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Abstract: Drowsy driving is a major threat to the safety of drivers and road traffic. Accurate and
reliable drowsy driving detection technology can reduce accidents caused by drowsy driving. In this
study, we present a new method to detect drowsy driving with vehicle sensor data obtained from
the steering wheel and pedal pressure. From our empirical study, we categorized drowsy driving
into long-duration drowsy driving and short-duration drowsy driving. Furthermore, we propose
an ensemble network model composed of convolution neural networks that can detect each type of
drowsy driving. Each subnetwork is specialized to detect long- or short-duration drowsy driving
using a fusion of features, obtained through time series analysis. To efficiently train the proposed
network, we propose an imbalanced data-handling method that adjusts the ratio of normal driving
data and drowsy driving data in the dataset by partially removing normal driving data. A dataset
comprising 198.3 h of in-vehicle sensor data was acquired through a driving simulation that includes
a variety of road environments such as urban environments and highways. The performance of the
proposed model was evaluated with a dataset. This study achieved the detection of drowsy driving
with an accuracy of up to 94.2%.

Keywords: intelligent vehicle; safety system; driver status monitoring; drowsy driving detection;
ensemble CNN

1. Introduction

In the vehicle industry, technologies for driver safety and convenience such as au-
tonomous vehicles, intelligent vehicles, and advanced driver assistance systems are being
actively researched [1–3]. Autonomous vehicles has garnered significant attention from
society as well.

SAE International has defined a six-level rating under the J3016 standard to measure
the level of autonomous vehicle technology. Currently, various studies are being conducted
for partial driving automation systems (level 2) and conditional driving automation systems
(level 3) [4,5]. In level 2 or level 3 autonomous driving systems, it is essential to implement
the takeover request (TOR) method, wherein the system transfers control authority to the
driver. A number of studies [6,7] are being conducted for appropriate TOR methods. One
major limitation with the TOR method involves predicting the driver’s response time to
the request. For this prediction, a driver status monitoring method that monitors drowsy
driving or fatigue driving is required.

Drowsy driving is responsible for 130,000 deaths worldwide annually [8]. According to
the National Highway Traffic Safety Administration (U.S. Department of Transportation),
about 1000 deaths and more than 90,000 injuries each year are caused by drowsy driving [9].
According to the 2020 announcement by the Korea Traffic Accident Analysis System
(TAAS), more than 2500 cases of drowsy driving accidents occur every year. Consequently,
drowsy driving has been identified as a major cause of traffic accidents that have occurred
on highways over the past 10 years [10].
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Previous studies conducted to detect drowsy driving employed methods that can be
divided into three categories based on the data used for detection. Three types of data are
commonly used: image data, biosignal data, and sensor data.

Image data-based methods acquire data by installing cameras inside the vehicle. To de-
tect drowsy driving, information is generated by characteristics such as the percentage of
eyelid closure (PERCLOS), eye movement, and face direction through an image processing
method [11–17]. Since image data directly represents the behavior of the driver during
drowsy driving, studies employing image data generally display excellent performance.
However, this approach is vulnerable to changes in vehicle illumination and camera lens
pollution, and the performance is degraded depending on the driver’s attire such as hats
and glasses. Since the position and shooting angle of the camera have an important effect
on performance, it is necessary to have it installed by a specialist.

Biosignal data-based methods acquire data through wearable devices. Sensors such
as electrocardiograms (ECG) [18–20], electromyography (EMG) [21–23], and electroen-
cephalography (EEG) [24–26] are mainly used. Studies that use biosignal data directly
represent the body state of the driver, and they also show excellent performance. However,
there is a structural limitation in terms of attaching the device to the body and noise
is generated when the contact or grounding is poor, which can affect the reliability of
the method.

Sensor data-based methods use two types of sensor data: in-vehicle sensor data
and external sensor data. The methods can extract statistical [27,28] and time series
features [29,30] from the acquired data. They can detect changes in vehicle movement
patterns using the extracted features and traditional machine learning techniques such as
random forest [31] and support vector machine (SVM) [32]. In general, they have a low
detection accuracy and performance changes drastically depending on driving habits or
road types. Because they utilize indirect information such as sudden turns and vehicle
movement patterns, it is difficult to determine whether such changes occur due to drowsy
driving, erratic driving behavior, or even different road types. However, even if the data
acquisition method or install location changes, the amount of change in both the in-vehicle
sensor and the external sensor is small. In other words, sensor-based systems are relatively
easy to install, making it more practical than previous approaches.

For the same reason as mentioned above, the methods that use sensor data require
data acquisition from an actual vehicle. However, it is extremely dangerous to acquire
sensor data from an actual vehicle during drowsy driving, and as such, previous studies
have collected the data via driving simulations. In numerous studies, a limited simulation
environment [33] has been used to restrict the road types or to include some special data
such as lane changes and lane positions. In addition, in the collected data, the amount
of drowsy driving data is low. Therefore, using a dataset comprising data with such
characteristics is not recommended as the reliability of the detection technique can be
affected [34].

This study analyzed the characteristics of drowsy driving and categorized them
into two types: long-duration drowsy driving and short-duration drowsy driving. To
effectively deal with the two types of drowsy driving, an ensemble network that consists
of subnetworks based on convolution neural network (CNN), specialized for each type, is
presented. By performing a time series data analysis, this study discovered and applied
meaningful feature sets based on the type of drowsy driving. In addition, an imbalanced
data-handling method is proposed to efficiently train the network. We collected driving
data from 17 people of various ages, and the performance of the proposed network was
verified with the dataset. Using the collected data, the performance of the proposed network
was compared with the existing studies and it demonstrated excellent performance.

The main contributions of this study are summarized as follows:

1. A novel method to detect drowsy driving that is based on an ensemble CNN that
uses vehicle internal sensor information is presented.
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2. An analysis of various angles to find the characteristics of drowsy driving, an analysis
of the duration of drowsy driving, and a time series analysis are performed.

3. A performance evaluation is conducted through a driving simulation dataset consist-
ing of general in-vehicle sensor data for a variety of road environments.

The remainder of this paper is structured as follows: Section 2 describes a quantitative
analysis of the drowsy driving data ratio and the duration of the drowsy driving. Section 3
describes the preprocessing process, which includes an imbalanced data-handling method
and the feature extraction method through a time series analysis for a meaningful feature
set as well as the proposed CNN ensemble network. Section 4 presents the simulation
and experimental environments and verifies the proposed ensemble network and analysis
method through a performance evaluation that uses the collected data. Section 5 discusses
the significance and limitations of this paper. The final section presents the conclusion of
this study and discusses future work.

2. Analysis on the Duration of Drowsy Driving

We collected about 198.3 h of in-vehicle sensor data through driving simulations.
A detailed description of the collected dataset is described in Section 4.1. This section
describes the quantitative analysis and results performed on the collected dataset.

A quantitative analysis of the ratio between normal driving data and drowsy driving
data was performed on the collected dataset. The data for normal driving and drowsy
driving were measured based on the data label.

The ratios of normal driving and drowsy driving in relation to the entire data were
determined. Figure 1 shows the results from analyzing the data ratio for each driver.
According to Figure 1, the ratio differed depending on the driver. For examples, drivers #7
and #15 demonstrated more drowsy driving than normal; however, most drivers demon-
strated more normal driving or they were rarely drowsy.

From the analysis results, it was confirmed that the collected dataset was imbalanced,
which is approximately 30% of the total data for drowsy driving. The classes in the dataset
were balanced with the imbalanced data-handling method that is introduced in Section 3.1.

In addition, a quantitative analysis on the duration of drowsy driving was performed.
The duration was calculated from the start of drowsy driving to the end. Figure 2 is a
histogram of the drowsiness duration of the entire dataset. This was treated as a single
case, considering the data of the duration of being drowsy for more than 60 s to be sparse.

As shown in Figure 2, the two most frequent durations of drowsy driving were
between 6 and 10 s and more than 60 s. Inspired by this, we defined a short duration
of drowsy driving (SD) and a long duration of drowsy driving (LD) when the durations
of drowsy were less than 15 s and longer than 45 s, respectively. We confirmed that SD
occurred 1504 times and that LD occurred 880 times during data collection, and the data in
both cases accounted for approximately 75.3% of the total drowsy driving.

Figure 1. Ratio of normal driving and drowsy driving by driver.

Analyzing in the time domain, we observed SD for about 3.18 h and LD for about
14.21 h. Despite fewer occurrences of LD, it is observed for a longer time than SD because
it is at least 30 s longer in one occurrence.
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In addition, we found drivers with a lot of SD and less LD, and vice versa. We divided
drivers into two groups based on this characteristic. In the first group, the duration of
drowsy driving was distributed around the SD, and there were frequent cases of drowsy
driving that briefly occurred during normal driving. However, the other group showed
the characteristic in which the duration of drowsy driving was distributed around a LD,
and several of them fell asleep slowly and deeply after they started drowsy driving.

Figure 2. Histogram of the duration of drowsy driving in the dataset.

3. Drowsy Driving Detection Method

The proposed method for detecting drowsy driving comprises the preprocessing step,
the feature extraction step, and the drowsy driving detection step. Figure 3 illustrates the
overall structure of the proposed method for detecting drowsy driving. Through the prepro-
cessing step, the data collected in Section 2 are converted into segments used for training.
Subsequently, the useful features for SD and LD are searched by applying [35], which is a
widely known time series analysis method. Based on the widely known time series analysis
technique, a feature set specialized for SD and LD is created through useful feature search.
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Figure 3. Overall process of the drowsy driving detection method.
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3.1. Preprocessing

The preprocessing step consists of the data conversion process, the normalization
process, the imbalanced data-handling process, and the segmentation process. The steering
wheel velocity (SWV) data were calculated from the steering wheel angle (SWA) data
for each lap through the data conversion process. Equation (1) represents the SWV data
calculation from the SWA data.

SWVi =
SWAi − SWAi−1

1/SR
(i > 0) (1)

where SWAi is the ith SWA value in driving. SR is the data sampling rate. In this study,
since the data were acquired at 30 Hz, SR = 30 was fixed. SWV data refers to the average
change rate of SWAi and SWAi−1. The SWA0 was initialized to 0.

Following this, the normalization and segmentation processes were performed. In the
normalization process, the min–max normalization method was used to obtain the SWA,
SWV, accelerator pedal pressure, and brake pedal pressure data.

Based on the analysis results in Section 2, an undersampling-based imbalanced data-
handling method was proposed to resolve the imbalance of the dataset. The proposed
method masks the drowsy driving data and the adjacent k data in the driving data, as shown
in Figure 4. Thus, the temporal features that appear when the state of the driver changes
can be protected. Subsequently, random undersampling was performed on the unmasked
data. During undersampling, c consecutive data were deleted, and from this, the temporal
feature of the residual data can be preserved as much as possible. Finally, the imbalance
of the dataset was rechecked, and if the imbalance was still severe, undersampling was
performed in the same manner.

Figure 4. Mask and removal data selected by the proposed imbalanced data-handling method.

In the segmentation process, segments of a fixed size were generated through a sliding
window method that is commonly used in the time series data. Parameters such as the
window size w and overlap size o are involved in this process. We limited the window size
to seconds for low computational complexity. In other words, if the w = 60, the segment
has 60 s of SWA, SWV, and two pedal pressure data. The overlap ratio can be calculated
as o/w, and a high overlap ratio was designed so that many segments can have temporal
features that were previously preserved.

3.2. Feature Extraction

We used Christ et al. [35] to find features suitable for sensor data from the vehicle
through time series analysis. Christ et al. [35] presented an automated process for time
series data and provided a technique for calculating p-values for various time series features
and for selecting the significant ones. In Yadawadkar et al. [34], significant features were
extracted for data such as vehicle speed and acceleration using Christ et al. [35].

We calculated p-values for a total of 794 time series features for the LD and SD data
defined in Section 2. When the calculated p-value was less than 0.05, the features were
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selected as significant features and were used to form the significant feature set for each
group. Tables 1 and 2 list the significant features and p-values of LD and SD data.

In Tables 1 and 2, Brake refers to the brake pedal pressure and Throttle refers to the
accelerator pedal pressure. SWA and SWV represent the angle and velocity of the steering
wheel, respectively. The features selected as meaningful were 13 features in the LD and
57 features in the SD. More features were selected in SD, estimated to comprise a variety of
meaningful features due to the relatively large amount of change in the input data.

Table 1. Significant feature list for long duration of drowsy driving (LD) data.

Type Name p-Value Type Name p-Value

SWV CID ce 0.004 Brake Large standard deviation 0.035
SWV Change quantiles 0.007 Throttle Value count 0.038
SWV FFT coefficient 0.017 Throttle Change quantiles 0.041
Brake AR coefficient 0.018 Throttle Change quantiles 0.042
Throttle CID ce 0.024 Throttle Pct. of reoccurring data points 0.043
Throttle Agg linear trend 0.025 Throttle Pct. of reoccurring values 0.045
Throttle FFT coefficient 0.034

Table 2. Significant feature list for short duration of drowsy driving (SD) data.

Type Name p-Value Type Name p-Value

Brake Mean abs change 0.003 SWV Mean abs change 0.022
Brake Linear trend 0.004 Brake Approximate entropy 0.024
Brake Mean 0.004 Throttle CID ce 0.025
Brake Ratio beyond r sigma 0.006 Throttle Change quantile 0.026
SWV Kurtosis 0.007 Brake Change quantile 0.027
Brake Index mass quantile 0.008 SWV AR coefficient 0.029
Brake Longest strike below mean 0.009 Brake C3 lag 0.029
Throttle Linear trend 0.011 SWA AR coefficient 0.031
Brake Count below mean 0.012 SWV Change quantiles 0.032
Brake Longest strike above mean 0.012 SWV Mean abs change 0.032
Brake Number cwt peaks 0.012 Brake Ratio value num. to time series 0.032
SWA CID ce 0.013 Brake Absolute sum of changes 0.033
Throttle Agg linear trend 0.013 SWV Skewness 0.034
Brake Pct. of reoccurring data points 0.013 SWV Ratio beyond r sigma 0.034
Brake CID ce 0.014 Brake Large standard deviation 0.034
Brake Partial autocorrelation 0.014 Brake Sum values 0.040
SWA Change quantiles 0.015 SWV FFT coefficient 0.041
Brake Autocorrelation 0.015 Brake Augmented dickey fuller 0.041
Throttle FFT coefficient 0.016 Brake Count above mean 0.041
SWV Standard deviation 0.017 Brake Sum of reoccurring data points 0.041
SWV Variance 0.017 Brake Number crossing 0.042
SWA Number crossing 0.017 Brake Abs energy 0.043
Brake Pct. of reoccurring values 0.017 Brake First location of maximum 0.043
SWV Linear trend 0.018 Brake Standard deviation 0.043
Brake Symmetry looking 0.018 Brake Variance 0.043
Brake FFT aggregated 0.019 Brake Binned entropy 0.046
Brake FFT coefficient 0.021 Brake Spkt welch density 0.046
Brake Value count 0.021 Brake Sum of reoccurring values 0.047
SWV Absolute sum of changes 0.022

We observed the features with high frequency in the selected feature set and analyzed
their suitability for the drowsy driving data. First, the change quantile feature was found
to be the most selected feature in LD and SD. In LD and SD, it was confirmed that the
change quantile was selected as an important feature from the brake pedal pressure data,
accelerator pedal pressure data, and SWV data. Change quantile was selected as an
important feature in SD of the SWA data. For this reason, we speculate that the change
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quantile feature contains the most amount of information on drowsy driving. The change
quantile is an average of the absolute change in data within the corridor, which sets
centering the specific sensor data value. This feature is useful when the data changes
severely in a small range and when outliers exist. In the case of in-vehicle sensor data,
there are many small changes during normal driving. However, during drowsy driving,
the driver usually turns the steering wheel rapidly or steps on the pedal suddenly, and these
behaviors appear as outliers.

CID ce [36], Fast Fourier Transform (FFT) coefficient, and aggregation linear trend
were commonly selected. CID ce calculates the complexity of time series data utilizing
the fact that more peaks and valleys appear as the complexity and variability of the data
increases. The CID ce values in LD data were found to have a decreasing trend, and on the
contrary, these values showed a tendency to increase in SD data. These trends indicate the
sudden steering wheel and pedal operations that are often observed when the condition of
the driver changes.

The FFT coefficient is a classic feature that can express time series data and can convert
it into frequency components. Naturally, frequent vehicle internal sensor data performed
during normal driving appears as high-frequency data. Conversely, when the vehicle is
not manipulated during drowsy driving, the data appears in a low-frequency form.

An aggregated linear trend divides segments into smaller chunks and calculates the
average value within the chunk. We constructed a linear least squares regression model for
representative values of the calculated chunks and then calculated the standard deviation.
The value of this feature increases when it is difficult to predict, such as in cases where data
change rapidly or irregularly. On the contrary, the value of the feature decreases when it
is easy to predict, such as in cases where data change monotonically. In other words, this
feature well indicates when it is hard to manipulate the vehicle due to drowsy driving.

3.3. Proposed Ensemble CNN

We designed an ensemble network that is composed of CNN-based subnetworks
specialized for LD and SD. Figure 5 shows the proposed network structure. The structure
and size of the proposed network can be changed by adjusting the number of subnet-
works specialized for SD detection (S) and the number of subnetworks specialized for LD
detection (L).

Figure 5. Proposed ensemble convolution neural network (CNN) architecture.

The proposed network utilizes the segment that is output from the preprocessing
step and the features that are output from the feature extraction step as inputs. First,
the proposed network transforms the segment into a four-channel 2D matrix. The segment
contains (SR × w) of SWA, SWV, brake pedal pressure, and accelerator pedal pressure
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data, where SR is the sampling rate and w is the window size. Our proposed network
transforms it into a matrix that a has (SR × w)× (4) shape.

Through this transform, we tried to extract the convolutional features not only from
adjacent data but also from data after a while. The transformed matrix and statistical
features are transmitted to each subnetwork to obtain the probability of normal driving and
drowsy driving, respectively. After that, the results are synthesized through the arithmetic
mean to determine whether the input data is drowsy.

The CNN-based subnetwork contains three main features of VGG16 [37]. Figure 6
shows the structure of the subnetwork and the stacked convolution layer in the first
block. The convolution-pooling layer structure was applied in the first, second, and third
blocks, and it can be observed that the depth gradually increases. Through these structural
advantages, the semantic features were effectively extracted from the vehicle sensor data.
The statistical features and semantic features were fused in the last fully connected layer.
The features that are listed in Table 1 were fused to the subnetwork for the LD detection,
and the features listed in Table 2 were fused to the subnetwork for the SD detection.
In feature fusion, a simple concatenation operation was used between the semantic and
statistical features.

To design a network with good performance, it is necessary to lower the reducible error.
Reducible errors consist of bias and variance, which generally exist in a tradeoff

relationship. A high bias means that all the information in the dataset were not considered.
Conversely, a high variance refers to a state in which generality is lost due to excessive
consideration of dataset information.

The proposed network attempts to reduce bias through a sufficiently deep subnet-
work and to reduce variance through a bagging-based technique for each subnetwork.
The traditional bagging technique randomly samples training data and divides it to create
different subnetworks. In this paper, data from the LD group and SD group, which have
different tendencies, were first divided to suppress correlations between subnetworks and
to greatly reduce the variance.

Then, m different networks for LD detection and n different networks for SD detection
were pretrained using data of LD group and SD group, respectively. Through this pretrain
process, a network group that is specialized for SD and LD detection was acquired.

Subsequently, the proposed ensemble network was trained on the entire training
dataset. This manner of learning may cause overfitting concerns; however, the data charac-
teristics of LD and SD are different, and overfitting was suppressed by using enough data.

Figure 6. Proposed subnetwork architecture.

4. Evaluation

In this section, we describe the experimental environment and various experiment
results for the performance evaluation of the proposed method. We determine the opti-
mized value of the overlap parameter described in Section 3.1. We evaluate the impact



Sensors 2021, 21, 2372 9 of 18

of the proposed imbalanced data-handling method. We also perform an ablation study
on the extracted features during the feature extraction process. Finally, we evaluate the
performance according to the structure of the proposed ensemble network and compare
the performance with exiting studies.

4.1. Driving Simulation Environment

We developed a PC-based driving simulator to acquire driving data. We installed
the Logitech G920 steering wheel to drive the vehicle in the simulation. The Euro Truck
Simulator 2 (ETS2) that was used in the simulator includes a wide variety of roads in
Europe, which were closely simulated.

We used a vehicle developed using an extension interface called modification (MOD)
for data collection. We referred to the specifications of a Hyundai Elantra model: size,
acceleration, maximum speed, and rotation radius. Figure 7 shows a participant collecting
data in the developed simulator.

Figure 7. A participant driving in the driving simulator.

Additionally, we designed the route using the roads included in the software. The
driving route for the data acquisition was set up as shown in Figure 8a. It included
urban roads and highways, as shown in Figure 8b,c. In addition, it comprised linear
driving and curved driving, as shown in Figure 8d. Road structures such as toll gates,
traffic lights, and interchanges, which are shown in Figure 8e, were included. Sensor data
such as the SWA, accelerator pedal pressure, and brake pedal pressure during driving were
acquired at a sampling rate of 30 Hz. The driver’s face was simultaneously recorded for
the ground truth.

(a)

(b) (c)

(d) (e)

Figure 8. Driving route and road types included in simulation: (a) driving route for data acquisition, (b) urban road,
(c) highway, (d) crossroad, and (e) toll gates.
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To induce drowsy driving when collecting data, we performed simulations in a dark
environment where light was blocked between 2 a.m. and 4 a.m. In addition, we advised
data collection participants to limit sleep-disrupting behaviors such as naps and caffeine
intake before data collection. Preliminary data collection was conducted for 54 participants
(21 men and 33 women), who were in their 20 s and 30 s, with more than 1 year of driving
experience. Participants who collected inappropriate data due to events such as deviation,
speeding, and forward collision; those who were not sleepy at all; and those with mild
motion sickness were excluded. As a result, 17 participants (11 males and 6 females) were
selected and their data were collected. The driving route was repeatedly driven 20 times,
and a total of 198.3 h of simulation data were collected.

Three experts labeled the drowsy state (in seconds) based on the facial movements
and expressions of the driver [38,39] in the recorded video. The detailed criteria that were
used for labeling are shown in Table 3.

Table 3. Criteria for determining drowsy driving according to driver behavior.

State (Value) Indicators

Normal (0) Eyes kept open, head in line, rapid eyeball move-
ment, looking around

Drowsy (1) Face stretching, yawning, sighing, intentional blink-
ing of eyes, swallowing, face moving up and down
(head-banging), slowing down of the eye blink, de-
creased degree of an open eyelid, open eyes con-
sciously, fully closed eyes, slanted head, dozing

4.2. Experimental Environment

We performed the performance evaluation on a PC with an Intel i7-7700 CPU and
two Geforce GTX 2080 Ti installed. Additionally, we used the Tensorflow r1.15 and Keras
packages in Ubuntu 16.04 environment to implement the proposed ensemble CNN. The
application programming interface (API) of the Keras package was utilized for training,
validating, and testing the models used in the experiments.

To evaluate the performance of the proposed method in detecting drowsy driving, we
ran a hold-out cross validation study. The collected dataset were randomly separated into
training, validation, and testing datasets with a ratio of 6:2:2. In other words, we separated
the collected dataset across all participants into three subsets.

The performance of the proposed network was evaluated in terms of accuracy,
precision, recall, and F1-score. The accuracy was defined as (TP + TN)/(TP + TN + FP +
FN), and the precision was defined as TP/(TP + FP). The recall was TP/(TP + FN), and
the F1-score was calculated as the harmonic average of the accuracy and recall.

The definitions of TP, TN, FP, and TN are as follows:

• True Positive (TP): Actual state is drowsy driving and inferred as drowsy driving.
• True Negative (TN): Actual state is normal driving and inferred as normal driving.
• False Positive (FP): Actual state is normal driving but inferred as drowsy driving.
• False Negative (FN): Actual state is drowsy driving but inferred as normal driving.

Accuracy refers to the percentage of correct detection for the drowsy driving case and
normal driving case and implies the accuracy of the network production. Precision repre-
sents the ratio of drowsy driving for the cases that were detected as drowsy driving. That
is, if the precision is high, the reliability of the detection result is high. Recall refers to the
rate that is detected by drowsy driving among the drowsy driving cases. If the recall is
high, the network can detect drowsy driving successfully. In general, recall and precision
have an inverse relationship, and precision and recall can be simultaneously considered
through the F1-score. The parameters used in the experiment are shown in Table 4.
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Table 4. Parameter list and value in experiments.

Parameter Description Value

k Mask size 60
c Consecutive data length for undersampling 5
w Window size for segmentation 60

epoch Training epoch 500
batch Training batch size 64

4.3. Segmentation Parameter Optimization

The overlap parameter is a very important parameter in dealing with sequential data,
and we conducted an experiment to find an appropriate value of the overlap parameter o.
Figure 9 shows the change in accuracy according to the overlap ratio calculated by o/w
mentioned above using the proposed subnetwork. Until the overlap ratio reached about
84%, the accuracy of the learned network tended to decrease as the overlap ratio increased.
However, it was confirmed that the performance increased sharply from about 84% or
more, and the best performance was shown when o = 59. In the subsequent experiment,
o = 59 was set.

Figure 9. Accuracy of subnetwork according to overlap ratio (w = 60).

4.4. Applying the Imbalanced Data-Handling Method

First, we confirmed that, when the imbalanced data-handling method was applied,
the percentage of normal driving in the entire dataset decreased from 70.46% to 53.27%.
It can be observed that the proposed imbalanced data-handling method effectively controls
the ratio of normal driving and drowsy driving in the dataset.

To evaluate the impact of the proposed imbalanced data-handling method, we created
two datasets: a balanced dataset and an imbalanced dataset. The imbalanced dataset is the
original dataset collected during driving simulation. The balanced dataset is the results
from applying the proposed imbalanced data-handling method on the original dataset.

We evaluated the impact of the proposed imbalanced data-handling method by com-
paring the performance of two networks trained with each dataset, and the results are
shown in Table 5. Regarding the network architecture parameters defined in Section 3.3,
L = 4 and S = 4 were used.

The accuracies of the network trained with the balanced dataset and of the network
trained with the imbalanced dataset were 93.38% and 94.10%, respectively. However, we
confirmed that the recalls of the network trained with the balanced dataset and of the
network trained with the imbalanced dataset were 92.79% and 88.40%, respectively.

This implies that the network trained with the imbalanced dataset can determine the
normal driving data well but cannot determine the drowsy driving data correctly. A high
recall is critical for driver safety due to the characteristics of the detection application for
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drowsy driving. Therefore, it is necessary to train the network with the balanced dataset
that applies the proposed imbalanced data-handling method.

Table 5. Normalized confusion matrix of networks trained with the balanced dataset and the
imbalanced dataset.

Predicted Class

Balanced dataset Imbalanced dataset
Actual class

Normal Drowsy Normal Drowsy

Normal 0.940 0.060 0.998 0.002

Drowsy 0.072 0.928 0.116 0.884

4.5. Ablation Study on Extracted Feature Set

Next, an ablation study was performed on the extracted significant feature set. We re-
moved the features with p-values closer to the threshold and left n features. We de-
fined these n features as top n features. When measuring the performance, L = 4 and
S = 4 were used as the network architecture parameters, and Table 6 shows the results of
the experiment.

An accuracy of 87.69% was achieved when 58 features were used, which exclude
the change quantile feature when considering the extracted features. When the extracted
features used the top 58 features that include the change quantile, the accuracy was 91.55%.
From this, it can be observed that the change quantile is a feature that expresses a relatively
large amount of information.

When the top 34 features were used, an accuracy of 84.24% and a F1-score of 82.40%
were recorded. When the features were not used, the accuracy was 82.59% and the F1-score
was 82.47%. This study confirmed that the accuracy and F1-score decreased as the number
of used features decreased.

Table 6. Performance comparison of the ablation study on a significant feature set.

# of Features Description of the Feature Set Accuracy (%) F1-Score (%)

70 All features (long: 13, short: 57) 93.38 93.34
58 All features without Change quantiles 87.69 85.46
58 Long: Top 9 features, Short: Top 49 features 91.55 90.31
34 Long: Top 6 features, Short: Top 28 features 84.24 82.40
0 None 82.59 82.47

4.6. Experiment Result for the Proposed Ensemble CNN

The performance was compared according to the number of subnetworks in the
proposed network. Tables 7 and 8 show the normalized confusion matrix according to
the proposed network architecture. The network with L = 1 and S = 1 showed the worst
performance, with an 86.90% accuracy and an 87.07% F1-score. In the case of L = 2 and
S = 2, the accuracy was 90.81% and the F1-score was 90.67%. When L = 4 and S = 4,
the accuracy was 93.38% and the F1-score was 93.34%. As the number of subnetworks that
were included in the network increased, the accuracy and F1-score tended to increase.

This trend was maintained even as the number of subnetworks further increased.
In the case of L = 6 and S = 6, the accuracy was 93.97%, and the F1-score was 93.95%.
In the case of L = 8 and S = 8, the accuracy was 94.07%, and the F1-score was 94.05%.
When L = 10 and S = 10, the best performance was achieved with an accuracy of 94.20%
and a F1-score of 94.18%. However, we confirmed that, after L = 6 and S = 6, the rate of
increase in the performance decreased, and it did not increase significantly even when it
became larger than L = 10 and S = 10.



Sensors 2021, 21, 2372 13 of 18

Table 7. Normalized confusion matrix of the proposed network with a symmetric parameter.

Predicted Class

(L = 1, S = 1) (L = 2, S = 2) (L = 4, S = 4)
Actual class

Normal Drowsy Normal Drowsy Normal Drowsy

Normal 0.856 0.144 0.923 0.077 0.940 0.060

Drowsy 0.118 0.882 0.107 0.893 0.072 0.928

(L = 6, S = 6) (L = 8, S = 8) (L = 10, S = 10)
Actual class

Normal Drowsy Normal Drowsy Normal Drowsy

Normal 0.946 0.054 0.945 0.055 0.945 0.055

Drowsy 0.067 0.933 0.064 0.936 0.061 0.939

Table 8. Normalized confusion matrix of the proposed network with an asymmetric parameter.

Predicted Class

(L = 1, S = 2) (L = 1, S = 4) (L = 1, S = 8)
Actual class

Normal Drowsy Normal Drowsy Normal Drowsy

Normal 0.897 0.103 0.910 0.090 0.918 0.082

Drowsy 0.105 0.895 0.089 0.911 0.082 0.918

(L = 2, S = 1) (L = 4, S = 1) (L = 8, S = 1)
Actual class

Normal Drowsy Normal Drowsy Normal Drowsy

Normal 0.884 0.116 0.916 0.084 0.924 0.082

Drowsy 0.118 0.882 0.079 0.921 0.081 0.919

As the number of subnetworks increases, we observed that both training time and
inference time were increased. When L = 6 and S = 6, it took about 18.6 h to train the
model, and when L = 10 and S = 10, it took about 37.8 h. Similarly, when L = 6 and S = 6,
the inference time excluding feature calculation is 228 ms, and when L = 10 and S = 10,
it took about 459 ms.

Table 8 is a normalized confusion matrix showing the performance when the model
structure parameter is asymmetric. Previously, it was demonstrated that performance
increases as the number of subnetworks increases even when the number of subnetworks
is asymmetric, similar to when the number of subnetworks specialized for LD detection
and subnetworks specialized for SD detection increase to the same number. When L = 1
and S = 2, S = 4, and S = 8, accuracies of 89.59%, 91.04%, and 91.76% were recorded,
respectively. Conversely, when S = 1 was fixed and L = 2, L = 4, and L = 8, 88.28%,
91.81%, and 92.15% were recorded, respectively.

We confirmed that, when L = 2 and S = 6, the accuracy was 92.36% and the F1-score
was 92.35%. In the case of L = 3 and S = 5, the accuracy was 92.92% and the F1-score
was 92.83%. If the value of the parameter is reversed, the performance changes slightly.
When L = 6 and S = 2, the accuracy was 92.69% and the F1-score was 92.71%. When L = 5
and S = 3, the accuracy was 92.71% and the F1-score was 92.95%.

Figure 10 is a graph that summarizes the changes in accuracy and F1-score according
to the changes in the model structure parameters L and S mentioned above. In each graph,
the size of the dot represents the size of the model and the label represents the parameter
value. A square dot means a case where L = S, and a triangle point means a case where
L > S. Finally, the circular dot represents the case where L < S.

When the number of subnetworks in the model structure parameter is less than 8,
the performance increases rapidly as the number of subnetworks increases. In the case of
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L = S, it was confirmed that the range of performance increase was greater than in the case
of asymmetrical number of subnetworks.

(a) (b)

Figure 10. Performance comparison according to model structure parameter changes: (a) accuracy and (b) F1-score.

On the contrary, when the number of subnetworks is 8 or more, the performance
change is not large as the number of subnetworks increases, but it can be assumed that the
variance in the network is sufficiently reduced through the ensemble technique.

Even when the number of subnetworks is asymmetric, it has been shown that the
performance increases as the number of subnetworks increases. It was confirmed that the
case of L > S has a better performance than the opposite case. According to the analysis
results in Section 2, the collected dataset has more LD data than SD data, and we segmented
the same window size (w). Therefore, it is estimated that it is more advantageous to detect
LD better than SD.

Table 9. Performance comparison with other approaches.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Proposed 94.20 93.90 94.47 94.18
DNN 70.47 69.38 73.27 71.27
1D-CNN 72.79 68.02 61.85 64.79
LSTM 77.13 77.14 77.10 77.12
Random forest 72.66 72.77 8.04 14.48

Finally, the performances of the traditional machine learning techniques, other deep
learning networks, and the previous studies were compared. Table 9 shows the results
of the comparison between the machine learning techniques and the other networks. We
used L = 10, S = 10 as the architecture parameters of the proposed network. The deep
neural network (DNN) for the performance comparison used a network in which the fully
connected (FC) layer was overlapped five times. The output sizes of each layer were set as
128, 256, 256, 64, and 2. We set the activation function of the last layer to a softmax function
for the detection result.

One-dimensional CNN consists of two 1D convolution layers and the two FC layers.
The parameters of the convolution layers used in 1D-CNN are as follows: the number of
filters is 64 and 128, the kernel size is 2, and the stride is 1. The output sizes of two FC layers
are 64 and 2, and the activation function of the last layer used the softmax function. We
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designed the long short-term memory (LSTM) network to have a structure of 3 consecutive
LSTM layers and 2 FC layers. Each LSTM layer had 300 units, and the output sizes of the
FC layer were set to 64 and 2. In the case of the random forest model, which is a machine
learning technique, 100 estimators were used.

As a result of the performance comparison, it was shown that the proposed network
outperformed the other networks on all the performance measures. In particular, the
LSTM network has an advantageous architecture for analyzing the time-series data such
as the sensor data that is used in this study. It shows a higher performance than the
DNN, CNN, and random forest models; however, it has a lower performance than the
proposed network.

Table 10. Performance comparison and used variables with previous studies.

Study Used Variables Accuracy (%)

Proposed SWA, SWV, pedal pressure 94.20
[33] § SWA, SWV, yawn rate, lateral acceleration 84.95

[40] SWA, pedal pressure, lane deviation 86.10
[31] SWA 79.00
[29] SWA 78.01
[27] Lateral position, vehicle speed, PERCLOS 63.89

§ Using the collected dataset in our study.

We also performed comparisons with previous studies. Previous studies [27,29,31,40]
used traditional machine learning-based methods, whereas Arefnezhad et al. [33] proposed
a CNN–LSTM network to detect drowsy driving.

As shown in Table 10, SWA data are used in many studies and pedal pressure data are
also used to detect drowsy driving [29,31,33,40]. Although not used in this paper, in-vehicle
sensor data such as lateral acceleration data [33] and vehicle speed [27] are also used. In
addition, deviation of the vehicle position in a lane [27,33,40] or PERCLOS [27] are used to
improve the detection performance.

McDonald et al. [31] collected approximately 108 h of data from 72 participants. The
data from the collected dataset in McDonald et al. [31] were segmented to a 60 s window
and sampled at a reduced frequency of 1 Hz. Zhang et al. [27] collected about 27 h of data
from 27 participants on a circular highway track. The collected data in Zhang et al. [27]
were segmented into 600 s non-overlapping windows. Arefnezhad et al. [33] collected
data through a driving simulation from 13 participants on a monotonous highway at a
sampling rate of 100 Hz that was used as input to the network without any preprocessing.
Krajewski et al. [40] collected data from 12 participants through simulations for about 11
h and segmented the collected data. Each segment had a length of 240 s. Unlike other
studies, Li et al. [29] collected data from real vehicles for about 14 h from 6 participants.
The collected data in Krajewski et al. [40] were sampled to 60 s interval.

In Li et al. [29], an approximate entropy feature was created from SWA data, and in
Zhang et al. [27], average and standard deviation were calculated from vehicle speed and
lateral position. Similarly, we extracted the approximate entropy feature from brake pedal
pressure for SD detection.

We also compared the accuracy performance with the reported results of previous
studies [27,29,31,40]. Additionally, the network that was proposed in Arefnezhad et al. [33]
was implemented, and the performance was evaluated through the collected dataset.
According to Table 10, the proposed method showed superior performance compared to
other previous studies. It can be observed that the characteristics for the duration of drowsy
driving that were used in this study are very effective. For example, in [40], a variety of
features were extracted from several domains and used; however, the performance was
relatively low, with an accuracy of 86.10%.

In Arefnezhad et al. [33], the achieved accuracy was 95.05%, but when applied to
our collected dataset, it was 84.95%. We speculate that these results are due to the various
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road conditions and implementation constraints included the simulation. As mentioned
above, the dataset was collected on a monotonous highway at a sampling rate of 100 Hz.
The dataset in our study was collected on more complex road environments at sampling
rate of 30 Hz. In the dataset that was collected, the lateral deviation data that was used
in Arefnezhad et al. [33] did not exist; thus, only the SWA, SWV, yawn rate, and lateral
acceleration data were used.

5. Discussion

From the collected dataset, we found that the duration of drowsy driving is distributed
around short and long periods of time. Inspired by this, we designed an ensemble CNN
composed of subnetworks specialized for detecting short and long durations of drowsy
driving. We confirmed that it is effective in detecting drowsy driving.

Previous studies have determined and utilized the unique features of vehicle control
patterns to detect drowsy driving [29,31,33]. In this study, the significant features were
obtained through time series analysis. Based on a comparative stukdy, we confirmed that
it is effective to divide the drowsy driving into two classes according to duration.

We showed that the proposed ensemble CNN works well in the simulation environ-
ment with various road types, but significant research is required to apply the same to the
real world. For example, an in-vehicle sensor from an actual vehicle is less accurate than a
simulator. In other words, since sensor data in a vehicle is noisier than a simulator, further
studies with robustness are needed.

The drowsy driving detection method should have a short inference time because the
detection method must observe the changing drowsiness state of the driver in real time.
In this paper, a large number of significant features and a large neural network model
are used; thus, high computing power would be required to obtain a short inference time.
However, it is difficult to satisfy this in an actual vehicle environment. Considering these
points, we plan to study drowsy driving detection methods that can work in real vehicles
as future work.

6. Conclusions

This study proposes a method to detect drowsy driving using vehicle sensor data
that comprise the steering wheel angle, accelerator pedal pressure, and brake pedal pres-
sure data. Drowsy driving was classified into two types, long-duration drowsy driving
and short-duration drowsy driving, according to the duration of drowsiness, and an en-
semble CNN composed of subnetworks specialized for each drowsy driving detection
was implemented. Through a time series analysis, significant features such as change
quantile, CID ce, FFT coefficient, and aggregation linear trend were extracted to describe
long-duration drowsy driving and short-duration drowsy driving effectively, along with
an imbalanced data-handling method. To verify the proposed model, a dataset comprising
198.3 h of in-vehicle sensor data was acquired through a driving simulation involving
17 participants.

The proposed ensemble CNN achieved an accuracy of up to 94.20% and a F1-score of
94.18%. By performing a comparative study, it was demonstrated that the ensemble CNN
has excellent performance. In addition, this study confirmed that the extracted features
and imbalanced data-handling methods are effective for the proposed network in detecting
drowsy driving.
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