plays an active role in mediating insulin resistance. Ectopic
skeletal muscle fat, as with ectopic fat in other areas, has the
potential to impair insulin action in skeletal muscle through the
inhibition of insulin signaling by lipotoxic DAGs and ceramide
(317, 318). Several large clinical trials including SECRET and
CARDIA have recently suggested that skeletal muscle fat could
play a direct role in increasing cardiometabolic risk (319–322).
However, while ectopic fat in skeletal muscles is often associated
withmetabolic disease, highly trained athletes have been reported
to have comparable amounts of skeletal muscle fat as subjects
with T2DM, yet their tissue remains highly insulin sensitive
(323). This phenomenon has been called “the athlete’s paradox”
and is likely due to the high energy demands of skeletal muscle in
extremely fit athletes.

Ectopic fat in the heart
Obesity and T2DM are both independently associated with fat
accumulation in the heart (324), rendering ectopic fat in the
heart as a strong predictor of CVD (325, 326), particularly in
subjects with T2DM (327). Similar to the liver, excess circulating
FFA can also lead to increased triglyceride deposition in the
heart. Cardiac tissue mainly utilizes FFA for metabolism, but
when delivered in excess of basal myocardial fatty acid oxidation
rates can also lead to the accumulation of lipotoxic products
(328). In addition to ectopic cardiac myocyte lipid storage,
excess FFA can be stored in epiWAT, pericardial fat (between
the visceral and parietal pericardia), or PVAT (329). PVAT
in particular has a major impact on vascular homeostasis.
As a source of several vasoactive mediators, PVAT influences
vascular contractility. Healthy PVAT is thought to be a largely
anti-inflammatory tissue (330), with characteristics akin to
BAT in the areas surrounding the thoracic aorta in particular
(331). However, in the setting of obesity, dysfunctional PVAT
releases predominantly vasoconstrictive and proinflammatory
mediators that negatively influence vascular homeostasis (332–
334). Similarly, epiWAT is a source of bioactive molecules that
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negatively impact cardiac rhythm and perpetuate an atherogenic
environment in obesity (335). Patients with T2DM express higher
levels of the LDL and very low-density lipoprotein (VLDL)
receptors in epiWAT than non-diabetic control subjects (336),
suggesting that altered lipid metabolism in epiWAT could be
associated with T2DM.

Ectopic fat in the pancreas
Mounting evidence suggests that excessive fat in the pancreas is
associated with an increased risk of metabolic disorders, with
reports that nearly 2/3 of the obese population has excessive
pancreatic fat (337). Recent studies have connected ectopic
pancreatic fat with β-cell dysfunction and T2DM (338–340),
which in turn is associated with an increased risk of CVD.
Therefore, lipotoxic lipid intermediates may also play a role in
increasing the risk of CVD by elevating levels of pancreatic
fat, thus leading to T2DM (341). In contrast to skeletal muscle,
ectopic pancreatic fat is characterized mostly by adipocyte
infiltration rather than intracellular lipid accumulation (342).
The accumulation of fat in the pancreas also has been reported
to accelerate acute pancreatitis due to increased levels of lipolysis
and inflammation (343, 344).

Brown and Beige Adipose Tissue,
Inflammation, and the Metabolic Syndrome
Compared with healthy lean controls, obese subjects display
reduced BAT content, identified as tissue that actively takes
up 2-[18F]fluoro-2-deoxyglucose (FDG) (345). This reduction
in active BAT mass appears to be more prevalent in visceral
obesity (346, 347). Concurrently, individuals with detectable
BAT activity display lower blood glucose, triglyceride and FFA
levels, lower glycated hemoglobin (Hb1Ac) levels, and higher
HDL cholesterol levels than people with no detectable BAT (348,
349). As discussed in other sections, BAT acts as an important
“sink” for excess blood glucose and FFA disposal. Thus, loss
of BAT function in association with obesity could contribute
to the development of insulin resistance and hyperlipidemia.
It has been shown that while cold exposure can activate BAT
to a certain degree in obese subjects and those with T2DM,
the levels of BAT activation achieved are substantially lower
than in healthy lean subjects (350, 351). While BAT is largely
resistant to the development of mild obesity-induced local
inflammation, BAT inflammation becomes quite pronounced
with stronger obesogenic insults (352). Such inflammation can
directly upset the thermogenic potential of BAT by impairing
its ability to take up glucose (described in more detail in later
sections) (353, 354). Whether individuals who inherently possess
less active BAT are more prone to obesity and facets of the
metabolic syndrome or whether these pathological conditions
themselves reduce BAT activity requires further investigation.
Regardless, it is still widely believed that strategies that augment
BAT or beige activity could represent viable therapeutics to
combat metabolic syndrome (355, 356). Efforts to enhance
BAT activation in humans consist of intermittent regular cold
exposure, introduction of β3-adrenergic receptor agonists, and
exercise (29, 357). However, robust reductions in body weight
in humans have not yet been shown to be clinically significant

when BAT is activated (358), necessitating further mechanistic
studies to elucidate whether BAT activation is a viable target for
metabolic improvement in humans.

Whether BAT undergoes similar immune cell changes asWAT
under obesogenic conditions is still not clear. In one study,
BAT isolated from mice made obese by 13 weeks of high fat
diet feeding displayed lower mRNA expression of inflammatory
genes, lower immunostaining for macrophagemarkers F4/80 and
CD68, and lower macrophage content by FACS analysis (331).
However, subsequent studies have shown that BAT becomes
inflamed in obese mice, with increased mRNA expression
levels of inflammatory markers Tnf and Emr1 (the gene that
encodes the macrophage marker F4/80) (359–361). Such BAT
inflammation reportedly lowers the thermogenic potential of
this tissue (359), presumably due to increased local insulin
resistance (360, 362), which could reduce the glucose and fatty
acid oxidizing capacity of BAT.

Similar to BAT, beige adipocyte quantity and functionality
appear to be sensitive to local inflammation. A study in which IkB
kinase (IKK, an enzyme that is required for NFκB activation and
subsequent inflammatory cytokine transcription) was inactivated
in mice, not only blunted adipose tissue inflammation and body
weight gain, but enhanced WAT browning (363). Similarly,
inhibiting a major intracellular mediator of toll-like receptor
4 (TLR4) signaling, interferon regulatory factor 3 (IRF3),
blunted WAT inflammation and augmented WAT browning
(364). Moreover, it has been shown that the immune cell
infiltration of subcutaneous WAT that accompanies obesity
directly interferes with the differentiation and/or recruitment of
beige adipocytes (365). Thus, accumulating evidence suggests
that obesity-associated inflammation hinders the thermogenic
and insulin sensitizing effects of both BAT and beige adipocytes.

OBESITY AND INSULIN RESISTANCE

Abundant evidence indicates that adiposity and adipose tissue
inflammation are associated with insulin resistance, which refers
to a reduced response to binding of insulin to its receptor in
peripheral tissues such as adipose tissue and skeletal muscle.
This differs from glucose effectiveness, which is uptake of
glucose by peripheral tissues in an insulin-independent manner.
Insulin inhibits hepatic glucose output and stimulates lipogenesis
in the liver, both of which are reduced in the presence of
insulin resistance. Such desensitization of insulin signaling
pathways also inhibits glucose uptake in peripheral tissues and
stimulates lipolysis in adipose tissue. To compensate for reduced
insulin sensitivity, insulin secretion is increased in order to
maintain euglycemia. If the pancreatic beta cells are unable to
secrete sufficient insulin to compensate for the reduced insulin
sensitivity (termed beta cell dysfunction), hyperglycemia will
ensue, leading to glucose intolerance and eventually T2DM (366).
While the precise mechanisms that lead to beta cell dysfunction
are not completely understood, ectopic fat accumulation may
contribute, as discussed earlier. Nonetheless, ample evidence
suggests that excess adiposity and adipose tissue inflammation
contribute to insulin resistance [reviewed in (64, 367)]. Many
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studies have demonstrated that excess adiposity is correlated
with insulin resistance in humans. Cross-sectional studies in men
of European, Asian Indian, and American descent have shown
that total, visceral, and subcutaneous adiposity, BMI, and waist
circumference are all negatively associated with insulin sensitivity
(368, 369). As noted earlier, adiposity, especially visceral
adiposity, is characterized by adipose tissue inflammation.

Several hypotheses have been put forth to account for
the relationship between adipose tissue inflammation and
insulin resistance. These include production of pro-inflammatory
cytokines by adipocytes and adipose tissue macrophages
(discussed previously in the section on WAT Inflammation),
excess FFA, decreased adiponectin, increased resistin and
retinol binding protein, ceramide accumulation, and ectopic fat
accumulation in liver and skeletal muscle (367).

Free Fatty Acids
It was initially hypothesized that excess adiposity promoted
insulin resistance due to the accelerated release of FFA by obese
adipocytes, which inhibit insulin signaling in liver and muscle
due to excessive lipotoxicity and/or ectopic fat storage in these
tissues (64), and also contribute directly to beta cell dysfunction
(366). It has been shown that adipose tissue mass correlates with
circulating FFA in obese humans, with a tendency for individuals
with visceral adiposity to have higher FFA turnover (370–372). It
has also been reported that individuals with T2DM tend to have
elevated FFA levels over non-diabetic controls (373), an effect
found to correlate more strongly with insulin sensitivity rather
than obesity (374). Consistent with this, one study reported that
FFA levels were lower in MHO subjects than those with MUHO
(375). In addition to dysregulated energy metabolism, disruption
of the endocrine function of obese adipose tissue has now been
shown to contribute to insulin resistance, described in more
detail below.

Adipokines
Adipocytes in obesity simultaneously secrete lower levels of
adiponectin and elevated levels of cytokines and chemokines,
such as TNFα, IL-6, MCP-1, and SAA. Not only is there evidence
that such inflammatory cytokines contribute directly to insulin
resistance in hepatocytes and myocytes (366), they also directly
inhibit adiponectin production from adipocytes (376).

There is evidence that hypoadiponectinemia plays a role in
obesity-associated T2DM (377–380). Subjects with T2DMexhibit
reduced circulating adiponectin levels (379, 380); similarly,
MHO subjects have higher circulating adiponectin than those
with MUHO (206). Obese mice that are deficient in leptin
(LepOb/Ob mice) that are engineered to overexpress adiponectin
are protected from obesity-associated insulin resistance, despite
having elevated adiposity (97). This may be explained by the
nature of adipose tissue expansion in these transgenic mice,
which had smaller, less inflamed adipocytes and less liver fat
content. Similarly, administration of recombinant adiponectin
improved glucose tolerance and insulin sensitivity in obese high
fat diet-fed or Leprdb/db mice (377).

As discussed in earlier sections, FGF21 is a hormone produced
by the liver as well as adipocytes that exerts insulin-sensitizing

effects. However, recent evidence has paradoxically suggested an
association between serum FGF21 levels and obesity-associated
metabolic syndrome (145, 381). FGF21 levels have been reported
to be 2-fold higher in MUHO when compared to MHO
(148). Moreover, subjects with T2DM were reported to have
significantly higher plasma levels of FGF21 than insulin-sensitive
controls, with FGF21 levels positively correlated with BMI,
HOMA-IR, and Matsuda index, suggesting a strong correlation
with insulin resistance (157). Plasma FGF21 levels also correlated
strongly with visceral, epicardial, hepatic, and skeletal muscle
ectopic fat levels, measured using 64-slice multidetector CT
scanning (157). Given that FGF21 has been shown to improve
insulin sensitivity and promote negative energy balance (382,
383), some have suggested that obesity and associated metabolic
syndrome represent an “FGF21-resistant” state (146). This
conclusion was reached based on some observations that
circulating FGF21 levels are increased in obesity, with lower
FGF21 receptor expression levels on target tissues such as adipose
tissue (146, 384). However, this notion has been challenged
by evidence that obese subjects are equally responsive to
pharmacological administration of FGF21 (384, 385). Thus, it has
now been proposed that obesity-associated FGF21 is increased as
a compensatory mechanism to preserve insulin sensitivity (386).
As such, a clear role for adipocyte-derived FGF21 in obesity and
associated metabolic syndrome is still lacking.

Adipose Tissue Plasticity
Evidence suggests that ineffective adipose expansion promotes
local inflammation and an insulin resistant phenotype (387).
However, sufficient adipogenesis and hyperplasia (i.e., the
ability to distribute fat among newly differentiated adipocytes
without the need for significant hypertrophy) mitigates such
inflammation and subsequent insulin resistance (388). Thus,
strategies to increase the recruitment of adipocyte progenitor
cells to expand adipose tissue by increasing adipose cell
numbers could be protective against the metabolic consequences
of obesity.

A key structural and functional component of adipose tissue
is made up of extracellular matrix (ECM) molecules, including
collagen and proteoglycans such as versican and biglycan, among
others (389). Adipose tissue makes large quantities of ECM
during active remodeling, as would occur duringWAT expansion
in obesity (390–392). Obese animal models and humans with
obesity and/or T2DM exhibit large increases in visceral WAT
ECM content, which can contribute to the local inflammatory
milieu (393, 394). To date, most studies of WAT ECM function
have centered around collagen, which can form a scaffold that
constrains adipocyte expansion due to mechanical stress (391,
392, 395). Targeting ECM components to release adipocytes
from such constraints due to excessive ECM production could
potentially alleviate the ectopic accumulation of fat that drives
the metabolic syndrome.

Visceral Adipose Tissue vs. Hepatic Lipid
Accumulation?
While the majority of adipose tissue in humans is localized
subcutaneously (396), the volume of visceral adipose tissue is
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believed to be a strong predictor of insulin resistance (397),
independent from subcutaneous fat quantity (397, 398). The
association between insulin resistance and visceral adipose mass
is particularly striking in certain ethnic populations, with T2DM
rates of 46.6% in Filipino, 14.7% rates in African American,
and 9.8% rates in Caucasian populations (398), suggesting a
strong genetic component. While visceral adiposity is positively
associated with insulin resistance, there is evidence to suggest
that it may not be a causal factor. Other conditions associated
with visceral adiposity, such as hepatic fat content, may instead
drive insulin resistance (292, 399). Some clinical studies have
dissociated the glucose metabolic effects of visceral adiposity
from hepatic lipid accumulation. In one such study, significant
differences in insulin sensitivity in the liver, skeletal muscle,
and adipose tissue were reported in obese human subjects
who differed in hepatic lipid content, with no such differences
observed in obese subjects who differed in visceral adiposity
(291). Similarly, in a study in which obese subjects were
matched for liver fat content, no differences in indices of glucose
metabolismwere noted (293). Insulin-sensitiveMHO individuals
tend to have lower visceral and intrahepatic fat accumulation
than theirMUHO counterparts (203, 400, 401), providing further
evidence that these fat depots contribute to insulin resistance.
Collectively, while visceral adiposity and hepatic fat content are
both strongly associated with whole-body and tissue-specific
insulin resistance, hepatic lipid accumulation may play a more
direct role in negatively modulating glucose homeostasis.

Subcutaneous Adipose Tissue
Many studies have suggested that fat distribution is strongly
associated with insulin resistance, with visceral adiposity being
the strongest predictor of insulin resistance (198, 402, 403).
While the detrimental effects of visceral and hepatic lipid
accumulation on glucose metabolism are clear, it is also
becoming increasingly appreciated that lower body subcutaneous
adiposity may be metabolically protective (404–406). Large-
volume liposuction of subcutaneous WAT has shown little
to no metabolic benefit in human trials (407). Gluteofemoral
adipose mass is positively associated with insulin sensitivity in
humans, coupled with a slower rate of lipolysis and subsequent
FFA release, lower levels of inflammatory cells and cytokines,
and elevated adipokines such as leptin and adiponectin (404).
Evidence from animal models has suggested that transplantation
of subcutaneous WAT into the visceral cavity of recipient
mice promotes less body weight and adiposity gain than
transplantation with visceral WAT, resulting in greater insulin
sensitivity in the liver and endogenous WAT (408). Taken
together, a growing body of evidence suggests that adipose
tissue and ectopic lipid distribution contribute to whole-body
glucose homeostasis.

Brown and Beige Adipose Tissue
With the purported potential to improve glucose homeostasis,
interest in BAT and beige adipose tissue as therapeutic
targets has increased in recent years. Studies in rodents in
which BAT is transplanted into diseased mouse models have
shown that transplanted BAT improves insulin sensitivity,

glucose metabolism, and obesity (409–411), likely mediated
by batokine effects. While the predominant energy source
that contributes to brown adipocyte heat production derives
from fatty acids (412) (∼90%), with only ∼10% of energy
derived from glucose, BAT is still regarded as having a strong
impact on glucose homeostasis. As a highly metabolically
active organ, BAT contributes to glucose clearance by taking
up relatively large amounts of glucose from the circulation,
thus reducing insulin secretion by pancreatic β-cells (413).
Indeed, individuals that possess detectable BAT have lower
fasting glucose concentrations than those without active BAT
(414). Glucose disposal through activated BAT occurs by
both insulin-dependent and insulin-independent mechanisms
(415). For example, the cold exposure-mediated influx of
glucose into active BAT has been suggested to be an insulin-
independent process (416–418). However, as the insulin
receptor is highly expressed in BAT tissue, it is considered
to be one of the most sensitive insulin target tissues and
thus an important organ for glucose disposal (413). BAT
activation further enhances insulin signaling in BAT itself by
augmenting insulin-independent glucose uptake associated with
thermogenesis and glucose uptake due to insulin signaling.
Thus, strategies that activate BAT and beige adipose tissue have
the capacity to improve insulin resistance by clearing excess
glucose (419–421).

LINKS BETWEEN OBESITY, INSULIN
RESISTANCE, AND CVD

Obesity as a Risk Factor for CVD
Several pathologic conditions, including hypercholesterolemia
and systemic inflammation, are hypothesized to drive
atherosclerotic CVD. With a primary function of sequestering
lipotoxic lipids and the known potential for chronic
inflammation, obese adipose tissue has emerged as a potential
player in the regulation of these atherogenic factors. Obesity
has been officially classified as an independent risk factor for
CVD by the American Heart Association since 1995, meaning
that obesity treatment is likely to lower the incidence of CVD
(422). As alluded to in previous sections, people with MHO
are at a lower risk of experiencing cardiovascular events than
people with MUHO (423), yet those without obesity are at
a considerably lower risk for future events. Thus, even a
moderate level of weight loss, if sustainable, could potentially
lower the risk of adverse CVD events (120). However, some
studies have shown that individuals with established CVD
and heart failure with moderate degrees of obesity present
a more favorable prognosis than those who are normal or
underweight, a situation that has been termed the “obesity
paradox” (424, 425). Possible reasons include confounding
factors such as smoking and the presence of co-morbidities
that are associated with lower body weights, or the use of BMI
rather than measures of visceral obesity for most studies on
the obesity paradox. Despite the obesity paradox in those with
established CVD, the following sections will provide information
regarding potential links between obesity T2DM and CVD. The
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various features of adipose tissue depots, including ectopic fat,
and how they contribute to T2DM and CVD are summarized
in Figure 2. Notably, there are many similarities between
adipose depot characteristics that contribute to both T2DM
and CVD.

Adipose Depot-Specific Links With CVD
Visceral and Subcutaneous White Adipose Tissue
The accumulation of visceral fat in obesity is associated with
the metabolic syndrome, its associated CVD risk factors, and
an increased risk for clinical CVD (426). This distribution of
WAT has been shown to have the greatest effect on CVD
risk and mortality among patients with normal body weight
(427). The risk of CVD in the metabolic syndrome has been
considered to result from the presence of multiple CVD risk
factors such as dyslipidemia (hypertriglyceridemia, an excess
of small, dense LDL particles and reduced HDL-cholesterol
levels), hypertension, dysglycemia, and a thrombogenic profile
that have been reviewed elsewhere (428–430). However, there
are several additional potential mechanisms by which visceral
WATmight contribute directly to CVD that involve FFA, insulin
resistance, and inflammation. Visceral WAT has higher lipolytic
activity than subcutaneous WAT due to its having fewer insulin
receptors, and thus is a significant source of FFA. Visceral-
derived FFA can directly impact the liver via the portal vein,
facilitating FFA uptake by the liver and subsequent hepatic
insulin resistance. Similarly, excess FFA from visceral fat might
directly impair lipid metabolism and lead to dyslipidemia, which
increases CVD risk. In obese diabetic subjects, plasma FFA
levels have been shown to be elevated compared to BMI-
matched non-diabetic subjects (373), supporting the notion
that insulin resistance further elevates circulating FFA levels.
Moreover, the incidence of T2DM is nearly doubled in patients
with the highest levels of FFA (90th percentile) when compared
with subjects with the lowest FFA levels (10th percentile)
(431). In one study, obese T2DM subjects who had undergone
overnight fasting during pharmacological inhibition of lipolysis
exhibited improved insulin sensitivity and glucose tolerance
(432), providing further evidence for an inhibitory effect of FFA
on insulin sensitivity.

The adipokine profile of visceral WAT also contributes
substantially to its association with CVD risk. Obese visceral
WAT primarily secretes inflammatory cytokines such as resistin,
TNFα, IL-6, IL-1β, MCP-1, and SAA, with reduced levels of
adiponectin (433). Plasma adiponectin levels are decreased in
patients with CVD (434). Adiponectin is believed to contribute to
CVD protection by several mechanisms, including the reduction
of lipid levels, repressing expression of inflammatory mediators
such as VCAM, ICAM, E-selectin, TNFα, and IL-6, and by
acting directly on the heart to improve ischemic injury by
activating AMPK and subsequently increasing energy supply
to the heart (435–438). Adiponectin also stimulates endothelial
nitric oxide synthase (eNOS), which maintains healthy vascular
tone (439, 440). Thereby, adiponectin would play a protective
role in the development of CVD. Conversely, leptin levels are
positively associated with acute myocardial infarction, stroke,
coronary heart disease, chronic heart failure, and left cardiac

hypertrophy (441–445), although the reasons for this remain
largely unknown. Leptin receptors are expressed in the heart,
indicative of an important impact of direct leptin signaling (446).
Resistin is positively associated with systemic inflammatory
markers (447), upregulates endothelial expression levels of
VCAM-1 and endothelin-1 (448) and promotes the proliferation
of smooth muscle cells (449). Resistin also associates positively
with coronary artery calcification levels, and negatively with HDL
cholesterol (450). Thus, adipose-derived resistin levels could be
used to predict the severity of coronary atherosclerosis (450).
Similarly, cytokines and chemokines such as those secreted
from obese visceral WAT can induce expression of endothelial
adhesion molecules (451), recruit macrophages (452), increase
thrombosis (453), and reduce vasoreactivity (454), and are
positively associated with cardiovascular events (249, 455). While
visceral WAT-derived cytokines are associated with these CVD-
inducing processes, it is important to note that the direct
contribution from visceral WAT is not currently known, as these
are also secreted from other tissues.

As discussed in previous sections, in addition to cytokines and
exclusive adipokines, WAT is also a source of FGF21. While the
liver is considered to be the major source, adipocytes have also
been shown to produce FGF21 to varying degrees in response to
various stimuli. In addition to its associations with obesity and
T2DM, FGF21 levels have also been associated with increased
risk for CVD (456–460). Subjects with CVD that also had
diabetes exhibited even higher levels of FGF21 (459), suggesting
an important role in diabetes-accelerated atherosclerosis. In
particular, FGF21 levels have been shown to positively correlate
with hypertension and triglyceride levels, and to negatively
correlate with HDL-cholesterol levels (461). One study by
Lee et al. suggested that plasma FGF21 levels are associated
pericardial fat accumulation (462), which suggests that ectopic fat
could be a source of FGF21 in metabolic disease. Further studies
are needed to discern whether adipocyte- or hepatic-derived
FGF21 contribute to these effects. In stark contrast to these
effects of physiological FGF21, pharmacological administration
of FGF21 in humans and non-human primates reduces blood
glucose, insulin, triglycerides, and LDL cholesterol, and increases
HDL cholesterol (142, 463, 464). Thus, there is a disconnect
between the physiological and pharmacological effects of FGF21
that requires further study.

Epicardial, Perivascular, and Brown Adipose Tissues
It is becoming increasingly clear that adipose tissue expansion
contributes directly to obesity-associated cardiovascular disease
risk (465). Obesity is accompanied by not only excess visceral
adiposity, but also by excess epicardial and perivascular
WAT (466). Due to their proximity to the heart, coronary
arteries, and other major arterial blood vessels that are prone
to atherosclerosis, it is not surprising that epiWAT and
PVAT are important regulators of cardiac and vascular. The
respective sizes of these adipose depots are associated with
risk factors for the metabolic syndrome, including elevated
visceral fat content, blood glucose, hypertension, systemic
inflammation, insulin resistance, circulating LDL levels, mean
arterial pressure, and atherosclerosis (19, 467–471), as well
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FIGURE 2 | Adipose depots and ectopic fat sites and their features that contribute to type 2 diabetes mellitus (T2DM) or cardiovascular disease (CVD). Features of

intra-abdominal white adipose tissue (WAT), subcutaneous fat, hepatic fat, heart and arterial fat (inclusive of epicardial, pericardial, and perivascular fat), pancreatic fat,

skeletal muscle fat, brown adipose tissue, and a dysbiotic gut that contribute to either T2DM or CVD. Arrows indicate changes in comparison with subjects without

T2DM or CVD. The T2DM treatment strategies that have been reported to improve each adipose depot feature are listed under “treatments.” Treatments: weight loss

due to lifestyle changes (L); weight loss due to bariatric surgery (B); metformin (M); GLP-1 receptor agonists (G); SGLT-2 inhibitors (S); thiazolidinediones (TZDs, T);

anti-inflammatory approaches (AI); microbiome modulation with pre- or pro-biotics (P).

as adverse cardiovascular events (472–475). The mechanisms
behind these associations include increased secretion of pro-
inflammatory cytokines, vasoactive factors, and vascular growth
factors (476–478); increased release of lipotoxic FFA (479, 480);
increased macrophage content (481); increased oxidative stress
(482); and decreased secretion of adiponectin (483), which are
triggered by obesity. In a prospective cohort of patients with
aortic stenosis, a positive association between epiWAT volume
and left ventricular mass was found (484), suggesting that
in addition to changes in adipokine secretion, epiWAT could
negatively influence cardiac function by placing a restrictive
burden on the heart. Mechanisms by which PVAT influences

CVD are more nuanced and complex. As an adipose depot
that features some characteristics of both WAT and BAT, and
with different functions depending on the anatomical location
(i.e., thoracic vs. abdominal aortic PVAT), PVAT can play
either a cardioprotective or a pathological role (24). As obesity
progresses, PVAT can become dysfunctional in that it more
resembles WAT, and contributes to a pro-inflammatory and
lipotoxic microenvironment that promotes atherosclerosis (485).
Similarly to healthy PVAT, BAT provides atheroprotection by
serving as a protective “buffer” for the vasculature against
lipotoxic FFA (486). However, BAT can become dysfunctional as
obesity progresses, undergoing a phenotypic “whitening” switch
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that promotes atherosclerosis (487). Thus, while PVAT and
BAT play atheroprotective roles in healthy individuals, obesity
promotes dysfunction of these depots, blunting this protective
effect against CVD.

STRATEGIES FOR REDUCING T2DM
AND/OR CVD RISK THAT IMPACT
ADIPOSE TISSUE

Strategies for weight loss are multi-faceted, including
combinations of diet and lifestyle modifications, pharmaceutical
therapy, and various forms of bariatric surgery (488). While there
is some debate over this, it is generally believed that small degrees
of weight loss in MUHO obese populations can have a dramatic
impact on cardiometabolic health (489, 490); thus, strategies
that improve obesity are likely to also decrease risk factors for
CVD. Similarly, CVD treatment strategies are centered around a
combination of pharmaceutical use and lifestyle modifications,
which also impact adipose tissue. In this section, we will describe
the effects that various CVD treatment strategies have on adipose
tissue metabolism and inflammation. How these treatment
strategies impact the contributions of particular adipose depot
features to T2DM and CVD are listed in Figure 2.

Weight Loss
Lifestyle Modifications: Dietary Changes
As most patients with T2DM and/or CVD are overweight or
obese, weight loss often is the first strategy to reduce the severity
of T2DM and/or CVD. Traditional methods prescribed for
weight loss include restricting food intake and increasing energy
expenditure. Despite a large number of fad diets that dictate
particular proportions of dietary fat, protein, and carbohydrates
to facilitate weight loss [summarized in (488, 489)], the simple
fact remains that for weight loss to occur, energy balancemust be
negative. Thus, energy intake must be less than energy expended,
which includes resting energy expenditure, physical activity, and
the thermic effect of food.

It has been previously reported that for every kilogram of
body weight lost due to dietary restrictions, visceral adiposity is
reduced by around 2–3% (491). Subsequently, additional studies
have shown that modest weight loss due to dietary changes in
people with overweight or obesity is due to roughly equivalent fat
lost from subcutaneous and visceral depots, while the addition
of exercise leads to more weight loss from subcutaneous fat
as well as loss of ectopic skeletal muscle fat (492–495). The
loss of visceral fat is associated with reduced CVD risk factors,
including reduced systemic inflammation, total cholesterol, LDL
cholesterol, and triglycerides (493, 496), as well as reduced fasting
glucose and insulin levels (496, 497). A post-hoc analysis from
the Look AHEAD study showed that weight loss of ∼10% in
overweight or obese subjects with T2DM yielded a 21% lower
risk of the primary outcome (including CVD-related death, non-
fatal acute myocardial infarction, non-fatal stroke, or hospital
admission for angina) (498). As the subjects recruited for the
Look AHEAD trial had T2DM, this and other post-hoc analyses

suggest that weight loss in T2DM subjects also lowers the risk of
CVD events (499, 500).

Lifestyle Modifications: Including Exercise
It is well established that aerobic exercise increases fuel
mobilization from adipose tissue by increasing lipolysis and
subsequent FFA mobilization, which ultimately decreases
adiposity and adipocyte size (501–504). Such enhanced fuel
mobilization is thought to be highest for visceral WAT (505).
Several studies have shown that a high level of fitness (defined
by a high activity level with maximal oxygen uptake) negatively
associates with visceral adiposity (506–508), even in subjects
with obesity and/or T2DM, suggesting that aerobic exercise
contributes to a favorable adipose distribution profile that
reduces the risk of metabolic syndrome. Hepatic fat is also
mobilized and decreased following intense aerobic exercise
(509). Studies in mice suggest that not only visceral fat mass
is lost with regular exercise, but subcutaneous and brown fat
mass are also diminished (510). As expected with fat loss,
exercise is coincident with reduced plasma and adipose tissue
leptin levels (511–516). The effects of exercise-induced fat
loss on adiponectin levels are less clear, with some studies
showing no changes in circulating adiponectin levels (517–
519), some showing increased plasma adiponectin (520–522),
and others showing increased subcutaneous WAT expression
of adiponectin mRNA (523–525). A meta-analysis showed
that pediatric subjects with obesity exhibit reduced resistin
levels following aerobic exercise (526). Little is known
about the impact of exercise on FGF21 in obese humans,
but one study suggested that aerobic exercise training in
obese women reduced circulating FGF21 levels (527). By
contrast, studies in rodents have shown that circulating
FGF21 levels are not altered by exercise in obese animals
(528). Collectively, such exercise-induced changes to WAT
distribution and adipokine secretion likely facilitate the observed
improvements in insulin sensitivity and CVD risk factors
observed with exercise.

While many studies have reported that exercise training
increases subcutaneous WAT browning in rodent models of
obesity (529–532), there is limited data to support this in humans.
Many studies have shown that there is no effect of aerobic
exercise training to recruit beige adipocytes in humans (533).
However, one study compared subcutaneous WAT from lean,
sedentary young men with age- and weight-matched endurance-
trained men and reported no differences in beige markers
such as UCP1, PGC1A, or CIDEA (534). Another study found
evidence of subcutaneous WAT browning (i.e., increased UCP1
and CPT1B expression) in overweight sedentary individuals
that had undertaken a 12-week bicycle training program (535).
There is some debate about what role brown or beige adipose
tissue would play in exercise, if it indeed occurs. It is known
that BAT and beige activity is increased when thermogenesis
is required, and exercise is a highly thermogenic activity that
raises core body temperature, so it is not immediately clear
why exercise would increase BAT and/or beige activity. Exercise
is known to activate the sympathetic nervous system, which
also activates BAT to quickly release stored energy, so it is
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possible that BAT activation is secondary to exercise-induced
sympathetic activation (536). Nevertheless, further studies are
needed to determine what role if any BAT and/or beige
adipocytes play in mediating the metabolically beneficial effects
of exercise.

Loss of adipose tissue mediated by dietary changes, exercise,
liposuction, or bariatric surgery (discussed in the section on
Bariatric Surgery) is accompanied by decreased markers of
adipose tissue and systemic inflammation (537, 538). Weight
loss achieved through calorie restriction and/or exercise resulted
in decreased systemic IL-6, CRP, TNFα, MCP-1, soluble
intercellular adhesion molecule-1 (ICAM-1), and vascular cell
adhesion molecule-1 (VCAM-1) (273, 539–542). Fat loss by
liposuction yielded similar changes in systemic inflammatory
markers in one study (543), but did not improve plasma
cytokine levels in another (407). The removal of visceral fat
from Zucker diabetic fatty rats resulted in dramatic reductions
in systemic cytokines (544); this suggests that removing visceral
fat, rather than the subcutaneous fat that is routinely removed
during liposuction, is more advantageous in terms of resolving
inflammation. Many studies also have shown that weight loss
following bariatric surgery leads to reductions in systemic
inflammatory markers (545), with notable reductions in adipose
tissue inflammatory cytokine and macrophage expression (546–
548). However, some similar studies do not show improvements
in adipose tissue inflammation following various weight loss
modalities, such as bariatric surgery or very low-calorie diets
(549–551). It has been suggested that pronounced weight
loss over time can lead to improvements in adipose tissue
inflammation that were not observed in the same subjects
following acute moderate weight loss (552). This implies that
adipose tissue inflammation during the initial stages of weight
loss could be required for the pronounced adipose tissue
remodeling required for fat loss (284, 553).

Medications Indicated for the Treatment of T2DM

That Lead to Weight Loss

Metformin
Metformin is the most commonly prescribed medication to treat
T2DM, particularly in subjects with obesity (554). Metformin
has been proposed to lower blood glucose levels through
suppression of gluconeogenesis in the liver, activation of AMP-
activated protein kinase (AMPK), inhibition of themitochondrial
respiratory chain (complex 1), and by unknown mechanisms
in the gut (555, 556). Thus, the precise mechanisms by which
metformin lower blood glucose are complex and still evolving.
While some diabetes medications have adverse effects on body
weight, patients taking metformin often lose a small amount
of weight [reviewed in (557)]. Studies in T2DM suggest that
metformin may reduce body fat stores and promote a more
metabolically healthy fat distribution (558–560). The effect of
metformin on adiposity may be partially due to reported nausea
and anorexic effects of the drug (561–563). Metformin has been
shown to decrease visceral WAT mass, potentially by promoting
fatty acid oxidation and/or adaptive thermogenesis (564). With
much recent attention focused on BAT as a potential target
for obesity treatment, it has recently been shown that BAT

is an important effector organ in the glucose-lowering effects
of metformin (565). Some studies have reported increases in
omentin following metformin therapy, which could be due to
visceral fat loss (566). Metformin also reduces hepatic steatosis
through inhibition of ApoA5 and steroyl-CoA desaturase-1
(SCD1) which combine to limit de novo lipid synthesis, which
is partially mediated by its actions on AMPK and liver X
receptor (LXR) activity (567, 568). It also has been suggested
that metformin reduces ECM remodeling that is dysregulated in
obesity (see previous section on adipose tissue plasticity), and
reduces lipogenesis (564).

In addition to the increasingly recognized anti-obesity effects
of metformin, its ability to improve CVD risk is also becoming
apparent (569). A recent meta-analysis suggested that metformin
could contribute to a 16% decrease in all-cause mortality,
but may also contribute to a 48% increased risk of stroke
(570). The mechanism may include improvements in the lipid
profile, such as mild reductions in plasma VLDL cholesterol and
triglycerides with slight elevations in HDL cholesterol (571). In
addition, metformin has been shown to have anti-inflammatory
properties, reported to reduce circulating CRP and MCP-1,
reduce NFκB activity, and to reduce advanced glycation end
products (AGE) (572–576).

GLP-1 receptor agonists
Glucagon-like peptide-1 (GLP-1) is a peptide hormone that is
continuously secreted at low levels during fasting by intestinal L
cells. Consumption of a meal enhances GLP-1 secretion, which
functions to reduce plasma glucose levels by stimulating insulin
secretion from pancreatic beta cells. In addition, GLP-1 receptors
are abundant in brain areas that control food intake regulation,
such as the hypothalamus, where GLP-1 functions to reduce the
drive to eat (577, 578). Thus, several GLP-1 receptor agonists
have been developed to mimic the glucose-lowering and anorexic
effects of GLP-1 to treat obesity and T2DM.

Liraglutide, a GLP-1 receptor agonist, has shown efficacy in
not only glucose control, but also in promoting weight loss
and reduced waist circumference based on results from the
Liraglutide Effect and Action in Diabetes (LEAD) study (579–
581). Liraglutide has also been shown to reduce total adiposity,
and specifically visceral fat mass (582, 583). While initially
described as being devoid of GLP-1 receptors (584), it has
now been confirmed that adipocytes express the GLP-1 receptor
(585, 586). Adipose tissue may therefore be an additional target
for GLP-1 receptor agonists to promote adipose remodeling
by unknown mechanisms. In addition to its effects on body
weight and glucose metabolism, GLP-1 receptor agonists may
also provide protection against CVD (587). The Liraglutide
Effect and Action in Diabetes: Evaluation of Cardiovascular
Outcome Results (LEADER) trial showed that liraglutide lowered
the risk of myocardial infarction and non-fatal stroke among
patients with T2DM that had high CVD risk (587). GLP-1
receptor agonist treatment has been shown to protect against
atherosclerosis in animal models and in humans, potentially by
lowering plasma lipids and by reducing circulating CRP and
soluble ICAM-1 levels (588–590). Liraglutide, when administered
in combination with metformin as indicated for the treatment
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of T2DM, has been shown to reduce epicardial WAT volume
with simultaneous increased omentin expression (591). Thus,
liraglutide may provide cardioprotection through reduced levels
of ectopic fat, lipids, and inflammation.

SGLT-2 inhibitors
Inhibitors of the sodium-glucose cotransporter 2 (SGLT-2) have
been shown to reduce blood glucose levels in subjects with
T2DM by enhancing urinary glucose excretion (592). The SGLT-
2 inhibitor empagliflozin, alone and in combination with the
GLP-1 receptor agonist liraglutide, has been shown to reduce
CVD risk (593), as well as cardiovascular death to a greater extent
than statins alone (488). Empagliflozin also is associated with
decreased hypertension, reduced arterial stiffness, and decreased
vascular resistance (594, 595). In both rodents and humans with
non-alcoholic fatty liver disease, SGLT-2 inhibitors have been
shown to reduce ectopic liver fat by blunting de novo hepatic
lipogenesis (596–599), with reduced alanine transaminase (ALT)
and aspartate transaminase (AST) levels (600), two markers of
hepaticmetabolic stress. Furthermore, empagliflozin is associated
with weight loss in humans when administered in combination
with other therapeutics, such as metformin, thiazolidinediones,
and sulfonylureas (601–603). In rodents, SGLT-2 inhibitors have
been shown to suppress high fat diet-induced weight gain and
to markedly reduce obesity-induced inflammation in WAT,
potentially by increasing fat oxidation and the recruitment of
beige adipose tissue (604, 605). Thus, in addition to correcting
hyperglycemia, SGLT-2 inhibitors can also impact adipose
tissue physiology; whether this is through direct or indirect
mechanisms remains to be elucidated.

Bariatric surgery
Bariatric surgical techniques, including Roux-en-Y gastric bypass
(RYGB) and sleeve gastrectomy, are widely acknowledged to
be the most effective treatment strategies for obesity, achieving
relatively low levels of obesity remission (606). Within the first
year of surgery, some patients experience the loss of around half
of their adipose tissue mass (607), often with roughly equivalent
losses from subcutaneous and visceralWAT (608, 609). As weight
loss progresses, studies have shown that later weight loss is
largely from visceral depots (610–612), an effect that correlates
with the degree of diabetes remission (609). It has also been
reported that ectopic skeletal muscle and pancreatic fat are
reduced following bariatric surgery (610, 613, 614), which could
contribute to improved glucose metabolism. Studies in humans
have reported that subcutaneous adipocytes become smaller
following bariatric surgery, resembling adipocytes from lean
individuals, but that total adipocyte number remains unchanged
(615, 616). Little is known regarding the size and number
of visceral adipocytes, which are extremely difficult to sample
from humans. As expected with reduced adipocyte size, leptin
levels have been shown to decrease following bariatric surgery,
while adiponectin has been shown to increase in some studies
(617, 618), but not in others (549, 550). Whether changes in
adipokine secretion are important for the sustained metabolic
improvements following bariatric surgery or whether they simply
reflect the adipose remodeling remain to be elucidated. However,

it is worth noting that one study has shown that adiponectin
levels are elevated only 2 weeks following bariatric surgery, before
significant weight loss has occurred, suggesting that adipokine
responses may be independent from weight loss (619).

Following bariatric surgery, obesity-associated systemic
inflammation persists for as much as 1 month, as indicated by
IL-6 and CRP levels (549, 550, 620). Some of this inflammation
has been attributed to the surgery itself (545). However, by 6
to 12 months post-surgery, circulating IL-6, CRP, and MCP-1
are typically reduced below pre-surgery levels (548, 549, 620–
627), an effect that may be due to fat loss. Importantly, it is
not yet clear what effect weight loss due to bariatric surgery
has specifically on adipose tissue inflammation. Some studies
have reported reduced levels of adipose tissue inflammation
following 15–17% weight loss mediated by bariatric surgery
(547, 548, 628, 629), while others have shown no changes
in adipose tissue inflammation following 7–37% weight loss
(549, 550, 630). With insulin sensitivity being substantially
improved in all of these studies, these latter studies present a
potential disconnect between adipose tissue inflammation and
insulin sensitivity that requires further study. However, it must
be noted that the adipose tissue sampled in these studies was
from subcutaneous depots, due to ease of sampling. Given that
visceral WAT is more prone to inflammatory changes, it is
possible that visceral WAT inflammation is more impacted by
bariatric surgery than subcutaneous WAT.

Bariatric surgery has been shown to upregulate FGF21 in
humans, an effect that appears to be specific to RYGB-induced
weight loss, as this effect is not observed following weight
loss due to caloric restriction or sleeve gastrectomy (631–635).
Importantly, it is not known if such FGF21 derives from the liver
or adipose tissue. One study has shown that increased FGF21 is
associated with improved HOMA-IR in RYGB subjects, an effect
that remains when adjusted for adiposity (634), introducing the
possibility that elevated FGF21 levels serve to impact glucose
homeostasis. Given that FGF21 has been shown to be elevated in
obesity, and in particular in subjects with insulin resistance (634),
the notion that FGF21 levels would become even further elevated
following RYGB surgery, a procedure which rapidly improves
insulin sensitivity, represents a paradox. It has been proposed that
obesity-associated increased FGF21 levels reflect a “spill-over”
from cells that are experiencing metabolic stress (636); however,
this hypothesis does not explain the further increased FGF21
levels that accompany RYGB.

Various forms of bariatric surgery have been shown to
evoke long-term benefits including sustained and considerable
weight loss as well as rapid and sustained remission of T2DM
and reduced risk of CVD-related mortality (489). A recent
meta-analysis has estimated that on average, patients exhibit a
48% reduction in macrovascular events with a 79% reduction
in mortality more than 5 years following bariatric surgery
(637). Similarly, long-term follow-up (>17 years) post-surgery
in the Swedish Obesity Study showed a 32% reduction in
macrovascular complications in T2DM subjects, with 29% fewer
myocardial infarctions and a 29% decrease in stroke incidence
(638, 639). Bariatric surgery also is associated with improved
hypertension, but not a reduced risk of incident hypertension
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(640). Interestingly, the CRP reduction observed following
bariatric surgery was most pronounced in subjects that regained
the most insulin sensitivity (624), suggesting an important link
between improved glucose metabolism and CVD.

Thiazolidinediones (TZDs)
TZDs are synthetic peroxisome proliferator-activated receptor
gamma (PPARγ) activators that have been used to treat T2DM
for decades (641–643). The ability of TZDs to improve insulin
resistance is clear; however, TZDs also promote adipogenesis
and subsequent weight gain (644–647), and are thus not popular
choices among patients who don’t want to gain weight, even
if it is “metabolically healthy” weight gain. The mechanism for
such improvements in insulin sensitivity in the face of weight
gain appears to be through the induction of adiponectin by
TZDs (648), which has known insulin-sensitizing properties as
described above.

Activation of PPARγ by TZDs not only enhances
adipogenesis, it also alleviates inflammatory cytokine secretion
associated with obesity (649) and reduces ectopic fat deposition
in tissues such as the liver and skeletal muscle (650). There
appears to be a reciprocal relationship between inflammatory
cytokines and adiponectin. For example, in vitro experiments
in cultured adipocytes revealed that treatment with adiponectin
reduces cytokine secretion (651, 652), while treatment with
cytokines drastically reduces adiponectin expression and
secretion (648, 653, 654). Due to greater adipose lipid storage
potential, TZDs should therefore reduce plasma triglyceride
levels, which appears to be the case for pioglitazone but not
rosiglitazone (655–657). This may in part account for the
beneficial cardiovascular effects of pioglitazone in a clinical
trial (658).

Anti-Inflammatory Approaches
Characteristic features of MUHO and the metabolic syndrome
include adipose tissue and systemic inflammation, which may
play a role in the pathogenesis of atherosclerotic CVD. Therefore,
an approach that inhibits inflammation would seem logical.

The CANTOS trial, in which CVD events were reduced using
an IL-1β antagonist, canakinumab (659), was the first successful
proof of concept study using an anti-inflammatory approach
for the prevention of recurrent CVD events. A more recent
study showed that colchicine, an old drug that has powerful
anti-inflammatory properties, reduced recurrent ischemic
events when administered after a myocardial infarction (660).
Statins, which inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme
A reductase (HMG-CoA reductase) to reduce LDL cholesterol
levels, also have anti-inflammatory properties (661–664).
Whether this anti-inflammatory effect of statins plays a role in
the well-documented effect of statins in inhibiting clinical CVD
events and CVD mortality (665, 666) is unknown. Even less is
known about the effect of statins on inhibiting inflammation
in adipose tissue, although statins have been shown to reduce
epicardial fat accumulation (667). A clue to the potential role of
statins in adipose tissue inflammation is provided by the recent
demonstration that myeloid-specific deletion of HMG-CoA
reductase improved glucose tolerance in obesity induced by a

high fat diet, as a result of decreased macrophage recruitment
into adipose tissue (668). These changes occurred independently
of weight loss and provide impetus for further studies on the
effect of statins on adipose tissue inflammation. Regardless, the
effect of statins on adipose tissue inflammation is an area that
warrants further investigation.

Modulating the Gut Microbiota
The trillions of bacteria that reside within our digestive tract,
termed gut microbiota, play an important symbiotic role in
shaping our metabolic health. The specific bacterial populations
that inhabit our gut can have substantial metabolic impact in
relation to obesity, as it is becoming increasingly recognized
that that the gut microbiota may contribute to the pathology
of obesity (669–671). Dysbiosis, or microbial imbalance in the
body, has been associated with obesity in both humans and
mice, and can be reversed with weight loss (672–675). Germ-
free mice that do not possess gut microbiota are protected
from diet-induced obesity and insulin resistance (676, 677), and
the obesity phenotype can be conferred by transplantation of
cecal contents from obese mice into lean germ-free mice (678),
suggesting that the “obese microbiome” is sufficient to cause
obesity. It is known that gut bacteria can influence distinct host
organ systems indirectly and specifically through the release of
particular microbial metabolites such as bile acids, short-chain
fatty acids (SCFA), and others. Adipose tissue is a notable target
of these microbial metabolites (679). As such, treatments that
target themicrobiome andmodulate microbial metabolism could
improve metabolic health.

There is growing evidence that gut dysbiosis can
contribute directly to atherosclerotic CVD (669–671, 680).
Gut microbial imbalance could modulate atherosclerosis
by several mechanisms, including but not limited to: (1)
promotion of metabolic endotoxemia due to decreased intestinal
barrier integrity, leading to systemic inflammation; (2) altered
cholesterol metabolism through the modification of bile acid
metabolism, or (3) microbial production of specific beneficial
or harmful metabolites with local and/or systemic activity,
such as short-chain fatty acids (SCFA). These processes are
described below.

Metabolic Endotoxemia
Gut dysbiosis has been associated with elevated intestinal
permeability, or a “leaky gut” (681–683). Increased intestinal
permeability allows inflammatory bacterial components to enter
the systemic circulation to trigger an inflammatory response
in diverse tissues such as the liver and adipose tissue. Obese
mice and humans have been shown to exhibit gut dysbiosis
(670), with increased proportions of endotoxin-producing gut
bacteria and elevated circulating levels of lipopolysacharide that
correlate with metabolic disease state such as obesity or T2DM
(684, 685). Such metabolic endotoxemia is reduced following
antibiotic treatment (681) or RYGB surgery-induced weight loss
(627). Thus, a compromised intestinal barrier may contribute
to systemic inflammation that is characteristic of obesity and
CVD (686).
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Bile Acid Metabolism
Gut dysbiosis contributes to dysregulated bile acid metabolism
(687), leading to hyperlipidemia and hyperglycemia (688, 689).
Bile acids produced by the liver facilitate the absorption of
dietary fat in the small intestine, and are known to regulate
lipid and glucose metabolism through the FXR (690, 691). FXR
activation by bile acids initiates a negative feedback pathway,
such that bile acid synthesis is inhibited when FXR is activated.
Intestinal microbiota are capable of producing secondary bile
acids from ∼5 to 10% of hepatic-derived bile acids that affect
host physiology by serving as FXR agonists, thus resulting in
a smaller bile acid pool due to the inhibition of primary bile
acid synthesis (692, 693). Subjects with obesity and/or T2DM
have been shown to have fewer plasma secondary bile acids
in comparison to healthy control subjects (694), an effect that
may reflect the altered gut microbial composition observed
in obesity. Adipocytes express the major G-protein-coupled
bile acid receptor, TGR5, and FXR (695–697), and obesity
is accompanied by reduced FXR expression in WAT (697);
thus, bile acid signaling to adipose tissue could play a role in
modulating adipose tissue inflammation and/or lipid metabolism
(698). Secondary bile acids have been shown to exert an anti-
inflammatory phenotype in macrophages and hepatocytes (699–
701). Bariatric surgery increases plasma bile acid concentrations
before any significant weight loss has been achieved (702–704).
Metabolic benefits from bariatric surgery, including weight loss
and improved glucose metabolism, were absent in mice lacking
the TGR5 receptor (705), suggesting an important role for bile
acids in the metabolic improvements associated with bariatric
surgery. Indeed, adipocyte TGR5 is required for adipogenesis and
a metabolically healthy adipokine profile, including secretion of
adiponectin and repression of inflammatory cytokines (706, 707).
Similarly, deficiency of FXR promotes adipocyte dysfunction,
exemplified by impaired adipogenesis, defective insulin signaling,
and reduced lipid storage capacity (697). Collectively, these
previous studies suggest that intact bile acid signaling is required
for adipocyte homeostasis. Thus, equilibrium between dietary-
intestinal- and microbiome-intestinal-derived bile acids is
important for metabolic health associated with lipid metabolism.
The gut microbiota composition and metabolism are therefore
important contributors to metabolic health.

SCFA Metabolism
SCFA, including predominantly acetate, propionate, and
butyrate, are produced in the gut to varying degrees, depending
on the fermentable carbohydrate-based substrates available
(i.e., dietary fiber quantity and type) and the particular
bacterial populations that are present (i.e., microbiota
composition). SCFA serve as signaling molecules to remote
organ systems, with impacts on autonomic regulation of
systemic blood pressure, systemic inflammation, and other
cellular functions. Dysbiotic gut bacteria that is observed in
metabolic pathologies such as obesity and T2DM has been
characterized by taxonomic shifts that produce fewer SCFA, with
notably less butrate produced in the gut (708–710). Evidence
from pre-clinical models suggests that SCFA administration
could improve metabolic disease states such as obesity, T2DM,

and atherosclerosis (711–714). Adipocytes express high levels
of key receptors for SCFA, including GPR43 (715). Genetic
deletion of GPR43 from adipocytes results in spontaneous
obesity, while overexpression of adipocyte GPR43 protects
mice from obesity (713). As such, adipose homeostasis can
be directly modulated by the gut microbial composition and
subsequent SCFA profile. Health benefits of giving SCFA to obese
rodents include weight loss (712), improved glucose metabolism,
reduced inflammation (716–719), and reduced LDL-cholesterol
(720, 721), among others.

Gut Inflammation/Adipose Tissue Cross Talk
The gut microbiota are now considered to be a distinct
organ system with endocrine properties that can directly and
profoundly modulate the host immune system (722, 723). Under
healthy conditions, the commensal (“normal”) gut microbiota
play a prominent role in host homeostatic immunity, an essential
function to limit the pathogenic potential of gut microbes,
via innate and adaptive mechanisms (724, 725). When gut
bacteria become dysbiotic, resulting immune deficiencies may
contribute to the pathogenesis of obesity, T2DM, and CVD (726).
The precise mechanisms by which gut microbiota modulate
host immunity [reviewed in (709)] are beyond the scope of
this review. However, some mechanisms by which microbial-
derived metabolites can modulate adipose tissue function will
be described herein. SCFA such as butyrate have been shown
to dampen subcutaneous and visceral WAT inflammation by
inhibiting NFκB activation (727, 728). Similarly, secondary
bile acids negatively correlate with inflammatory pathways in
WAT, suggesting an anti-inflammatory effect (729). Bacterial
endotoxin, circulating levels of which increase during metabolic
diseases that exhibit metabolic endotoxemia, readily promotes
adipose tissue inflammation by activating toll-like receptor 4
(TLR4), which is highly expressed in adipocytes as well as
macrophages (730). Thus, various metabolites produced by
the gut microbiota are known to modulate adipose tissue
inflammation directly through the circulation.

Probiotics, Prebiotics, and Synbiotics
Probiotics, prebiotics, and the combined synbiotics could provide
an avenue for increased endogenous production of secondary
bile acids and/or particular SCFA bymodulating the composition
of the gut microbiota. Probiotics are commercial preparations
of live bacteria designed to be ingested, with the intention of
colonizing the gut with the ingested bacteria, or at a minimum
to confer a health benefit to the host. Prebiotics, on the other
hand, are non-digestible dietary substrates designed to promote
an abundance of gut-healthy bacteria, with inferred benefit
to the host (731). Synbiotics are preparations that combine
particular pre- and pro-biotics, as it is becoming clear that
defined fiber substrates increase probiotic colonization efficiency.
Pre- and pro-biotics and synbiotics are relatively inexpensive
alternatives to conventional CVD medications, with fewer
side effects (732). Mechanisms by which pre- and pro-biotic-
mediated changes in the gut microbiota may improve adipose
function are still emerging, but may include the promotion
of an anti-inflammatory milieu (including reducing intestinal
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permeability to decrease circulating endotoxins), enhancing fat
oxidation, recruitment of beige adipocytes, increased energy
expenditure, and improved lipoprotein profile, which collectively
could improve insulin sensitivity and reduce ectopic fat to
combat T2DM and CVD (733–739). While it is generally
accepted that particular pre- and pro-biotics reduce diet-induced
weight and adiposity gain in animal models (736, 740–743),
human intervention studies to date showing efficacy of probiotic
treatment are still emerging (744, 745), warranting further
study (746).

CONCLUDING REMARKS

Obesity results in many changes to adipose tissue, including
adipocyte hypertrophy and hyperplasia, infiltration of
inflammatory cells, changes in the ECM, and altered adipokine
secretion patterns. A critical determinant of whether obesity
is likely to lead to metabolic complications such as insulin
resistance, the metabolic syndrome, T2DM and CVD is the
site where adiposity increases, particularly intra-abdominal,
epicardial and perivascular depots, as well as other ectopic
sites such as liver, skeletal muscle and pancreas. Ectopic fat

accumulation at these sites demonstrate different metabolic,
adipokine, and inflammatory profiles from excess white
adipose tissue that accumulates subcutaneously, which is
predominantly in a lower body distribution and contributes
to a less unhealthy form of obesity. Several mechanisms
by which these metabolic and inflammatory changes to
different adipose tissue depots could influence the metabolic
syndrome and its downstream consequences are potential
targets for intervention. Various strategies for the treatment
of T2DM and/or CVD, including lifestyle- and surgically-
mediated weight loss as well as pharmacological or naturopathic
methods, also have notable impacts on adipose tissue, which are
important to consider.
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