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Abstract: In Staphylococcus aureus bacteremia, our group has shown that a dysregulated balance of pro-
and anti-inflammatory cytokine response biased towards an immunoparalysis phenotype is predictive
of persistence and mortality, despite receipt of antibiotics. Certain antibiotics, as well as lipoteichoic
acid (LTA) released from S. aureus, can modulate immune response ex vivo. Here, we evaluated
the effects of three anti-staphylococcal antibiotics (vancomycin, tedizolid, and daptomycin) on
the expression of cytokines and cell surface markers of immune activation (TNFα, HLA-DR) and
immunoparalysis (IL-10, PD-L1) in human peripheral blood mononuclear cells (PBMC) exposed to
high (10 µg) and low (1 µg) doses of LTA. Results suggested a dose-dependent relationship between
LTA and induction of anti- and pro-inflammatory immune responses. Differential antibiotic effects
were prominently observed at high but not low LTA condition. Vancomycin significantly induced
IL-10 and TNFα expression, whereas daptomycin had no effects on cytokine response or expression
of cell surface receptors. Tedizolid increased TNFα and modestly increased HLA-DR expression,
suggesting a stimulatory effect. These findings suggest that anti-staphylococcal agents differentially
alter LTA-mediated immune cell activation status and cytokine response, providing support for future
clinical studies to better elucidate the complexities of host–microbial–antibiotic interaction that can
help direct precision therapy for S. aureus bacteremia.
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1. Introduction

The majority of sepsis-related deaths occur more than five days after onset of sepsis [1]. Late-stage
mortality has been attributed to a dysregulated host immune response predominated by increased
production of anti-inflammatory cytokines that confers an immunoparalysis state leading to persistent
primary infection or development of secondary infections in a subset of patients [2,3]. Notably,
downregulation of human leukocyte antigen DR-isotype (HLA-DR) is the most prominent and
frequently measured marker of immunoparalysis in sepsis [4]. HLA-DR is a major histocompatibility
(MHC) class II cell surface receptor present on monocytes and dendritic cells that is responsible for
presenting antigens to CD4+ T cells, thereby initiating and activating the adaptive immune response.
An additional marker of interest that has been shown previously to be strongly associated with
increased risk of mortality in patients with sepsis is programmed cell death ligand 1 (PD-L1) on
monocytes, which communicates with the inhibitory program cell death receptor (PD-1) and initiates T
cell apoptosis [5].

Staphylococcus aureus bacteremia (SAB) is the most common bacterial cause of sepsis in intensive
care unit (ICU) patients and is associated with significant morbidity and mortality [6,7]. Despite receipt
of antibiotic therapy, persistent growth of the bacterium in blood for at least three days after start of
antibiotic therapy occurs in 37% of patients and is associated with 16% increased risk of death for
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each day of persistent bacteremia [8]. Our group has reported that an early onset of dysregulated host
immune response, as evidenced by high IL-10/TNFα ratio, was predictive of persistence and 30-day
mortality in SAB [3,9]. High IL-10/TNFα ratio suggests a shift towards immunoparalysis, leading to
bacterial persistence.

Lipoteichoic acid (LTA) is an essential component of the cell wall of S. aureus that is released
spontaneously during normal growth, as well as following antibiotic exposure, with notable increases in
release observed in the presence of cell-wall active antibiotics [10,11]. Of interest, LTA has been shown to
affect host immune response through its interactions with immune cells by exerting immunostimulatory
effects through the induction of pro-inflammatory cytokine release, whereas others have found LTA to
be a potent inducer of IL-10 production resulting in reduction of HLA-DR expression and inhibition of
T cell activation via PD-1/PD-L1 [12–17].

In clinical practice, the current approach to managing SAB relies on the selection of antibiotics
based on organism identification and susceptibility alone, without specific regard to the host immune
response. Published studies have demonstrated that some antibiotics can exert immunomodulatory
effects on host cells, separate from their direct inhibitory and killing action upon susceptible pathogens.
In this study, we hypothesize that host immune response is affected by LTA release from S. aureus and
that the LTA-mediated immune response is differentially impacted upon exposure to anti-staphylococcal
antibiotics from different pharmacologic classes: vancomycin (VAN), tedizolid (TED), and daptomycin
(DAP). Our ultimate goal is to aid clinicians in the selection of an antimicrobial regimen that maximizes
treatment success for S. aureus bacteremia by harnessing both its antimicrobial and immunomodulatory
actions, specific to the individual patient’s immune response to the infecting pathogen.

2. Results

2.1. Purified LTA from S. aureus Differentially Affected Expression of Cytokine and Cell Surface Markers in a
Dose-Dependent Manner in Human PBMCs

We used two different concentrations of LTA (high: 10 µg/mL; low: 1 µg/mL) to stimulate human
PBMCs obtained from healthy volunteer donors. Previously published in vitro data demonstrate that
LTA release with and without antibiotics typically ranges between 1 and 10µg, with variations among
clinical S. aureus strains [10,11]. We examined four relevant sepsis markers to assess host immune
response phenotype: IL-10, TNFα, HLA-DR, and PD-L1 (Figure 1). Increased expression of PD-L1 and
IL-10 would suggest an immunoparalysis phenotype characterized by decreased pathogen recognition
and dampened pro-inflammatory response. Conversely, enhanced expression of TNFα and HLA-DR
would be expected in activated, pro-inflammatory cells as these functions are associated with pathogen
detection, activation, and microbial clearance. The results demonstrate that at baseline, IL-10 and
TNFα are produced in minimal quantities, and there is low expression of PD-L1 on the cell surface in
the absence of stimuli. As PBMCs are a mixed cell population containing T cells, B cells, monocytes,
dendritic cells, and NK cells, there is a relatively smaller proportion of cells that expresses HLA-DR
(1.6% of PBMCs HLA-DR+ at baseline).

In comparison to baseline, exposure to high concentrations of LTA significantly increased
expression of IL-10 and TNFα, with a minimal observed increase in PD-L1 expression. HLA-DR
expression also significantly increased with high LTA versus low LTA (p = 0.01) and untreated cells
(p = 0.05) (2.96% vs. 1.93% vs. 1.65% HLA-DR+ PBMCs, respectively). When compared to low LTA,
there was a clear concentration-dependent effect in PBMCs, with high LTA causing significantly greater
response with respect to TNFα and HLA-DR expression. While high LTA appeared to have a greater
stimulatory effect, it was accompanied by a compensatory increase in IL-10 and PD-L1 (IL10: 123 pg/mL
vs. 12.23 pg/mL and PD-L1+: 7.41% vs 3.31% at high and low LTA, respectively). Conversely, low LTA
minimally affected either TNFα or IL-10 production compared to untreated controls.
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Figure 1. Effects of high (10 μg/mL) and low (1 μg/mL) exposure levels of purified S. aureus LTA on 
(a) IL-10, (b) PD-L1, (c) TNFα, and (d) HLA-DR expression in human PBMCs (n = 4). Protein 
expression was determined using either flow cytometry (PD-L1, HLA-DR) or ELISA (IL-10, TNFα. 
Data are displayed as means with error bars depicting standard deviation. Brackets indicate statistical 
comparisons between treatments. * p < 0.05, **** p < 0.0001. 

2.2. Antibiotics Exert Drug- and Dose-Dependent LTA-Mediated Effects on Cytokine and Cell Surface 
Marker Expression in Human PBMCs 

Following co-stimulation with LTA and antibiotics (VAN, TED, or DAP), PBMC expression of 
IL-10, TNFα, HLA-DR, and PD-L1 was analyzed using ELISA or flow cytometry. Figure 2 depicts the 
drug- and LTA-dose-dependent effects observed in PBMCs treated with VAN, TED, or DAP. In the 
presence of high-concentration LTA, VAN exposure significantly increased IL-10, and TNFα cytokine 
production had no effect on HLA-DR and modestly downregulated PD-L1 surface expression of 
PBMCs. TED significantly increased TNFα cytokine release. DAP had no significant effects on any of 
the markers measured. Thus, it appears that in the setting of high-dose LTA, TED appears to have 
the greatest immunoactivating potential, through its actions on TNFα release. While VAN increased 
TNFα, it also demonstrated anti-inflammatory properties through its increase in IL-10 release, while 
DAP appeared to have no effect on the selected anti- or pro-inflammatory markers, contributing a 
neutral effect on the host immune response. 

Conversely, at the low LTA exposure level, antibiotics had a less pronounced effect in 
comparison to high LTA on all markers of interest, indicating that with greater LTA-mediated 
immune stimulation, antibiotics have an enhanced capacity to exert immunomodulatory effects. 
When stimulated with low LTA, VAN demonstrated a modest increase in HLA-DR and PD-L1 cell 
surface expression. TED significantly increased HLA-DR (p = 0.003). Regardless of high or low LTA 
exposure, DAP had no significant effects on protein production for any of the markers of interest 
examined. Overall, TED appeared to exert the least immune dampening effect upon exposure of 
PBMCs to low LTA relative to VAN and DAP due to its ability to increase HLA-DR and TNFα. 
Minimal to no effect on antibiotic-mediated cytokine response was observed under low LTA 
condition. 

Figure 1. Effects of high (10 µg/mL) and low (1 µg/mL) exposure levels of purified S. aureus LTA
on (a) IL-10, (b) PD-L1, (c) TNFα, and (d) HLA-DR expression in human PBMCs (n = 4). Protein
expression was determined using either flow cytometry (PD-L1, HLA-DR) or ELISA (IL-10, TNFα.
Data are displayed as means with error bars depicting standard deviation. Brackets indicate statistical
comparisons between treatments. * p < 0.05, **** p < 0.0001.

2.2. Antibiotics Exert Drug- and Dose-Dependent LTA-Mediated Effects on Cytokine and Cell Surface Marker
Expression in Human PBMCs

Following co-stimulation with LTA and antibiotics (VAN, TED, or DAP), PBMC expression of
IL-10, TNFα, HLA-DR, and PD-L1 was analyzed using ELISA or flow cytometry. Figure 2 depicts the
drug- and LTA-dose-dependent effects observed in PBMCs treated with VAN, TED, or DAP. In the
presence of high-concentration LTA, VAN exposure significantly increased IL-10, and TNFα cytokine
production had no effect on HLA-DR and modestly downregulated PD-L1 surface expression of
PBMCs. TED significantly increased TNFα cytokine release. DAP had no significant effects on any of
the markers measured. Thus, it appears that in the setting of high-dose LTA, TED appears to have the
greatest immunoactivating potential, through its actions on TNFα release. While VAN increased TNFα,
it also demonstrated anti-inflammatory properties through its increase in IL-10 release, while DAP
appeared to have no effect on the selected anti- or pro-inflammatory markers, contributing a neutral
effect on the host immune response.

Conversely, at the low LTA exposure level, antibiotics had a less pronounced effect in comparison
to high LTA on all markers of interest, indicating that with greater LTA-mediated immune stimulation,
antibiotics have an enhanced capacity to exert immunomodulatory effects. When stimulated with
low LTA, VAN demonstrated a modest increase in HLA-DR and PD-L1 cell surface expression.
TED significantly increased HLA-DR (p = 0.003). Regardless of high or low LTA exposure, DAP had
no significant effects on protein production for any of the markers of interest examined. Overall,
TED appeared to exert the least immune dampening effect upon exposure of PBMCs to low LTA
relative to VAN and DAP due to its ability to increase HLA-DR and TNFα. Minimal to no effect on
antibiotic-mediated cytokine response was observed under low LTA condition.
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Figure 2. Expression of select immune markers in human PBMCs (n = 4) exposed to antibiotics and 10 
μg/mL (high) (a–d) or 1 μg/mL (low) (e–h) purified S. aureus LTA. Antibiotics include VAN, 
vancomycin; TED, tedizolid; DAP, daptomycin. Protein expression was determined using either flow 
cytometry (PD-L1, HLA-DR, TLR2) or ELISA (IL-10, TNFα). Antibiotics alone and untreated cells 
were used as controls. Data are displayed as means with error bars depicting standard deviation. 
Brackets indicate statistical comparisons between treatments: ** p < 0.01; **** p < 0.0001. 

3. Discussion 

In this study, we compared antibiotics from unique pharmacologic classes on their potential to 
shift the balance of pro- and anti-inflammatory host immune responses in the presence of two 
different concentrations of LTA. Two concentrations of LTA were used to mimic the differential LTA-
releasing abilities of clinical strains, as well as to simulate different bacterial burden during infections. 
Our results demonstrated that antibiotics have greater potential to modulate host immunity in the 
presence of high versus low concentration LTA. Vancomycin trended towards exerting an anti-
inflammatory effect with increased IL-10 production, whereas tedizolid displayed pro-inflammatory 
effects, as evidenced through its stimulatory actions on TNFα and HLA-DR. Daptomycin largely had 
no effect on host immune response in the presence of LTA.  

Prior studies have demonstrated differential immunomodulatory potential of antibiotic agents 
on cytokine response in monocytes from healthy donors when stimulated with LPS or bacteria ex 
vivo. A multitude of experimental models have been employed varied by stimuli, concentrations, or 
inoculum tested, incubation time of monocytes with stimuli, antibiotic agent and concentrations 
tested, and specific cytokines measured [18–20]. A concentration-dependent immunomodulatory 
effect is observed for some agents on pro-inflammatory cytokines, while other agents exerted no 
effect [18–22]. Specifically, linezolid, an oxazolidinone that is pharmacologically similar to tedizolid, 
has been shown to induce pro-inflammatory cytokine mRNA production in THP-1 monocytes [23]. 
However, the effect is not well characterized, as other studies examining linezolid’s effects on 
immune cells in the presence of microbial components have shown differential results that may be 
due to donor-specific variables or interactions with microbial toxins [24]. While LTA remains a key 
component of gram-positive organisms, including S. aureus, it is important to note that many other 
microbial components contribute to the host immune response during in vivo infection. Thus, the 
results shown here using purified LTA are a limitation of this study. 

Overall results from our study indicate that immune response from PBMCs was dependent on 
LTA concentration and drug-specific exposure. Our results suggest that TED may be preferred for 
use in patients who exhibit an immunoparalysis phenotype, as TED-mediated enhancement in TNFα 
cytokine release and HLA-DR expression was observed, without impacting IL-10 expression. It is 

Figure 2. Expression of select immune markers in human PBMCs (n = 4) exposed to antibiotics
and 10 µg/mL (high) (a–d) or 1 µg/mL (low) (e–h) purified S. aureus LTA. Antibiotics include VAN,
vancomycin; TED, tedizolid; DAP, daptomycin. Protein expression was determined using either flow
cytometry (PD-L1, HLA-DR, TLR2) or ELISA (IL-10, TNFα). Antibiotics alone and untreated cells were
used as controls. Data are displayed as means with error bars depicting standard deviation. Brackets
indicate statistical comparisons between treatments: ** p < 0.01; **** p < 0.0001.

3. Discussion

In this study, we compared antibiotics from unique pharmacologic classes on their potential to
shift the balance of pro- and anti-inflammatory host immune responses in the presence of two different
concentrations of LTA. Two concentrations of LTA were used to mimic the differential LTA-releasing
abilities of clinical strains, as well as to simulate different bacterial burden during infections. Our results
demonstrated that antibiotics have greater potential to modulate host immunity in the presence of
high versus low concentration LTA. Vancomycin trended towards exerting an anti-inflammatory effect
with increased IL-10 production, whereas tedizolid displayed pro-inflammatory effects, as evidenced
through its stimulatory actions on TNFα and HLA-DR. Daptomycin largely had no effect on host
immune response in the presence of LTA.

Prior studies have demonstrated differential immunomodulatory potential of antibiotic agents
on cytokine response in monocytes from healthy donors when stimulated with LPS or bacteria ex
vivo. A multitude of experimental models have been employed varied by stimuli, concentrations, or
inoculum tested, incubation time of monocytes with stimuli, antibiotic agent and concentrations tested,
and specific cytokines measured [18–20]. A concentration-dependent immunomodulatory effect is
observed for some agents on pro-inflammatory cytokines, while other agents exerted no effect [18–22].
Specifically, linezolid, an oxazolidinone that is pharmacologically similar to tedizolid, has been shown
to induce pro-inflammatory cytokine mRNA production in THP-1 monocytes [23]. However, the effect
is not well characterized, as other studies examining linezolid’s effects on immune cells in the presence
of microbial components have shown differential results that may be due to donor-specific variables
or interactions with microbial toxins [24]. While LTA remains a key component of gram-positive
organisms, including S. aureus, it is important to note that many other microbial components contribute
to the host immune response during in vivo infection. Thus, the results shown here using purified LTA
are a limitation of this study.

Overall results from our study indicate that immune response from PBMCs was dependent on
LTA concentration and drug-specific exposure. Our results suggest that TED may be preferred for
use in patients who exhibit an immunoparalysis phenotype, as TED-mediated enhancement in TNFα



Antibiotics 2020, 9, 573 5 of 8

cytokine release and HLA-DR expression was observed, without impacting IL-10 expression. It is
possible that in the context of in vivo infection, TED exerts its immunomodulatory effects indirectly
through suppression of S. aureus toxin production [25]. In contrast, VAN significantly induces IL-10
production which may tip the balance towards an immunoparalysis state. DAP largely has no effect
on the markers of interest at either LTA exposure level, which may render this antibiotic as a neutral
treatment option; selection for treatment would be based primarily on its direct antimicrobial activity.
In the setting of low LTA exposure, antibiotics had less robust effects on cytokine or cell surface
marker expression in PBMCs suggesting that therapy selection would be based primarily on the direct
antimicrobial activity of the antibiotic agent.

Importantly, given that anti-staphylococcal antibiotics from different drug classes modulate
host cytokine response in a distinct LTA-dose-dependent manner, future studies evaluating clinical
efficacy of different treatment regimens should take into account the agent’s antibacterial effect and
immunomodulatory potential along with the patient’s immunophenotype based on measurements of
immune markers (e.g., pro- and anti-inflammatory cytokines), as well as LTA release profile of the
infecting strain. For individualized patient therapies, tempering of TNFα response, while preserving
HLA-DR expression may be beneficial for patients infected with low LTA-releasing strains, whereas
patients infected with high LTA-releasing strains may benefit from avoidance of antibiotics that exert an
immune dampening effect. Additional studies are necessary to further develop a model for precision
antibiotic therapies, which are currently underway in our lab to better elucidate the complexities of
host-microbial-antibiotic interaction that drive outcomes of S. aureus bacteremia. Findings from our
study support the rationale for moving towards a precision medicine approach in infectious disease
therapy by illustrating complex antibiotic-specific immunomodulatory differences that likely impact
patient outcomes and survival.

4. Materials and Methods

4.1. Isolation of Peripheral Blood Mononuclear Cells (PBMCs)

PBMCs were obtained from whole blood of healthy volunteer donors. All donors gave informed
consent to participate in the study, as approved by the Institutional Review Board (IRB) for the
University of Southern California. All research conducted in this study was conducted in compliance
with IRB-approved protocol and international human-subjects research regulations.

PBMCs were isolated using SepMate™ PBMC Isolation tubes and Lymphoprep™ density gradient
(STEMCELL Technologies, Vancouver, BC, Canada). Briefly, whole blood was diluted 1:1 in phosphate
buffered saline (PBS) and 2% fetal bovine serum (FBS) and layered over the density gradients in the
separation tubes and centrifuged for 10 min at 1200× g. Isolated cells were washed in PBS three times
and resuspended in fresh Roswell Park Memorial Institute (RPMI) 1640 medium with 10% FBS.

Following isolation, PBMCs were seeded at a density of 2.5 × 105 cells per well in RPMI 1640 with
10% FBS. Cells were stimulated as described below.

4.2. Cell Culture and Stimulation

LTA Stimulation conditions. Cells were either untreated, stimulated with antibiotics alone, stimulated
with 1 µg or 10 µg of commercially obtained purified LTA from S. aureus (Invivogen, San Diego,
CA, USA), or stimulated with 1 or 10 µg of LTA plus antibiotics. The following anti-staphylococcal
agents were selected for testing to represent different pharmacologic classes: vancomycin (VAN),
tedizolid (TED), and daptomycin (DAP). Concentrations of antibiotic used were the minimum
inhibitory concentrations (MICs) for vancomycin, tedizolid, and daptomycin against the common and
well-characterized LAC USA300 community-acquired MRSA clinical strain (1.5 µg/mL VAN, 2 µg/mL
TED, and 0.25 µg/mL DAP, respectively). MICs were determined using broth microdilution testing.

Timepoint measurement. The timepoints at which flow cytometry, cytokine measurements, and flow
cytometry experiments were conducted at 4 h (data not shown) and 24 h, with more prominent effects
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demonstrated at 24 h. Cytokine measurements were collected at 24 h to compensate for both peak
release and degradation and to allow for direct comparison with flow cytometry data.

4.3. Cytokine Quantification by ELISA

Cell culture supernatants were collected in triplicate from PBMCs following 24 h of stimulation
with LTA. Cell-free supernatants of the samples were recovered by centrifugation at 400× g for 10 min
to remove any residual cells or debris and stored at −80 ◦C until assayed for cytokine concentrations.
Release of IL-10 and TNFαwas determined using MesoScale Discovery multiplex ELISA and analyzed
in duplicate (MesoScale Discovery, Gaithersburg, MD, USA). The accompanying SECTOR Imager
SI2400 and MSD Workbench software were used for analysis. The lower limit of detection for IL-10
and TNFα was 0.04 pg/mL, as per manufacturer instructions. Samples with values below the limit of
detection were assigned a value of 0 pg/mL.

4.4. Immune Cell Surface Marker Expression by Flow Cytometry

PBMCs were analyzed for HLA-DR and PD-L1 expression using flow cytometry following 24 h
of stimulation. Cells were stained and examined for expression of HLA-DR by staining with a BD
Quantibrite combined antibody reagent, consisting of an anti-human HLA-DR monoclonal antibody,
clone L243, labelled with PE and an anti-human CD14 monoclonal antibody, clone MϕP9, labeled with
PerCP-Cy™5.5 (BD Biosciences, San Jose, CA, USA). PD-L1 expression was assessed by staining with
an APC-labeled anti-human PD-L1 monoclonal antibody clone MIH1 (BD Biosciences, San Jose, CA,
USA). Monocytes were selected from the PD-L1 stained cells by size distribution and granularity (FSC
and SSC gating). Data were collected using the BD LSR Fortessa X-20 and analyzed using FlowJo
software (FlowJo, LLC, Ashland, OR, USA). Total number of cells analyzed per tube included 100,000
donor PBMCs.

4.5. Statistical Analysis

Statistical analysis was performed using Graphpad Prism version 8.0 (Graphpad Software,
San Diego, CA, USA). Data are represented through mean and standard error. One-way ANOVA
or two-way ANOVA with post-hoc corrections, where applicable, were utilized to assess statistical
differences between treatment groups. p values ≤ 0.05 were considered significant.
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