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Abstract: The issue of malnutrition is perhaps the most important public health determinant of
global wellbeing. It is one of the main causes of improper mental and physical development as well
as death of many children. The Mid Upper Arm Circumference (MUAC) rapid text setup is able to
diagnose malnutrition due to the fact that the human arm contains subcutaneous fat and muscle
mass. When proportional food intake increases or reduces, the corresponding increase or reduction
in the subcutaneous fat and muscle mass leads to an increase or decrease in the MUAC. In this
study, the researchers attempt to develop a model for determining the performance of MUAC in
predicting Child malnutrition in Ghana. It focuses on the Joint Generalized Linear Model (Joint-GLM)
instead of the traditional Generalized Linear Model (GLM). The analysis is based on primary data
measured on children under six years, who were undergoing nutritional treatment at the Princess
Marie Louise (PML) Children’s Hospital in the Ashiedu Keteke sub-metro area of Accra Metropolis.
The study found that a precisely measured weight of a child, height, and albumen levels were positive
determinants of the predicted MUAC value. The study also reveals that, of all the variables used in
determining the MUAC outcome, the hemoglobin and total protein levels of a child would be the
main causes of any variation between the exact nutritional status of a child and that suggested by the
MUAC value. The final Joint-GLM suggests that, if there are occasions where the MUAC gave false
results, it could be a result of an imbalance in the child’s hemoglobin and protein levels. If these two
are within acceptable levels in a child, the MUAC is most likely to be consistent in predicting the
child’s nutritional status accurately. This study therefore recommends the continued use of MUAC
in diagnosis of child malnutrition but urges Ghana and countries in Sub-Saharan Africa to roll out an
effective nutrition intervention plan targeting the poor and vulnerable suburbs so that the nutritional
status of children under five years of age, who were the focus of the current study, may be improved.

Keywords: malnutrition; MUAC; Ghana; generalized linear model

1. Introduction

Malnutrition remains an important public health issue all over the world. It is seen by
many stakeholders to be the main cause of improper mental and physical development of
children. Studies have shown that whereas about a quarter of the children less than five
years of age are stunted worldwide, about 9% of the children in Sub-Saharan Africa have
moderate acute malnutrition with about 2% of them having severe acute malnutrition [1],
and nearly a 100% of all such children who die live in developing countries [2]. Again,
in Africa, mortality is associated with the severity of malnutrition with severe wasting
having a mortality rate of 73–187 per every 1000 children in a year [3]. Ghana’s case is not
so different from the worldwide and African situation. Here in Ghana, malnutrition is said
to contribute to about half of all deaths of children less than five years with some 12,000 of
them dying every year of underweight related ailments [4].
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The reason for use of the Mid Upper Arm Circumference (MUAC) in the diagnosis of
malnutrition lies in the fact that the human arm contains subcutaneous fat and muscle mass.
When proportional food intake reduces, the corresponding reduction in the subcutaneous
fat and muscle mass leads to a decrease in the MUAC. Many researchers have therefore
continually recommended the use of this rather very simple-to-use and low-cost tool in
screening for malnutrition among children less than five years of age ([5–8]).

Even though MUAC is used as a rapid indicator for screening for acute malnutrition
in children, its cut-offs remain controversial among researchers and other stakeholders.
In their recent study, Fiorentino et al., [9] tried to define gender and age-specific cut-offs to
improve the sensitivity of MUAC. They argued that, MUAC cut-offs currently being used
by the World Health Organization [10], is limited in its ability to identify the majority of
children whose weight-for-height Z-scores are <−2 (moderately malnourished) or <−3
(severely malnourished). Their study found boys to have higher cut-offs than girls with
the general optimal cut-off values increasing with age, hence the need for gender and age
specific MUAC cut-offs [9].

The agreement between MUAC and weight-for-age also appears to vary within dif-
ferent groups of children [11]. It is therefore not clear which one of them may prove to
be the most adequate predictor of clinically diagnosing malnutrition compared to that
suggested by the MUAC. The objective of this study is to develop a model for determining
the performance of MUAC in predicting Child malnutrition in Ghana using variables,
such the child’s age, gender, height, weight, albumen level, total protein, as well as their
interaction terms. In line with the global quest to develop statistical models with the
highest accuracy and precision, we seek to compare results from the traditional generalized
linear model to that of the joint generalized model. The final model of this study shall be
the one with extensive improvement over the other, which is also able to identify variables
that are likely to account for an increase or decrease in the precision of the MUAC value.

The use of MUAC to identify children for admission into nutritional treatment has
been well explored [12,13] as well as criticisms in respect of its setbacks [14,15]. This study
takes notice of the potential risk of misclassification of a child’s nutritional status and
the possible deaths that may occur should a malnourished child be wrongly classified as
well-nourished. The study therefore combines well-explored determinants of malnutrition,
such as weight, age, height of a child (and their interaction terms; W*H, H*A, W*A), as
well as some clinical determinants (albumen, protein and hemoglobin) in the modeling
with the aim of selecting the key determinants.

This study is relevant in both design and purpose. In design, the choice of statistical
modeling in the study of an important public health issue shall enable us to identify the
key variables relevant for the adequate description of a given subpopulation by the reliance
upon some mathematical expressions representing their distributions. Most important to
this study is our interest to identify possible sources of discrepancy in the MUAC’s ability
to predict malnutrition in children under five years of age. The study therefore explores
the Joint-GLM approach to elicit the two main objectives of this study. In purpose, this
study adds to the ongoing discussion on malnutrition in children under five years of age
with the aim of contributing to the knowledge on the possible occasions where the MUAC
may give false results.

2. Method
2.1. Data Source and Measurement

Data for this study were obtained from a cross-sectional survey conducted between
December 2018 and May 2019. The study setting was the pediatric unit of the Princess
Marie Louise children’s Hospital (PMLCH) in the Ashiedu Keteke Sub-Metro of the Accra
metropolitan assembly. In all, a sample of 163 malnourished children were used for our
analysis and reporting. Variables measured include MUAC as the dependent variable, with
a child’s age, height, weight, hemoglobin level, total protein, and albumen as independent
variables. Data cleaning and editing was done daily.
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Two trained personnel assisted in the process of data collection; one collecting data
on MUAC, age, weight, and height, while the other assisted in recording clinical data
(albumen, hemoglobin and protein) that were made available to us by the laboratory
department of the hospital. Recumbent length was measured for children less than 24
months while standing height was measured for children 24 months to five years. The
Schorrboard (Schorr Production, MD, USA) was used in measuring length and recordings
were made to the nearest 0.1 centimeter (cm). In the measurement of weight of a child,
the Seca 874 scale (Seca Gmbh & Co. KG, Humburg, Germany) was used. Weights were
recorded to the nearest 0.1 kilogram. MUAC was measured to the nearest 0.1 millimeter
(mm) using the Johns Hopkins University MUAC tape.

2.2. Ethical Approval

Ethical approval was sought and obtained from the PML children’s hospital. Informed
consent was sought from the mothers and caregivers of each participant. The right of
participants to decline participation was strictly emphasized and respected throughout
the study data collection. Data have been and would continually be treated with absolute
confidentiality.

2.3. Data Analysis

The R-console statistical software was used in analyzing the data and generating all
diagnostic plots. Descriptive analysis was used first to summarize the data, then correlation
analysis was done to explore the relationship between the variables under study.

2.4. Statistical Methods for MUAC Model

In theory, the traditional generalized linear model (GLM) is obtained from classical
linear models by two extensions, one to the random part and another one to the systematic
part [16]. By these extensions therefore, the random elements are now allowed to belong to
a one-parameter exponential family including the normal distribution. Since its inception,
GLMs have been used as technique for analyzing data in various types of responses, con-
tinuous quantities, counts, proportions, and positive quantities. They allow the regression
(or fixed effect) model only for the mean of independent responses [17]. Model checking
is usually based on examination of the model’s diagnostic residuals, similar to the linear
model case, except that in the case of GLM’s, standardization of residuals is required and
is a little difficult to perform.

In practice, even though the GLM is widely noted for its good performance in mod-
eling, some natural discrepancies arise amongst the data and the fitted values generated.
Observations that have large discrepancies on the y-axis are known as outliers. Discrepan-
cies amongst the data and the fitted values generated by GLMs fall into two main classes;
isolated or systematic [18]. When few observations have large residuals, isolated discrep-
ancies are seen. Such residuals can occur if the observations are wrong. An example is
when 19 is recorded as 91. Data-driven robust methods are sometimes used in studies to
handle such cases. However, such robust methods are unable to identify the causes of
the discrepancies.

An alternative is to model isolated discrepancies as being caused by variation in the
dispersion, and to seek covariates that may account for them. This technique of joint
modeling of the mean and dispersion known as Joint Generalized Linear Models [18]
makes such exploration straightforward. Furthermore, if a covariate can be found to be the
cause of any discrepancies, then we obtain a model-based solution which can be altered in
the future by policy makers in the field it is applied. We therefore compare the results from
the traditional generalized linear models to those of the joint generalized model to justify
that Joint-GLMs are appropriate in determining predictors of the MUAC value.
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2.5. Models Fitted

Since the MUAC value observed Yi (for i = 1, 2, 3, . . . , 163) is the dependent/response
variable with age, weight, height, hemoglobin, protein, and albumen as independent
variables, the following models were fitted for the traditional as well as the Joint -GLMs.

2.5.1. Generalized Linear Models

The generalized linear model used in this study is a Gaussian model consisting of
three components:

A random component specifying the conditional distribution of the response variable
Yi given the explanatory variables.

A linear function of the regressors called the linear predictor,

ηi = β0 + Xijβj + · · ·+ Xikβk = x′ijβ (1)

where i = 1, 2, 3, . . . , n [number of participants], j = 1, 2, 3, . . . , 6 [number of independent
variables] on which the expected value µi of Yi depends.

An invertible link function g(µi) = ηi, which transforms the expectation of the re-
sponse to the linear predictor. The inverse of the link function is sometimes called the mean
function: g−1(ηi) = µi.

2.5.2. Joint Generalized Linear Models

The method used in this paper follows the Joint-GLMs of Lee and Nelder [17]. By
their method, we have two interlinked models; one for the mean and another one for the
dispersion based on same observed data y and the deviance d:

E(yi) = µi, ηi = g(µi) = xt
i β, var(yi) = φiV(µi) (2)

E(di) = φi, ξi = h(φi) = gt
i β, var(di) = 2φ2

i (3)

where ξi is the link function of the dispersion model, gi is the model matrix in the dispersion
model, which is a GLM with a gamma variance function and xi is the model matrix in the
mean (µi) model. This implies that the algorithm for fitting these models can be reduced
to the fitting of a two-dimensional set of generalized linear models; one dimension being
the mean and the other being the dispersion, so that no special code is required for the
estimation of the dispersion components. In the Joint-GLM, the dispersion parameters
are no longer considered to be constants, as it is in the case for the traditional GLM, but
can vary with the mean parameters. This means that the dispersion values are required
in the iterative weighted least squares (IWLS) algorithm for estimating the regression
parameters. These values have a direct effect on the estimates of the regression parameters.
The deviance components d become the response variable for the dispersion GLM.

2.6. Model Fittness and Elimination of Statistical Bias

Model selection was done by computing and assessing three very useful criteria in
statistical modeling; the Akaike Information Criterion (AIC), the conditional-AIC (cAIC),
and the Bayesian Information Criterion (BIC). These criteria enhance the exploratory
power of statistical models while penalizing model complexities. As a rule, when the
three criteria disagree on the best-fit model by generating varying values, we choose the
model with the lowest AIC. This is done to guard against false negative models. In this
study, therefore, the best model shall be adjudged to be that with the lowest value for
the Akaike information criterion (AIC), the Bayesian Information criterion (BIC), and
the conditional Akaike information criterion (cAIC). The data-driven statistical bias was
minimized by the rigorous selection of variables selected only upon securing a minimum
p-value <0.2 in a preliminary exploratory backward elimination procedure. Correlations
among independent variables (multi-collinearity) were examined and we can report that
independent variables used in this analysis are not collinear.
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3. Results and Discussion

This study measured height (length) and weight of children as well as the MUAC and
other biomedical indicators used in malnutrition determination [19]. The descriptive result
is presented in Table 1. From that table, the age of the children studied ranges from half
a year to five years with a mean of 1.6 years. The minimum height was 20 cm with the
maximum height recorded as 160 cm and a mean height of 78.5 cm. The weights of these
children ranged from 1.75 kg to 20 kg (mean = 9.4 kg), with hemoglobin levels found to be
within 2.1 to 19.4 milMol/L (mean = 10.2). The minimum total protein was found to be
50 and the maximum was 84 with a mean of 65.5. The study also found albumen levels
ranging from 22 to 48 milMol/L. Finally, the minimum and maximum MUAC were found
to be 7.4 to 17.5 cm, respectively, with a mean value of 13.1 cm.

Table 1. Descriptive statistics.

Item Minimum Maximum Mean Median Std. Deviation N

Child’s age
(years) 0.13 5 1.6334 1.0000 1.18655 163

height of
child (cm) 20 160 78.5706 78.0000 19.38403 163

weight of
child (kg) 1.75 20 9.3894 8.8000 3.90184 163

Hemoglobin 2.1 19.4 10.2031 10.6000 1.84967 163
Total

protein 50 84 65.5853 65.0000 8.43823 163

Albumen 22 48 36.226 35.000 6.5421 163
M.U.A.C. 7.4 17.5 13.1200 13.1000 1.98962 163

Table 2 presents correlation values between the dependent variable and their explana-
tory valuable. A child’s age is found to have a very strong correlation with the weight and
height which are 0.799 and 0.709, respectively, but had a rather moderate correlation with
the MUAC and the total protein (0.43 and 0.22, respectively). There exists however a rather
weak correlation (0.155) between the age of a child and albumen levels.

Table 2. Correlations between variables.

Items Age Weight M.U.A.C. Haem Protein Albumen Height

Child age 1

weight of child 0.799 ** 1

M.U.A.C. 0.430 ** 0.768 ** 1

Hemoglobin 0.173 * 0.250 ** 0.303 ** 1

Total protein 0.222 ** 0.337 ** 0.381 ** 0.295 ** 1

Albumen 0.155 * 0.373 ** 0.477 ** 0.300 ** 0.658 ** 1

height of child 0.709 ** 0.773 ** 0.589 ** 0.276 ** 0.302 ** 0.268 ** 1
**. significant at the 0.01 level (2-tailed). * significant at the 0.05 level (2-tailed).

Similarly, the weight of a child is highly correlated with the MUAC and the height
of a child, the values are 0.768 and 0.773, respectively. Our dependent variable MUAC,
however, showed a moderate correlation with all the dependent variables except for the
weight of a child. Similarly, the weight of a child is highly correlated with the MUAC and
the height of a child, the values are 0.768 and 0.773, respectively. Our dependent variable
MUAC, however, showed a moderate correlation with all the dependent variables except
for the weight of a child. Figure 1 shows scatter plots of the inter-correlations between
the variables.
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Figure 1. Scatter plots for selected parameters versus Mid Upper Arm Circumference (MUAC).

3.1. Modelling

From the parameter estimates (Table 3), the fitted traditional Gaussian GLM selected
the following linear determinants as those that significantly influence the accuracy of the
MUAC. They include age, weight, and height of a child as the fixed terms, as well as their
interactions weight * height and height*age after a t-test (approximated to Z due to the large
sample size) on individual parameters. On the other hand, hemoglobin levels, age*weight,
albumen and protein levels were not found to be significant. In reporting interaction terms,
where the main variable is only significant upon interaction, the otherwise insignificant
variable is deemed to be significant. In this model, however, the variable whose interactions
were significant in predicting the MUAC were themselves significant.

Before applying the distributional results for inference, it is always necessary to check
that the model meets its assumptions well enough to be sure that the results are likely to be
valid. Figure 2 shows the model-checking plots for the traditional Gaussian model. From
Figure 2, the diagnostic plots have several satisfactory features. The running mean in the
plot of residuals against fitted values shows no form of a marked trend, and the plots of
the absolute residuals have a relatively stable slope. The normal plots show no discrepancy.
In addition, the histogram of the residuals is almost symmetric to the left. These are very
good indications of an appropriate model.
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Table 3. Model estimates for Gaussian Generalized Linear Model (GLM).

Items Estimate Std. Error t-Value

(Intercept) 3.297646 1.112371 2.9645 ***
Age −2.44933 0.706229 −3.4682 ***

Weight 1.214475 0.182097 6.6694 ***
Height 0.046291 0.016303 2.8394 ***

Hemoglobin 0.061822 0.047596 1.2989
Protein 0.010197 0.013159 0.7749

Albumen 0.024162 0.017901 1.3497
Weight: Height −0.007833 0.002123 −3.6900 ***

Age: Weight −0.024477 0.028805 −0.8498
Age: Height 0.022875 0.008388 2.7271 ***

*** = sig at p < 0.00

Likelihood Function Values and Condition AIC

-2ML (-2 h) 464.2776
-2RL (-2 p_beta (h)) 527.8103

cAIC 484.2776
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3.2. Joint-Generalized Linear Models

Similarly, Figure 3 shows the model-checking plots for the Joint Gaussian model.
From that figure also, the diagnostic plots have satisfactory features. The running mean
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in the plot of the residuals against the fitted values shows no form of a marked trend,
and the plots of absolute residuals have a relatively stable slope. The normal plots show
no discrepancy and the histogram of the residuals is almost symmetric to the left. These
are very good indications of an appropriate model. Table 4 reveals that even though the
traditional GLM was a satisfactory mean model, modeling both mean and dispersion
(Joint-GLM) improves the quality of the model diagnostics significantly.

Table 4. Model Estimates for Gaussian Joint-GLM.

Items Estimate Std. Error t-Value

(Intercept) 3.514933 0.699909 5.022 ***
Age −2.161377 0.522314 −4.138 ***

Weight 1.194023 0.127182 9.388 ***
Height 0.028779 0.008209 3.506 ***

Hemoglobin 0.033497 0.030733 1.090
Protein 0.016998 0.011937 1.424

Albumen 0.032157 0.015628 2.058 **
Weight: Height −0.006908 0.001439 −4.800 ***

Age: Weight −0.051909 0.021880 −2.372 **
Age: Height 0.024228 0.006006 4.034 ***

** = sig at p < 0.01, *** = sig at p < 0.00.
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3.3. Discussion

On all the three bases for best model selection (see Table 5) the Akaike information
criterion (AIC), the Bayesian Information criterion (BIC), and the conditional Akaike in-
formation criterion (cAIC), the Joint-GLM performs far better compared to their GLM
counterpart. The primary condition for decision is that the best model is the one with the
least criteria values. This study therefore settles on the Joint GLM for inference. The fixed
terms in Table 3; age, weight, height, and albumen, were confirmed to significantly deter-
mine the accuracy of the MUAC whereas protein and hemoglobin were not. If we therefore
wish to rely on the MUAC for predicting acute malnutrition in children under five, then we
have to do all we can to ensure that the age, weight, height and albumen parameters are
determined correctly. The selection of albumen by our model based on the data analyzed is
supported by Chowdhury et al. [14].

Table 5. Model criteria for Gaussian GLM and Gaussian Joint-GLM.

Model Criteria Gaussian GLM Gaussian Joint-GLM

-2ML (-2 h) 464.2776 438.4326
-2RL (-2 p_beta (h)) 527.8103 506.8090

cAIC 484.2776 458.4326

Age is found to be highly determinant for the accuracy of MUAC (coefficient =−2.477)
but it does so inversely. This implies that, as you grow, the ability of the MUAC to accurately
predict acute malnutrition reduces. Fiorentino et al. [9] recommended the need for gender-
and age-specific MUAC cut-offs. The findings of this study also support the call for an
age-specific MUAC cut-off. The WHO is hereby impressed upon to pay more attention to
age-specific cut-offs. All other fixed terms age, weight, height, and albumen levels of a
child are found to significantly influence the accuracy of the MUAC directly.

From the dispersion model in Table 6, however, a very important piece of information
is revealed. It is observed that relying on the mean Joint-GLM in determining the MUAC
accuracy, we record a possible dispersion of −3.686 (intercept of the dispersion model).
This variation/dispersion may serve as a good confirmation of the report by Grellety and
Golden [20] to the effect that some children aged 6–59 months are falsely diagnosed as
malnourished when the weight-for-height (WH) and MUAC are used. Another important
piece of information from the dispersion model of the Joint-GLM is its ability to reveal the
contribution of each determinant to increasing or decreasing the dispersion. For instance,
we observe that of the two variables hemoglobin and protein levels, which introduce
significant discrepancies into the accuracy of the MUAC, a less balanced hemoglobin
level of a child will lead to an increase in the discrepancy regarding the predicted MUAC
whereas that of the protein levels will reduce any such discrepancy.
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Table 6. Dispersion model estimates for Gaussian Joint-GLM.

Items Estimate Std. Error t-Value

(Intercept) −3.686e+00 1.721319 −2.1414 **
Age −4.625e−01 0.986622 −0.4687

Weight 1.549e−01 0.256311 0.6043
Height 4.431e−02 0.027394 1.6175

Hemoglobin 2.719e−01 0.065510 4.1505 ***
Protein −4.087e−02 0.017389 −2.3503 **

Albumen 3.496e−02 0.023711 1.4744
Weight: Height −3.353e−03 0.003065 −1.0939

Age: Weight 3.820e−02 0.044118 0.8656
Age: Height 1.095e−05 0.012225 0.0009

** = sig at p < 0.01, *** = sig at p < 0.00

Likelihood Function Values and Condition AIC

-2ML (-2 h) 438.4326
-2RL (-2 p_beta (h)) 506.8090

cAIC 458.4326

In the anthropometric study of Grellety and Golden [20] in some 47 countries, the
discrepancies in the two indices (weight-for-height (WH) and MUAC) were found to vary
from country to country with the majority diagnosed as malnourished when both criteria
are used strictly. So, in many instances, MUAC and WH have been used as complementary
indicators rather than alternative determinants in examining malnutrition. The significance
of this current study model is that, once a variable is found to account for a discrepancy,
then we achieve a model-based solution to the question of which variables should be re-
measured, modified, or even ignored by policy makers regarding the nature of discrepancy
they introduce.

There are several strengths of this study. Data for the study came from a population-
based sample hence providing a useful representation of the Ashiedu-Keteke
sub-metropolitan area as whole. Misclassification was minimized significantly with the
use of standardized data collection tools and triplicate measurements of anthropometric
indicators. Again, whereas many models used in Child malnutrition studies are unable
to establish a causal relationship between the observed dependent and independent vari-
ables, our Joint-GLM is able to establish such a relationship demonstrably well, thereby
improving the quality of the model. Our model is able to identify sources of discrepancy
in reaching accuracy, making it possible for policy makers to determine the fate of such
variables in the future. However, one notable limitation of this study includes the sam-
ple size, which was admittedly small to examine moderate to severe acute malnutrition.
Some previous studies [21,22] have opined that large samples should be used in MUAC
models. That notwithstanding, the findings of this study are generalizable to populations
with shared characteristics making it very useful for policy formulations. Another likely
limitation of this study would be the generalizability of the results beyond the setting of
this study. The general pattern of malnutrition, infectious diseases, and child mortality
in Ashiedu-Keteke is different to the other more elite parts of the Accra metropolitan
area. In addition, despite the use of a sufficient set of predictor variables in our analysis,
the many more sets of covariates unmeasured and unconsidered makes it imperative to
mention the possibility of bias due to residual confounding.

3.4. Policy Implications

An imbalance hemoglobin level is an indication of an iron-deficiency anemia usually
resulting from low consumption of fish, meat, vegetables, and also due to general low
intake of proteins. For the two determinants (hemoglobin and protein) to be accounting for
this discrepancy, policy makers may wish to address the possible food insecurity likely to
be the main underlying cause of malnutrition for households from where these children are
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coming. Intervention strategies aimed at improving knowledge of caregivers on the subject
of nutrition as well as food supply to these caregivers from poor socio-economic homes.
The time for an effective nutrition intervention plan targeting the poor and vulnerable
suburbs in Ghana has been long overdue.

In addition, this study identifies hemoglobin and protein as the key clinical factors
that might trigger the all useful MUAC to be unreliable. These two clinical factors will
assist in the proper allocation of health resources aimed at improving child nutrition at
both the individual and community levels; most especially in poor socio-economic homes.

On the basis of the study outcomes, the ministry of health and the government
of Ghana need to critically consider formulating and implementing community-based
interventions to improve child health. At the individual level, caregivers especially mothers
should be adequately educated in basic nutrition and the need to frequently visit health
facilities to be sure of the child’s nutritional status. In addition, mother–child programs
should be made readily accessible to women in poor communities across Ghana by our
health care system. It is our hope that these interventions, if considered by Ghana and
countries in Sub-Saharan Africa, may go a long way to improve the nutritional status of
children under the age of five years, who were the focus of the current study.

4. Conclusions

This study selects seven key determinants of the accuracy of MUAC in the determi-
nation of malnutrition of children under the age of five years. They include age, height,
weight, and their interactions (H*A, W*H, W*A), albumen level of a child. More impor-
tantly, the model suggests that, if there are occasions where the MUAC gave false results,
it could be a result of an imbalance in the child’s hemoglobin and protein levels. If these
two are within acceptable levels in a child, the MUAC is most likely to be consistent in
predicting child nutritional status accurately.

We again conclude that even though the traditional GLM is still a satisfactory mean
model, modeling the mean and dispersion (Joint-GLM) improves the quality of the models
significantly and also provides two very important pieces of information; the value of
discrepancy, and the actual variables causing it. Once any variable is found to account
for a discrepancy, policy makers can then decide what should be done in respect of the
particular disturbing variable. They may decide to re-measure, modify, or even ignore
depending on the nature of the discrepancy they introduce.
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