
Infections with viruses of the mononegaviral fam-
ily Filoviridae (in particular, members of the genera 
Ebolavirus and Marburgvirus) are an increasing threat 
to mankind. Until recently, the infrequent spillover of 
these viruses into humans and the fact that spillover 
often occurred in remote locations, coupled with a lim-
ited knowledge of non-​human reservoir hosts, the use 
of low-​output genomic sequencing, and biosafety and 
biosecurity restrictions on filovirus research, contribu
ted to the paucity of publicly available data on filovirus 
genome sequences1. In December 2013, complete genome 
sequences for only 29 ebolaviruses and 65 marburg
viruses were available2 despite the fact that 35 outbreaks 
of natural filovirus disease had been recorded3.

Since December 2013, atypically extensive filovirus 
disease outbreaks, from 2013 to 2016 in Western Africa 
and from 2018 to present in the Democratic Republic 
of the Congo, have profoundly impacted public health 
systems. At least 13,675 fatalities from filovirus disease 
were reported between December 2013 and April 5, 2020 
(refs4,5). By leveraging the continued development and 
improvement of next-​generation sequencing technology, 
>800 complete filovirus genome sequences and over 
2,000 draft genomes (that is, genomes with >80% cov-
erage) across classified and unclassified filovirus family 
members have become available since 2013 (ref.2). Indeed, 
among high-​consequence, Risk Group 4 viruses, the  
genomic diversity of filoviruses is arguably becoming  
the best characterized.

The impact and importance of genomics in pathogen 
characterization is routinely demonstrated, but the rapid 
prediction of, response to and mitigation of outbreaks 

requires more detailed genomic information than virus 
consensus-​genome sequencing. Indeed, as predicted6, 
metagenomic sequencing has become a powerful tool for 
identifying novel viruses and, crucially, for predicting 
pathogen emergence7. Targeted or unbiased sequencing 
of individual clinical samples aids in the identification of  
outbreaks, the determination of outbreak aetiology and 
the definition of virus transmission chains by identify-
ing chain-​defining single nucleotide polymorphisms 
(SNPs). Furthermore, field transcriptomics improves our 
understanding of host responses to virus infection and 
will be important in deciphering the differences between 
asymptomatic and symptomatic disease states and in pre-
dicting whether patients with acute and chronic disease 
will survive8. Functional genomics is becoming the tool 
of choice for the rapid characterization of patient-​specific 
viruses that have not been isolated in culture or that can-
not be equitably shared among laboratories across bor-
ders9. Finally, the genomic analysis of patient-​specific 
viruses also enables precision medicine by predicting the 
efficacy of available medical countermeasures (MCMs) 
against these individual viruses.

Here, we review how recent advances in genomic 
technologies have shaped past and current responses 
to outbreaks of Ebola virus disease (EVD), including 
insights into filovirus diversity and evolution. We empha-
size the importance of accurate and rapid large-​scale 
data generation and its implications for the develop-
ment of MCMs and outbreak response. We also examine 
the phenomena of Ebola virus (EBOV) persistence in 
human hosts and provide an overview of recent genomic 
advances in threat characterization, vaccine development 

Next-​generation sequencing
A collection of continuously 
evolving technologies and 
techniques that allow for the 
digitalization of genomic 
material.

Metagenomic sequencing
The sequencing of genetic 
material recovered directly 
from an environmental or 
clinical sample that allows the 
identification of all organisms 
and mobile genetic elements 
represented in the sample.
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Abstract | Filoviruses such as Ebola virus continue to pose a substantial health risk to humans. 
Advances in the sequencing and functional characterization of both pathogen and host genomes 
have provided a wealth of knowledge to clinicians, epidemiologists and public health responders 
during outbreaks of high-​consequence viral disease. Here, we describe how genomics has been 
historically used to investigate Ebola virus disease outbreaks and how new technologies allow  
for rapid, large-​scale data generation at the point of care. We highlight how genomics extends 
beyond consensus-​level sequencing of the virus to include intra-​host viral transcriptomics and the 
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discovery of novel filoviruses. Finally , we outline the importance of reverse genetics systems that 
can swiftly characterize filoviruses as soon as their genome sequences are available.
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Sudan
SUDV: Nzara 1976: 284       53%
SUDV: Nzara 1979: 34       65%
SUDV: Yambio 2004: 17       41%

Uganda
SUDV: Gulu 2000–2001: 425       53%
BDBV: Bundibugyo 2007–2009: 149       25%
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and immunotherapy. Although we focus primarily on 
EBOV, these practices can apply to all pathogenic filo-
viruses and other high-​consequence viruses capable of 
sustaining human-​to-​human transmission.

Identifying filovirus reservoirs
Although the global distribution and diversity of filo-
viruses remains largely undefined, metagenomic 
sequencing is becoming a valuable tool for identifying 
filovirus reservoirs. Until 1989, disease outbreaks owing  
to infection by ebolaviruses (including EBOV, Sudan virus  
(SUDV) and marburgviruses (including Marburg 
virus (MARV) and Ravn virus (RAVV)) had only been 
recorded on the African continent (Fig. 1). As the natural 
reservoir hosts of all of these viruses remained uniden-
tified, despite extensive ecological studies, filoviruses 
were thought to be African viruses1. This view changed 
after 1989, when Reston virus (RESTV; of the genus 
Ebolavirus) was discovered and repeatedly identified 
as a lethal pathogen of captive crab-​eating macaques 
(Macaca fascicularis) in non-​human primate (NHP) 
breeding facilities in the Philippines10–12 (Fig. 1). However, 
although RESTV can infect humans, it appears to be 
apathogenic13. RESTV was subsequently considered to 
be an Asian anomaly to the African filovirus dogma.

Classical filovirus-​targeted genome sequencing and, 
later, unbiased broad-​scale metagenomic sequenc-
ing, shed new light on filovirus ecology. In 2009, the 
sequencing of samples obtained from Egyptian rousettes 
(Rousettus aegyptiacus) in Africa revealed that these bats, 
which are cavernicolous and frugivorous pteropodids, 
are natural reservoir hosts of both MARV and RAVV. 
Coding-​complete or complete genomic sequences of 
both viruses were repeatedly obtained from Egyptian 
rousette populations in Uganda, Sierra Leone and South 
Africa14–17, and genomic fragments of these viruses 
were also detected in populations of these bats in the 
Democratic Republic of the Congo18 and in Zambia19.

Around and after 2008, sequence-​based evidence 
obtained using a range of techniques began to support the 
hypothesis that RESTV is an Asian virus. RESTV genome 
sequences were obtained from captive domestic pigs 
(Sus scrofa domesticus) in the Philippines and China20,21, 
and RESTV genome fragments were sequenced from 
samples from molossid, pteropodid and vespertilionid 
bats in the Philippines22. Next-​generation sequenc
ing further enabled the discovery of a highly diverg
ent filovirus, Lloviu virus (LLOV, genus Cuevavirus), in 
deceased Schreibers’s long-​fingered bats (Miniopterus 

schreibersii) in Hungary23 and in Spain24. The Ebolavirus 
genus was expanded owing to the discovery (via 
next-​generation sequencing) of Bombali virus (BOMV) 
in molossid little free-​tailed bats (Chaerephon pumi-
lus) and Angolan free-​tailed bats (Mops condylurus) 
in Guinea, Kenya and Sierra Leone25–27. Finally, a new 
filovirus genus, Dianlovirus, was recently established 
for a highly divergent filovirus, Měnglà virus (MLAV), 
which was discovered in unspecified rousettes in 
China. Preliminary metagenomics studies indicate 
the existence of other, highly divergent, filoviruses 
in the same area of China28–30. The most unexpected 
finding of genomics-​based filovirus discovery was the 
genomic description of Huángjiāo virus (HUJV; genus 
Thamnovirus) and Xīlǎng virus (XILV; genus Striavirus) 
in striated frogfish (Antennarius striatus) and greenfin 
horse-​faced filefish (Thamnaconus septentrionalis), 
respectively, captured in the East China Sea31 (Fig. 1).

In short, genomics has clarified that highly divergent 
filoviruses, frequently with unknown pathogenic poten-
tial, are likely to be distributed widely over the African, 
Asian and European continents in highly diverse host 
reservoirs (Fig. 2, Box 1). Furthermore, expanded animal 
sampling and unbiased host virome sequencing is likely 
to enable this diversity and distribution to be described 
in more detail. Of note, the natural host reservoirs of 
three ebolaviruses that are human pathogens, namely 
Bundibugyo virus (BDBV), SUDV and Taï Forest virus 
(TAFV), are still unclear. Furthermore, although bats 
are suspected to be hosts of EBOV owing to the detec-
tion of short EBOV genomic fragments and/or anti-
bodies to EBOV in certain bats32, no complete EBOV 
genome has yet been sequenced from any bat sample. 
The genomic investigation of archived or newly acquired 
samples could also support or refute the often-​repeated 
hypothesis that Middle African central chimpanzee (Pan 
troglodytes troglodytes), duiker (Cephalophus spp.) and 
western lowland gorilla (Gorilla gorilla gorilla) popula-
tions are frequently decimated by EBOV infection33–35. 
Thus, genomics may enable the prevention of future 
filovirus disease outbreaks by identifying filovirus nat-
ural hosts and by limiting host–human contacts as well 
as the initial introduction of filoviruses into the human 
population.

Identifying and characterizing outbreaks
Genomics-​based techniques have been central in the 
identification and characterization of filovirus disease 
outbreaks.

In-​country outbreak identification
The largest known filovirus disease outbreak occurred 
from 2013 to 2016 in Western Africa and was caused 
by a novel EBOV variant, Makona (EBOV/Mak) (Fig. 1). 
Genomic sequencing efforts during this EVD outbreak 
showcased various platforms and strategies to charac-
terize thousands of human clinical samples containing 
EBOV/Mak36. Early efforts relied on exporting positive 
samples to high-​complexity genomic centres abroad37,38 
(Box  2). However, in December 2014, EBOV/Mak 
genome sequencing using benchtop sequencers, such as 
the MiSeq System (Illumina) and the Ion Torrent system  
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Fig. 1 | Geographical overview of filovirus discovery. a | Outbreaks of Ebola virus 
disease (EVD) in Africa, including the number of confirmed cases, the case fatality  
rates and the number of publicly available Ebola virus (EBOV) draft genome sequences 
per outbreak , are depicted3. Circles represent the relative size (in terms of the number  
of cases) of the outbreaks. Documented accidental laboratory-​acquired infections  
have been excluded from this figure. b | Overview of global filovirus distribution, 
excluding EBOV. The place of isolation, known or suspected reservoir host and year  
of discovery are shown. The description of the distribution of non-​EBOV filovirus  
disease outbreaks includes the total number of confirmed cases and the case fatality 
rate. BDBV, Bundibugyo virus; BOMV, Bombali virus; HUJV, Huángjiāo virus; LLOV, Lloviu  
virus; MARV, Marburg virus; MLAV, Měnglà virus; RAVV, Ravn virus; RESTV, Reston virus; 
SUDV, Sudan virus; TAFV, Taï Forest virus; XILV, Xīlǎng virus.
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(Thermo Fisher Scientific) in-​country (namely, in 
Liberia and Sierra Leone), became standard prac-
tice39–41. In addition, field laboratories used the iSeq 
100 (Illumina), a portable bench-​top sequencer with 
low error rates that can be transported in a suitcase, to 
obtain complete EBOV genome sequences to determine 
virus transmission in the Democratic Republic of the 
Congo42,43. Use of the portable nanopore sequencing 
technology MinION (Oxford Nanopore Technologies) 
markedly reduced the time required to obtain the 
genome sequence from patient samples and enabled 
the reintroduction of EBOV into Guinea and Sierra 
Leone to be rapidly confirmed41. Similarly, the EBOV 
variants causing the 2018 Équateur Province EVD 
(EBOV/“Tum”) and the ongoing Nord-​Kivu/Sud- 
​Kivu/Ituri Province EVD outbreak caused by EBOV/“Itu”  
in the Democratic Republic of the Congo were quickly 
identified by the use of MinION42,44.

The timing and establishment of in-​country genomic 
sequencing capabilities determine which information 
can be captured and disseminated during an EVD out-
break. Early sequencing efforts can provide an inform-
ative ‘snapshot’ of the genomic epidemiology of EBOV 
during the initial phase of the outbreak45. The extent of  
the genomic diversity of the virus at the beginning  
of an outbreak can be used to determine whether single 
or multiple virus spillover events have occurred and to 
provide a crude estimate of the time at which a virus 
emerged in a human population37,38,46,47. Highly accurate 
genomic data have been used to characterize intra-​host 
EBOV populations and genetic drift and even to evaluate, 
in silico and in real time, the available diagnostic meas-
ures and MCMs42,47,48. As an outbreak progresses and the 
sampling size increases, phylodynamic and spatiotempo-
ral analyses reveal broader trends in the intra-​outbreak 

evolutionary rate of the virus, its geographical migration 
and factors contributing to virus transmission, disease 
outcome and virus–host adaptation36,49–54.

Ideally, the viral agent is initially identified using 
highly portable sequencing platforms on site. After this 
identification, considerations other than sequencing 
speed (for example, sequencing accuracy and proces-
sivity) become paramount in determining virus trans-
mission networks and in detecting changes in the viral 
genome (between cases in the current outbreak and 
between the current and previous outbreaks) that could 
subvert MCMs. However, whereas unbiased sequencing 
approaches using high fidelity platforms can lead to the 
discovery of co-​infections and reveal important clinical 
considerations during the treatment of patients near the 
point of need, targeted methods of pathogen character-
ization using the portable sequencing platforms iSeq 
100 and MiSeq (which use bait-​enrichment techniques) 
and MinION (which uses amplicon sequencing) can 
still provide useful genomic data albeit with a lower 
sequencing output (that is, a lower number of reads) 
than unbiased sequencing.

Biosurveillance
Sequencing only a single target during an enduring and 
large outbreak of EVD may result in the detection of 
co-​infections and/or superinfections being missed. The 
earliest evidence of an EBOV co-​infection was obtained 
in Gabon in 2002, where a patient with EVD also tested 
positive for human immunodeficiency virus 1 (HIV-1;  
a lentivirus of the Retroviridae family)55. During the 
2013–2016 Western African outbreak, co-​infections of 
patients with EBOV with malaria-​causing plasmodia or 
viruses such as GB virus C (a pegivirus of the family 
Flaviviridae), hepatitis B virus (an orthohepadnavirus 

Egyptian rousette
(Rousettus aegyptiacus)

Unspecific rousette
(Rousettus sp.)

BOMV
MLAV
EBOV

RAVV
HUJV
RESTV

LLOV
XILV
MARV

Greenfin horse-faced filefish
(Thamnaconus septentrionalis)

Striated frogfish
(Antennarius striatus)

Little free-tailed bat
(Chaerephon pumilus)

Angolan free-tailed bat
(Mops condylurus)

Schreibers’s long-fingered bat
(Miniopterus schreibersii)

BDBV, SUDV, TAFV: host unknown

Fig. 2 | Filovirus host reservoirs. Complete or coding-​complete filovirus genome sequences have been obtained from 
cave-​dwelling and house-​dwelling bats and highly diverse fish on the African, Asian and European continents (see Fig. 1 
for continental distribution). The pathogenic potential of most filoviruses remains unclear, as does the transmission route 
of pathogenic filoviruses proven to infect humans and pigs or of pathogenic filoviruses suspected to infect chimpanzees, 
duikers and gorillas. Animals that have been proven to be infected by filoviruses are indicated in black; grey animals are 
suspected but unproven reservoirs of the indicated viruses. Solid arrows indicate highly likely transmission routes; dashed 
arrows indicate hypothesized transmission routes. BDBV, Bundibugyo virus; BOMV, Bombali virus; EBOV, Ebola virus;  
HUJV, Huángjiāo virus; LLOV, Lloviu virus; MARV, Marburg virus; MLAV, Měnglà virus; RAVV, Ravn virus; RESTV, Reston virus; 
SUDV, Sudan virus; TAFV, Taï Forest virus; XILV, Xīlàng virus.

Genetic drift
The change in the frequency of 
an existing gene variant (allele) 
in a population owing to the 
occurrence of random 
mutations.
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of the family Hepadnaviridae) and Epstein–Barr virus 
(a lymphocryptovirus of the family Herpesviridae) 
were reported56–58. Additionally, EBOV infections in 
patients with a Gram-​negative septicaemia or with bac-
terial translocation have been described59–61. Moreover, 
an extensive infectious disease due to one particular 
virus could plausibly conceal a simultaneous outbreak 
caused by a different pathogen62. Notoriously, there 
have been outbreaks of cholera, plague, measles and 
malaria, and sporadic cases of monkeypox and yellow 
fever, alongside the 2018‒present EVD outbreak in the 
north-​eastern region of the Democratic Republic of  
the Congo. Detecting and characterizing co-​infections 
during a disease outbreak can provide clinicians with 
crucial point-​of-​care information and identify dif-
ferences in patient outcomes that may result from 
co-​occurring infections.

The characterization of unexpected, co-​circulating 
viruses during large-​scale viral outbreaks requires 
established and reliable sequencing strategies that 
can be applied without knowledge of which virus is 
present. The discovery of novel viruses is ideally facil-
itated by metagenomic sequencing, which often relies 
on the pre-​processing of clinical samples by depleting 
host-​derived genomic material, followed by single or 
random primer amplification by PCR and deep sequenc-
ing63–65. However, metagenomic sequencing is limited by 
the requirement for computational and bioinformatics 
resources, which are not always readily available under 
field conditions. Instead, target-​enrichment approaches 
using a wide breadth of bait probes for known patho
genic viruses, including filoviruses, have led to the 
successful characterization of known viruses in clini
cal samples from patients with disease of unknown 
etiology66–68. Moreover, target-​enrichment sequencing 
is more cost-​effective than metagenomic approaches. 
The  percentage of sequencing data matching the 

target pathogen or pathogens can range from 50% to  
99% with target enrichment, whereas with metageno
mics approaches often <1% of sequencing data matches 
the target69,70.

Molecular genomic epidemiology
Punctual and highly accurate sequencing efforts have 
revealed the molecular genomic epidemiology of disease 
and thus enabled the characterization of pathogen trans-
mission during disease outbreaks71. The first application 
of in-​country, real-​time genomic epidemiology started 
well into the EVD outbreak of 2013–2016 in Western 
Africa; portable sequencing was performed and data 
were analysed in tangent with up-​to-​date public health 
data41. The abundance of EBOV genome sequences 
determined during recent large-​scale EVD outbreaks 
(including the 2013–2016 outbreak and the 2018–present  
outbreak in the Democratic Republic of the Congo) 
enabled real-​time and retrospective investigations, 
using median-​joining haplotype network establishment and 
phylodynamic inferences, to reveal cryptic human EBOV 
transmission chains in humans42,49,72,73. In coordination 
with classical epidemiological data (for example, that 
obtained by manual contact tracing), individual virus 
transmission events identified by genomic analysis such 
as median-​joining haplotype networks can be temporally 
and spatially linked to determine likely transmission path-
ways, including the mode of virus diffusion and the identi-
fication of ‘superspreaders’ (as reviewed in ref.45)73,74 (Fig. 3).  
As the quality and quantity of available, complete 
genome sequences improves, new methods identifying 
intra-​host SNPs may provide more granular analyses 
of person-​to-​person transmission than previous tech-
niques39. Such SNPs can distinguish between almost 
identical consensus sequences of two or more patients75. 
However, acute infections resulting from direct contact 
with a recently infected and symptomatic individual, and 
for which primary infection occurred <21 days before the 
onset of symptoms, is not the only route for sustained 
person-​to-​person transmission during filovirus disease 
outbreaks.

Virus persistence
EBOV initially infects monocyte-​derived macrophages 
and dendritic cells, which disseminate the virus through 
the circulatory system to all main target organs, includ-
ing the liver, spleen and kidneys. After infecting and 
damaging the vascular endothelia, EBOV infiltrates the 
parenchymata of these organs, resulting in focal necroses 
and inflammation. Such damage can eventually lead 
to multi-​organ dysfunction syndrome and ultimately 
death76,77. However, in some cases, the intrinsic, innate 
and adaptive immune responses can contain viral rep-
lication and dissemination, resulting in the survival of 
the patient78.

Until recently, it was hypothesized that survivors of 
filovirus diseases effectively abolished filovirus infection. 
However, new evidence indicates that EBOV can persist 
in certain sites of the body in the absence of viraemia 
and that this persistence could cause disease flare-​ups 
(for example, see ref.73). Some of these sites, includ-
ing the brain, eyes and testes, are immune-​privileged 

Box 1 | Endogenous filovirus elements

The bioinformatic analysis of higher animal genome sequences, the number of which is 
steadily increasing, reveals that a marked percentage of these sequences are derived from 
ancient retroviruses142. Many animal genomes are mosaics that are likely to have evolved 
through the accidental integration of retroviral genes or gene fragments into germ cell 
genomes and the subsequent inheritance of this genetic material by descendants.  
In some cases, these sequences were positively selected for and were (or are still) 
expressed and their functions were exapted by hosts for novel functions142. A famous 
example of exaptation is the use of the human endogenous retrovirus W-​derived 
syncytin, which was once a retrovirion surface glycoprotein that mediated virion host 
cell entry but is now essential for placental morphogenesis in pregnant women143.

During the past decade, scientists have been increasingly aware that such ‘viral fossils’ 
or ‘paleoviruses’ can derive from viruses other than retroviruses. Indeed, non-​retroviral 
integrated RNA viruses (NIRVs; also known as endogenous viral elements) were derived 
from the ancestors of numerous extant virus families144. Prominent examples of 
negative-​sense RNA virus-​derived NIRVs are bornavirus sequences, which are found  
in the genomes of bats, fish, hyraxes, marsupials, primates, rodents, ruminants and 
elephants145,146, and rhabdovirus sequences, which are found in the genomes of 
crustaceans, mosquitoes, ticks and plants147,148. Interestingly, filovirus-​derived NIRVs 
also appear to be widespread as they have been located in the genome of afrosoricids, 
bats, eulipotyphlans, marsupials and rodents145,149,150. The function of these stably 
inherited filovirus sequences remains to be determined. However, the existence of 
NIRVs indicates that filoviruses are at least several million years old and that highly 
divergent mammals were exposed to, and at least occasionally infected by, these 
viruses and perhaps by the descendants of these viruses that exist today.

Exaptation
The novel use of an evolved 
trait for a different function.

Median-​joining haplotype 
network establishment
A minimum spanning tree 
analysis of recombinant-​free 
genomic sequences that  
infers ancestry–descendant 
relationships using haploid 
genotypes that can be 
visualized in a single unrooted, 
reticulate network.

Phylodynamic inferences
The study of how evolutionary 
processes interact with 
epidemiological and 
immunological factors to 
influence phylogenetic 
estimations.
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because they are physically separated from tissues and 
cells that are under immune surveillance (Fig. 4). Thus, 
foreign antigens such as EBOV particles are tolerated 
within these sites without eliciting an inflammatory 
immune response79.

Prior to the outbreak of EVD in Western Africa, 
evidence of persistent EBOV infection had been sparse 
probably owing to the small number of spillover events 
arising from this persistence (Fig. 1). Nevertheless, infec-
tious EBOV and MARV and/or filoviral RNA had been 
detected in the eyes and semen of convalescent survivors 
prior to this outbreak80–83.

The large pool of survivors following the 2013‒2016 
outbreak of EVD (specifically, 17,323 individuals) was 
different. Disease flare-​ups or re-​emergences were 
reported in at least nine individuals and attributed to 
sexual transmission or breast-​feeding84. Sexual transmis-
sion of persistent EBOV was implicated in the initiation 
of new EBOV transmission chains49,73,85–87. Genomic 
analyses revealed that the evolutionary rate of EBOV 
persisting in testes during convalescence is reduced 
relative to the rates of EBOV persisting in blood and 
plasma85,88. All these observations prompted a notable 
number of studies of the long-​term effects of persistent 
EBOV infection in EVD survivors. Indeed, EBOV persis-
tence can be accompanied by various sequelae, colloqui-
ally often referred to as ‘post-​Ebola [virus] syndrome’89. 
Studies of EBOV persistence in humans and experimen-
tally in NHPs have revolutionized our understanding of 

EBOV infection and changed the guidelines of clinical 
operation as well as the recommendations of the World 
Health Organization for EVD survivors.

The impact of genomics on understanding the persis-
tence of EBOV is broader than next-​generation sequenc-
ing; advances have also revolutionized the field of 
pathology by allowing the rapid exploration of transcrip-
tional expression in a chosen site of filovirus infection. 
The development of multi-​labelled and targeted ‘probes’ 
that allow multiplex immunopathological hybridizations 
in sites of interest have also boosted our knowledge of 
EBOV persistence. Indeed, studies using novel histo-
pathological tools have benefited genomic research in 
immune-​privileged and non-​immune-​privileged sites.

Immune-​privileged sites. Various neurological complica-
tions have been noted in survivors of EVD90. In exper-
imentally infected rhesus monkeys (Macaca mulatta), 
encephalitic EBOV persistence is always accompanied 
by various degrees of encephalitis or meningoenceph-
alitis91. Persistent infection of EBOV in the brain may 
lead to EVD relapse and late-​onset encephalitis in 
human survivors several months after acute disease92,93. 
In experimentally infected NHPs, EBOV enters the brain 
by breaking down the blood–brain barrier by directly 
infecting and damaging endothelial cells91 (Fig. 4a). 
Interestingly, EBOV primarily infects and persists in 
microglia91.

Ocular complications, including uveitis, are some of 
the most common findings during EVD convalescence94, 
and persistent EBOV and persistent MARV have been 
isolated from the aqueous humour of human survivors 
with uveitis80,95. In experimentally infected NHPs, EBOV 
infects blood vessels during the acute phase of infection 
and later infects parenchymal eye tissues. However, in 
rhesus monkeys surviving the experimental infection of 
EBOV with various degrees of uveitis, retinitis and vitri-
tis, EBOV only persisted in CD68+ cells (monocytes or 
macrophages) in the vitreous chamber and in the inner 
limiting membrane of the retina to which it is adjacent91 
(Fig. 4b). Whether EBOV isolated from the aqueous 
humour of human survivors originates from the vitreous 
chamber and its adjacent structures, as appears to be the 
case in NHPs, remains unknown96.

The first recorded sexual transmission of a filovirus 
occurred in 1967, when a male survivor of Marburg 
virus disease transmitted MARV to his wife81. EBOV 
genomic RNA was repeatedly detected in the semen 
of EVD survivors up to 40 months after acute infec-
tion82,85,87,97–99, and infectious EBOV was isolated from 
a few semen samples100. EBOV infects the seminiferous 
tubules of both human and NHPs (Fig. 4c), which are the 
immune-​privileged sites of sperm production, during 
the acute phase of disease101. Persistent EBOV infection 
was detected in the epididymis of a single rhesus mon-
key survivor with epididymitis, whereas MARV persis-
tence in seminiferous tubules was multifocal in 22 of 73 
crab-​eating macaques that survived91,102. Recent studies 
indicate that testicular persistence is not restricted to 
filoviruses, as potential cases of the sexual transmission 
of Crimean-​Congo haemorrhagic fever virus (CCHFV; 
an orthonairovirus of the family Nairoviridae) and 

Uveitis
Inflammation of the uvea  
(the pigmented layer between 
retina and the fibrous layer 
composed of sclera and cornea 
of the eye).

Box 2 | Recent advances in pathogen genome sequencing

Over the past two decades, high-​throughput benchtop platforms (for example,  
454 sequencing (Roche), MiSeq, NextSeq and HiSeq (Illumina), Sequel and RS (PacBio) 
and Ion Torrent (Thermo Fisher)) have been the backbone of metagenomics and 
targeted sequencing approaches for pathogen identification151. Genomic centres 
generally had to allocate a notable portion of space to house and maintain sequencers 
and transporting sequencers was impractical. For example, MiSeq, which is the smallest 
of the sequencers, weighs 91 kg and occupies ~ 200,000 cm3. Recently, ‘capacity 
building’ efforts have established on-​site genomics centres in low-​resource settings39,40. 
However, the international shipping of oversized sequencers that rely on precise 
optical alignments for functionality can be challenging and cost-​prohibitive and  
may cause irreparable damage to the sequencer. The maintenance and repair of 
internationally shipped sequencers may also be challenging as they do not come  
with in-​country service contracts from the manufacturers. Moreover, in low-​resource 
settings, trained local staff may not be permanent, and they will periodically require 
guidance and retraining in sample handling and storage and in how to ensure the 
continued service and activity of the sequencers.

The technological improvements in, and practicality of, portable sequencing 
technologies have been embraced in recent viral disease outbreaks, including in the 
2018–present Ebola virus disease outbreak in the Democratic Republic of the Congo 
and a 2018 Lassa fever outbreak in Nigeria. The iSeq 100 (Illumina) and MinION (Oxford 
Nanopore) platforms both conform to on-​site field requirements as they are miniature, 
rapid and easy to use. The ZiBRA Zika virus (ZIKV; a flavivirus of the family Flaviviridae) 
sequencing project in Brazil also demonstrated the feasibility of a ‘trailer laboratory’, 
but produced limited complete genome sequences owing to the small amounts of ZIKV 
RNA in clinical samples152. Several commercialized mobile laboratories incorporated 
into trucks or trailers shield equipment and temperature-​sensitive reagents from austere 
conditions while providing ample power and laboratory workspace for sequencing. 
Within such mobile laboratories, smaller PCR thermocyclers, such as the programmable 
Mini16 thermal cycler with a smartphone (miniPCR bio™), and miniature centrifuges 
further bolster portability and ease space requirements. Other innovations that limit 
the need of a ‘cold chain’ for supplies will greatly improve on-​site sequencing in hot 
climates and remote communities that are prone to outbreaks of Ebola virus disease.
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Lassa virus (LASV; a mammarenavirus of the family 
Arenaviridae) have been reported103–105. Sertoli cells, 
the supporting cells of spermatogenesis, are the main 
cellular reservoir of testicular MARV and CCHFV per-
sistence in experimentally infected NHPs102,106, and they 
may also be the reservoir of testicular LASV.

Non-​immune-​privileged sites. The majority of cases of 
filovirus persistence have been associated with immune-​
privileged sites. However, in several EVD flare-​ups orig-
inating from asymptomatic survivors of EVD that were 
persistently infected with EBOV, identifying the exact 
sites of viral persistence in the index cases was not pos-
sible84,107. Thus, it is expected that sites of EBOV persis-
tence that are not immune-​privileged will be discovered. 
EBOV can be detected in breastmilk of female survivors 
of EVD and in various tissues, including the blood and 

liver, of laboratory mice that have been experimen-
tally infected with EBOV and have partial immunity 
up to 150 days post-​exposure108,109. Persistence in sites 
that are not immune-​privileged has also been recently 
reported for CCHFV106 and LASV110,111. Interestingly, 
CCHFV persists within granulomas of NHP survivors 
with latent tuberculosis106. LASV persists in the smooth 
muscle cells of blood vessels with vasculitis in both 
crab-​eating macaque and domesticated guinea pig survi-
vors110,111, suggesting that a local altered immunological 
environment may sustain viral persistence.

Genomics of persistent infection. Genomics is uniquely 
suited to study the pattern of transmission from patients 
who are asymptomatic or paucisymptomatic. Genomic 
studies of persistent infections revealed distinct evolu-
tionary dynamics that might result in patterns that can 
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sequencing the Ebola virus (EBOV) genome in real-​time can help 
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during an outbreak of Ebola virus disease (EVD). A theoretical median-​joining 
haplotype network of the Nord-​Kivu/Sud-​Kivu/Ituri Province EVD outbreak 
caused by EBOV/“Itu” in the Democratic Republic of the Congo (provinces 
are indicated on the map) provides different hypotheses that may explain 
person-​to-​person transmission events. A consistent number of genomic 
changes occurring in a specific window of time can indicate acute 
transmission events (that is, transmission via close contact with an individual 
with EVD, bottom left). The detection of transmission depends on diagnostics 
and sampling frequency. When sampling frequency is low , flare-​up cases of 
EVD can appear with limited epidemiological data and with an unexpectedly 
large number of differences to earlier sampled haplotypes, which may point 

to undetected transmission networks (middle left; indicated by dashed lines). 
When viral diversity cannot be explained by spillover and spatial–temporal 
estimations, a secondary spillover may be possible (top left). Persistent 
infections through sexual transmission present with low genetic diversity (that 
is, with a slow evolutionary rate) over periods (bottom right) that are much 
longer than expected for acute reintroduction at the expected evolutionary 
rate (top right). A similar analysis was performed during the first discovery of 
sexual transmission during the 2013–2016 Western African EVD outbreak73, 
and a theoretical example is shown (bottom right). This example indicates the 
number of days after the initial presentation of symptoms at which an acutely 
infected male is sampled (day 4) and the day at which he recovers (day 20).  
On day 175, the sexual partner of this male becomes symptomatic owing to  
a very similar EBOV genotype, confirmed with epidemiological information 
and visualized using a median-​joining haplotype network.
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help identify the source of the flare-​ups100. During the 
2013‒2016 EVD outbreak, an unexpectedly low genetic 
diversity and complementary epidemiological data 
provided the first evidence of EBOV sexual transmis-
sion49,73. Recent pathogenesis studies elucidated the per-
sistent infection of EBOV and MARV in seminiferous 

tubules101,102 and epididymides55, but niche-​specific 
genomic studies (or single-​cell sequencing efforts) have 
yet to be reported. Certain EBOV mutations may be 
tissue-​specific and may therefore be required to estab-
lish persistence; genomics will be key in identifying 
these mutations. For instance, the sequencing of EBOV  
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Fig. 4 | Persistent Ebola virus infection in immune-privileged sites. a | Ebola virus (EBOV) can break down the blood–
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persistence. Image courtesy of W. Discher.

372 | July 2020 | volume 18	



NATuRe RevIeWS | MicRobioloGy

R e v i e w s

genomes present in the plasma and cerebrospinal fluid 
of a patient with EVD during a relapse revealed that only 
two non-​coding changes to the genome had occurred 
compared to the originally obtained EBOV genomes 
sequenced from plasma during the acute phase of dis-
ease93. Multiple or even single nucleotide changes may 
permit EBOV to transverse the blood–brain barrier by 
directly infecting endothelial cells and microglia cells and 
establishing a persistent infection91. Although EBOV  
and MARV have been detected and isolated from the 
aqueous humour of EVD survivors with uveitis80,95 and in 
breastmilk of survivors109, genomic studies have not yet 
investigated the evolutionary dynamics in these niches.

Host responses
In nature, diverse biotic communities constantly inter-
act and evolve within an ecosystem in response to 
environmental factors. Microorganisms, pathogenic or 
not, participate in these relationships and constantly 
react and evolve to changes within the environment.  
In highly complex organisms such as mammals, immune 
responses against viruses are inherently complex and 
involve humoural and intracellular mediators and diverse 
cell types. In turn, viruses such as EBOV evolve sophis-
ticated and diverse strategies to evade the host immune 
response. By studying host–pathogen interactions, we 
may improve our understanding of the mechanisms that 
govern infection, immunity and immune evasion.

Even though EBOV is highly virulent and lethal in 
humans, some individuals survive infection. Further
more, some individuals who were exposed to EBOV 
or who tested seropositive for the virus never reported 
disease. The seroprevalence rate of these individuals, 
categorized as asymptomatic or paucisymptomatic, 
has been reported to be >1% throughout Africa112–117. 
Transcriptomics offer insight as to why certain factors, 
such as the source, viral load, and infectivity of EBOV 
or host genetics, contribute to the range of disease sever-
ity and survivorship in patients. Host ‘immune gene 
signatures’ in patients infected with EBOV/Mak have 
been associated with clinical prognosis8,118. Indeed, data 
generated from 112 patients infected with EBOV/Mak 
(24 survivors and 88 fatal cases) revealed that interferon 
response-​related genes and acute-​phase responses were 
dysregulated in patients who did not survive8. However, 
natural killer cell populations were increased in EVD 
survivors, suggesting a crucial role for natural killer 
cells in controlling EBOV infection. Furthermore, low 
levels of inflammation and robust T cell responses with 
an upregulation of cytotoxic T lymphocyte-​associated 
protein 4 (CTLA4) and programmed cell death 1 (PD1) 
expression in T cells also correlated with survival from 
EVD118. Additional transcriptomic studies focusing on 
the population dynamics of EBOV in infected humans 
and possibly in naive NHPs will complement earlier 
characterization of host responses to EVD and provide 
a greater understanding of the mechanisms of EVD 
pathogenesis and disease outcome. Bringing transcrip-
tomics tools to the field, facilitated by our ability to per-
form genomic sequencing in outbreak areas, will allow 
the promises of precision medicine to be realized in an 
outbreak setting.

Genomics in threat characterization
The genomic characterization of an outbreak pathogen 
is only the first step in characterizing a threat, a process 
that can be facilitated by reverse functional genomics. 
Classical reverse genetics has focused on the virus res-
cue of filoviruses based on cloning a reference (that is,  
a consensus) filovirus sequence or using a replicating 
filovirus isolate to clone filovirus sequences61,62. However, 
synthetic reverse genomics can rapidly rescue individual 
virus haplotypes or genotypes from a virus population 
in the absence of replicating isolates, using gene and 
genome synthesis based on sequence information alone. 
These rescued viruses can be used to evaluate the func-
tional aspects of individual filovirus genome mutations. 
Thus, functional genomics can facilitate the rapid and 
precise functional characterization of a newly emerging 
filovirus or filovirus mutant. Given that natural filovirus 
isolates must be studied while fulfilling strict biosafety 
and biosecurity requirements that are frequently not 
available in areas of filovirus disease outbreaks, the avail-
ability of in-​country and field-​deployable sequencing 
platforms increases the ability of researchers to gather 
crucial information about the virus without the need to  
export biological specimens across national borders. 
To succeed, field sequencing needs to produce highly 
accurate finished filovirus genome sequences (for exam-
ple, sequences that include the complete genomic leader 
and trailer regions of the virus) from a variety of sample 
sources31,42,72. Filoviruses rescued from synthetic reverse 
genetics systems can then be used to study host adap-
tation and attenuation as well as the efficacy of thera-
peutics118–121. The de novo generation of EBOV from 
the ongoing EVD outbreak in the Democratic Republic 
of the Congo (that is, of EBOV/“Itu”) demonstrates  
the value of synthetic reverse genetics9 (Fig. 5). After the 
development of modular reverse genetic systems that 
are even more efficient than those available today, even 
high-​throughput phenotypical characterizations of large 
numbers of minimally divergent filoviruses are likely to 
be possible even in the absence of a biological isolate.

Genomics in prevention and therapy
MCMs and EBOV population dynamics
Multiple MCMs against EBOV infection have been 
developed, including small molecules, monoclonal anti-
bodies (mAbs), antibody cocktails and vaccines122, and 
clinical trials have yielded promising results. However, 
the population dynamics and evolution of EBOV are 
influenced by mutations in RNA, RNA recombination 
rates, virus population bottlenecks, natural selection and 
fitness (including diversifying and purifying selection), 
host range and mode of transmission123. These traits 
re-​adjust depending on the environment in a natu-
ral host, a naive accidental host, a previously exposed 
accidental host (owing to infection or vaccination) or 
an accidental host that received an MCM. Therapeutic 
pressures will force the selection of individual EBOV 
genotypes, and thereby adaption, to ensure virus sur-
vival or persistence. Highly accurate genomic data can 
be used to evaluate available MCMs in silico prior to 
in vitro and in vivo testing and to characterize host 
responses to specific therapeutic interventions in real time.  

Population bottlenecks
The erosion of genetic diversity 
and concomitant reduction  
in individual fitness and 
evolutionary potential.
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For example, accurate sequencing data from EBOV/“Itu” 
allowed for the rapid in silico assessment of the abil-
ity of the mAb114 (National Institutes of Health) and 
ZMapp (Mapp Biopharmaceutical) mAbs to bind to the 
receptor-​binding domain of the EBOV spike glycopro-
tein GP1,2, predicting that these mAbs should be effec-
tive against circulating EBOV/“Itu”42. Using genomic 
approaches to understand how MCMs influence EBOV 
population dynamics and to identify mutant viruses that 
escape MCMs could augment future therapeutic designs 
and filovirus-​targeting strategies.

Vaccinating against EBOV
Correlates of protection for different vaccines and vac-
cination regimens against EBOV have not been fully 
determined. However, both humoural and cellular 
immunity independently correlate with the protection of  
NHPs from EBOV infection and disease124,125. The use 
of a recombinant vesicular stomatitis Indiana virus vac-
cine expressing EBOV GP1,2, rVSVΔG-​ZEBOV-​GP (sold 
under the brand name Ervebo), the first EBOV vaccine 
to be approved by the FDA126,127, diminished EVD case 
fatality rates in a limited ring-​vaccination trial performed 
in Guinea in 2015 (ref.128) and it is currently administered 
to people living in the area of the current EVD outbreak. 

However, unfortunately, some vaccinated individuals still 
present with clinical signs of mild EVD. The exact rea-
sons for these ‘breakthrough cases’ are not completely 
understood; however, they are thought to result from 
EBOV infection within the first 10 days after vaccination. 
A breakthrough could be due to the individual having an 
insufficient immune response to control the virus (that is, 
when the vaccine induces a low titre of anti-​EBOV anti-
bodies and/or scarce effector cells) or to EBOV adapt-
ing to escape the immunological pressures produced 
by the vaccine. The characterization of the genomic 
EBOV population in patients who developed EVD after  
vaccination could help address these questions.

Immunotherapy against EBOV
Immunotherapy has also been successfully used as a 
therapy for EVD, most notably during the ongoing out-
break in the Democratic Republic of the Congo129. The 
Pamoja Tulinde Maisha (PALM) randomized controlled 
trial recently evaluated four investigational therapeutics 
(ZMapp, remdesivir (Gilead Sciences, Inc.), mAb114 
and REGN-​EB3 (Regeneron Pharmaceuticals)) in 
the treatment of EVD130. mAb114 (a single mAb) and 
REGN-​EB3 (a cocktail of three mAbs) were significantly 
more effective than ZMapp (a cocktail of three mAbs) 
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Fig. 5 | Reverse functional genomics for characterizing authentic Ebola 
virus isolates. Reverse functional genomics facilitates external support in 
the response to outbreaks of Ebola virus disease (EVD) that occur in remote 
areas that lack in-​house resources to test available medical 
countermeasures. Rapid, high accuracy , complete genome sequences 
determined in-​country are shared with out-​of-​country collaborators to 
evaluate key genomic and proteomic changes in Ebola virus (EBOV) that 
may affect the efficacy of available therapeutics (part a). For example, 
changes in the double-​stranded RNA (dsRNA)-​binding site of the EBOV 
polymerase cofactor viral protein 35 (VP35), a protein targeted by several 

therapeutics, can be identified from the sequencing data obtained for a  
new EBOV isolate. Changes in this region of VP35 may compromise the 
efficacy of treatments. Indeed, if two available therapeutic agents 
(hypothetical treatment A and hypothetical treatment B) target VP35, 
reverse genetic systems can produce replicative EBOVs de novo that 
contain the changes identified in VP35 (part b). These replicative EBOVs can 
then be used for the in vitro and in vivo therapeutic evaluation of both 
hypothetical treatments; data obtained using this approach can inform on 
which treatment is potentially more efficacious against the EBOV isolate 
causing the outbreak.
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in treating EVD (P = 0.007 and P = 0.002, respectively) 
and were also more effective than remdesivir (a nucle-
oside analogue); the effect of ZMapp and remdesivir on 
EVD was not significantly different. mAb114, obtained 
from a 1995 EVD survivor from the Democratic 
Republic of the Congo, is one of several recently iden-
tified ebolavirus-​neutralizing antibodies that are being 
developed as therapeutics for EVD129–132. This mAb pro-
tected NHPs from EBOV-​induced disease and death, 
even when administered 5 days after inoculation with 
EBOV133. As mAb114 binds to the EBOV glycopro-
tein GP1,2, the risk of escape mutants arising might be 

constrained by viral fitness. REGN-​EB3 also showed 
promising results in EBOV-​exposed NHPs, and no 
mutant viruses were reported to escape this MCM134,135. 
By contrast, EBOV mutants that escape ZMapp have 
been characterized136. A mutation in amino acid residue 
508 of EBOV GP1,2 abrogated its binding to two of the 
mAbs within ZMapp, and a mutation in amino acid resi-
due 273 of EBOV GP1,2 abrogated its binding to the third 
mAb137. Moreover, epitope mapping of EBOV GP1,2 using 
an alanine-​scanning assay138 identified several residues 
that are crucial for antibodies to bind to EBOV GP1,2, 
although none of these mutations was tested for fitness.
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Fig. 6 | Therapeutic and phylodynamic perspectives of the emergence 
of treatment-resistant Ebola virus mutants. a | During an Ebola virus 
(EBOV) infection, the low-​fidelity viral RNA-​directed RNA polymerase 
creates replication errors that lead to increasing intra-​host variation 
through successive replications (that is, genetic drift occurs). Therapeutic 
monoclonal antibodies, such as MB-003, neutralize EBOV, and infected 
patients subsequently recover. However, such treatment can also create a 
‘therapeutic bottleneck’ in which intra-​host diversity alters to select 
genotypes that only harbour the escape variant that continues to replicate 
in current and future hosts. b | The evolution of EBOV intra-​host populations 
over time, pre-​treatment and post-​treatment, and the genomic bottleneck , 
can be visualized by estimating a phylogenetic tree (notable events along 

the tree are indicated by colourless circles). Samples can be characterized 
using next-​generation sequencing (NGS) at various time points. Each 
coloured circle represents a finished EBOV genome from an individual 
patient. After an inter-​host bottleneck , viral diversity should be low in the 
earliest phase of infection (1). As EBOV continually replicates, expanding 
intra-​host diversity can create heterogeneous subpopulations (2, blue 
circles). Once exposed to treatment (3, dashed line), EBOV intra-​host 
populations may be countered and eliminated, demonstrating an effective 
treatment without further intra-​host replication or diversification (green 
circles). However, a small subpopulation surviving the therapeutic 
bottleneck may allow escape mutants to subvert treatment (4) and continue 
diversifying into novel, treatment-​resistant genotypes (5, red circles).

	  volume 18 | July 2020 | 375



(~5–10) reduces the analytical power of comparative 
virus–host interactions and inter-​host population-​level 
genomics. In addition, experiments aimed at understand-
ing the appearance of antiviral resistance are restrictive; 
precise protocols to measure and evaluate EBOV and 
the host immune response to infection without violating 
established policies are urgently required. Furthermore, 
the possibility that a more virulent or less treatable virus 
may evolve during such experiments and be accidently 
released is a concern, which is why Institutional Biosafety 
Committees are cautious in approving experiments aimed 
at creating such viruses. Additionally, concerns may arise 
from other nations that are parties of the Biological 
Weapons and Toxins Convention. Convincing national 
rivals that experiments resulting in EBOV strains that are 
resistant to MCMs were actually intended to strengthen 
MCMs, and not to deliberately create biological weapons, 
is not straightforward.

Conclusions
The advancement of targeted and unbiased genomic 
sequencing has profoundly impacted our biolog-
ical knowledge of, epidemiological preparedness 
for, and response strategies to known and unknown 
high-​consequence filovirus infections. Greater invest-
ments in in-​country genomic infrastructure and mobile 
sequencing platforms have reduced the time from 
sample to viral genome sequence and simultaneously 
informed local clinicians, epidemiologists and public 
health officials of genome-​guided information on the 
virus responsible for a current outbreak. Advances in 
large-​scale and timely data generation encourage future 
genomic studies to go beyond consensus-​level pathogen 
genome sequencing during an outbreak. For example, 
persistent infections in immune-​privileged sites of sur-
vivors can be characterized using single-​cell sequencing 
technologies. Additionally, an increased focus on host 
responses in an infected individual and the contribution 
of host genome characteristics to disease outcome and 
transmission would potentially further benefit the devel-
opment of MCMs and improve the outbreak response. 
Complete pathogen–host genomic investigations could 
be applied to infected individuals, NHPs and known nat-
ural host reservoirs of filoviruses. The successful integra-
tion of current and future genomic tools will rely on the 
establishment of new long-​term partnerships between 
government, academia and public health agencies and 
on maintaining in-​country genomic capabilities where 
the threat of filovirus outbreaks is imminent.
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