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The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout
the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on
the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of
axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components
results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect
of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic,
enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4.
These data refer to a direct interaction between ECM and synapses.The altered brevican expression induced by activated astrocytes
could be required for an adequate regeneration by promoting neurite growth and synaptogenesis.

1. Introduction

The function of the nervous system is based on a precise
composition and maintenance of a neuronal and synaptic
network. The connectivity of the brain is formed during a
period of enhanced plasticity in development when appro-
priate synaptic connections are stabilized in an activity
dependent manner. In contrast, once the adult connectivity
is established, plasticity of some synaptic contacts is greatly
diminished. Functional alterations as they occur in many
brain disorders are also accompanied by remodeling of neu-
ronal structures, changes in neuronal activity, and loss of neu-
ronalmolecules [1–3]. Anumber of studies demonstrated that
several extrinsic [4–7] and intrinsic [1–3, 8, 9] changes are
associated with alterations in synaptic density or shape, den-
dritic outgrowth, and even extracellular matrix molecules.
Especially a specialized form of the extracellular matrix, the

perineuronal net, often shows alterations in neurodegenera-
tive diseases [8–11] and acute brain injuries [7, 11–15] and is
suggested to prevent regeneration. These perineuronal nets
(PNs) enclose the cell bodies and the proximal dendrites
of specialized neurons thereby embedding the contacting
synaptic boutons [16–18]. PNs are composed of aggregating
chondroitin sulphated proteoglycans (CSPGs), hyaluronan,
hyaluronan binding link proteins (hapln), and tenascin-R
[19–22]. CSPGs of PNs belong to the lectican family including
the main members aggrecan, brevican, and neurocan, while
aggrecan is prominently detected in PNs [23, 24]. Most of
the PN-components are produced by neurons and glial cells,
but a few constituents are made by only one of these cell
types [25, 26]. PNs are involved in organizing extracellular
space, modulating synaptic plasticity, and providing a special
extracellular ionic milieu and synaptic stabilization [16, 27–
32]. The formation and maintenance of PNs in a number of
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2 Neural Plasticity

systems are activity dependent [31, 33–36]; thus they mainly
occur at highly active neurons and altered activity disrupts
PN formation [27, 34, 35, 37–42]. To analyze the potential
role of PNs in degeneration/regeneration of slow denervation
processes and to analyze the declining influence of synaptic
input on PNs we use a mouse model for Purkinje cell
degeneration (pcd, pcd-3j/J model). The pathology is caused
by a mutation of the Nna1 gene [43, 44] encoding a protein
also known as cytosolic carboxypeptidase 1 (CCP1) [45, 46],
which has been demonstrated to be involved in the enzymatic
deglutamylation of proteins, and in particular of tubulin [47].
It was therefore suggested that neurodegeneration in the pcd
mouse is induced by a hyperglutamylation of microtubules in
the affected neurons. In a rescue experiment the depletion of
the tubulin tyrosine ligase-like protein 1 (TTLL1) [48] could
partially prevent degeneration of the Purkinje cells (PCs)
[47].

The PCs as part of the cerebellum are involved in motor
coordination and posture control; as consequence in the pcd-
3j/J model a loss of PCs leads to a moderate ataxia beginning
at 3-4 weeks of age [43]. In addition, the degeneration of PCs
is accompanied by the loss of cerebellar granule neurons [43,
49], olfactory mitral cells [50], some thalamic neurons [43],
and alterations in retinal photoreceptors [50, 51]. Before PCs
degenerate, which starts ∼P18 and proceeds until ∼P45, the
PCs and their synaptic contacts show a normal development
[52].

The GABAergic PCs receive virtually all input from
within the cerebellum and provide the exclusive output of the
cerebellar cortex, mainly inhibiting neurons of the deep cere-
bellar nuclei (DCN). The cells of DCN are a heterogeneous
population of inhibitory and excitatory neurons [53–57], but
only the large excitatory DCN neurons are surrounded by
the condensed specialized extracellular matrix of PNs [25,
58–60]. However, it was repeatedly demonstrated that PN-
associated neurons are protected against different neurotoxic
insults and degenerative processes while neurons without a
PN are not [8, 13, 61, 62].

Here we are investigating the integrity and expression of
PNs and their components as well as the synaptic innervation
and remodeling of DCN neurons after the degeneration
of their main GABAergic input, the PC axons. The PN-
associated DCN neurons showed an imbalance of inhibitory
and excitatory innervations. We found a reduced GABAergic
synaptic input and simultaneously these neurons receive
an increased glutamatergic input. Further, the cytochemical
analyses showed that the molecular composition of PNs
has changed and revealed that brevican and hapln4 are
prone to the degeneration processes and may influence the
regeneration of the injured tissue.

2. Experimental Procedures

2.1. Animals. Data were collected from 11 pcd3j (C57BL/6-
Agtpbp1pcd-3j/J, Stock # 003237) knock out mice and 11 wild
type (wt) littermates (6 mice of each genotype for immuno-
cytochemistry and 5mice of each genotype for biochemistry)
of both types of sex at the age of 4 months. Animals were

genotyped as juveniles by PCR as described on The Jackson
Laboratory’s website (Genotyping protocol database of the
Jackson Laboratory). They had free access to food and water
and were maintained on a 12/12 h light-dark cycle under
conditions of constant temperature (22∘C). All animals used
in this study were treated in agreement with the German law
on the use of laboratory animals.The ethical guidelines of the
laboratory animal care and use committee at theUniversity of
Leipzig were followed.

2.2. Cytochemistry. The animals were deeply anesthetized
with CO

2
and perfused transcardially with 10mL 0.9% NaCl

following 100mL fixative containing 4% paraformaldehyde
and 0.1% glutaraldehyde in 0.1M phosphate buffer (pH 7.4).
Brains were removed and postfixed in the same fixation
solution overnight. The tissue was cryoprotected in 30%
sucrose with 0.1% sodium azide, cut in 30 𝜇m thick slices with
a cryomicrotome in frontal planes, and collected in phosphate
buffer containing 0.1% azide.

Before staining, tissue was pretreated with 60%methanol
containing 2% H

2
O
2
for 20min followed by a blocking step

with a blocking solution containing 2% BSA, 0.3% milk
powder, and 0.5% donkey serum in phosphate buffer for 1 h.
All the antibodies (see Table 1) were incubated in blocking
solution overnight at 4∘C. The visualization was performed
by standard fluorescent secondary antibodies (see Table 2).
Identification of the investigated brain areas was made by
brain atlas of mouse [72].

2.3. Imaging Procedures. Tissue sections were examined with
a Zeiss Axiovert 200M microscope (Zeiss, Jena, Germany)
and a Zeiss confocal laser scanning microscope (Zeiss, Jena,
Germany; LSM 510 meta). Confocal images of carbocyanine
dye 2 (Cy2) fluorescence were obtained with the Argon
laser (488 nm) and emission filter BP 505–530. The HeNe 1
laser (543 nm) and the emission filter BP 560–615 were
used to detect the carbocyanine dye 3 (Cy3) fluorescence,
respectively. Photoshop CS2 (Adobe Systems, Mountain
View, CA,USA)was used to process the images withminimal
alterations to the contrast and background.

2.4. Quantification. To estimate molecular alterations in
pcd mice frontal sections were investigated and PN-bearing
neurons of nucleus interpositus and nucleus dentatus of the
DCN and the nucleus vestibularis lateraliswere analyzed.The
sections were labeled with anti-human aggrecan antibody
(HAG7D4), the most comprehensive marker for PNs and
additionally with GAD65/67 or vGlut1 and 2 for double
immunofluorescence counting. The tissue was analyzed with
a Zeiss Axiovert 200M microscope equipped with a motor-
ized stage (Märzhäuser, Germany) withMosaiX software and
by means of a CCD camera (Zeiss MRC) connected to an
Axiovision 4.6 image analysis system (Zeiss, Germany).

Counts were performed using the optical fractionator
method [19, 37] on a Zeiss Axioskop 2 plus microscope (Jena,
Germany) equipped with a motorized stage (Märzhäuser,
Wetzlar, Germany), a Ludl MAC 5000 controller (LEP,
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4 Neural Plasticity

Table 2: Used secondary antibodies.

Antibody Marker Dilution Source
Streptavidin Cy3 1 : 250 Dianova
Donkey-anti-mouse Cy2, Cy3 1 : 1000 Dianova
Donkey-anti-guinea pig Cy3 1 : 1000 Dianova
Donkey-anti-rabbit Cy2, Cy3 1 : 1000 Dianova
Donkey-anti-rabbit HRP 1 : 10.000 DAKO
Donkey-anti-mouse HRP 1 : 10.000 DAKO
Rabbit-anti-guinea pig HRP 1 : 10.000 GE Healthcare
Rabbit-anti-goat HRP 1 : 10.000 GE Healthcare

Hawthorne, NY, USA), and a digital camera CX9000 (Micro-
BrightField,Williston,VT,USA). Stereo Investigator software
6 (MicroBrightField,Williston, VT,USA)was used to analyze
the 30 𝜇m thick sections.

The contours of the DCN were outlined in the Stereo
Investigator program using a 10x lens, cell diameter deter-
mination and synapse counts were performed using an oil-
immersion 63x lens (1.4 numerical aperture).

Somatic boutonswere counted from the cell surface of the
large glutamatergic PN-bearing projection neurons (≥10 𝜇m
diameter) up to a distance of 3 𝜇m in the periphery. For
quantification of the boutons in the periphery, the cells were
outlined at a distance of twofold diameter of the cell from the
cell surface. Peripheral boutons were counted from the end of
the somatic zone (≥3 𝜇m) to the outlined area.

2.5. SDS-PAGE andWestern Blot Analyses. Mice were deeply
anesthetized with CO

2
, decapitated, brains rapidly removed,

and immediately frozen in liquid nitrogen. On a dry-ice
cooled work plate the brains were cut in 2mm frontal
sections and DCN as precise as possible separated and
stored in 2mL tubes at −80∘C until further proceeding.
The DCN containing tissues of 5 mutant and 5 wt mice
were homogenized using an Ultra-Turrax tube drive (IKA),
in homogenization buffer (20mM Tris-HCl, 2mM EDTA,
0.15M NaCl, 5mM NaF, 1mM Na

3
VO
4
, and 2mM MgCl

2
,

pH 7.4) containing a protease inhibitor (Complete, Roche,
Mannheim, Germany). The homogenate was centrifuged at
10.000×g for 14min at 4∘C, followed by determination of
the protein concentration in the supernatant by using the
BCA Assay. For discontinuous SDS-Page the supernatant
containing 35 𝜇g proteins was mixed with 1x SDS sample
buffer and denaturized at 70∘C for 15min. The proteins were
separated on a 10% polyacrylamide gel and transferred to a
polyvinylidene difluoride membrane (Perkin Elmer, Rodgau,
Germany). Blots were blocked with 1% BSA in Tris-buffered
saline containing 0.05% tween for 1 h, washed, and incubated
with primary antibodies (Table 1) diluted in blocking solution
overnight at 4∘C. Blots were washed and incubated with
HRP-conjugated secondary antibodies (Table 2) for 1 h. HRP
activity was detected using ECLWestern blotting (Amersham
Biosciences) and scannedwithDNRBio-Imaging System and
analyzed by using softwareTINA.The ratios of optical density
of the investigated proteins were normalized to 𝛽-actin.

2.6. Statistical Analyses. Statistical analysis was performed
with SigmaPlot 12.5 (Systat Software, Erkrath, Germany).
Values are given as mean ± SEM. For statistical differences
between the two genotypes we used 𝑡-test or Mann-Whitney
rank sum test, depending on the distribution of the data.

3. Results

The Purkinje cell degeneration (pcd-3j/J) mutant mouse is
characterized by the loss of PCs and their axons.The neurons
of the DCN and lateral vestibular nucleus (LVN), which are
innervated by the cerebellar PCs, are affected as well. In
immunohistochemical and biochemical investigations, we
observed that the degeneration leads to altered synaptic
innervation and ECM conformation in the target areas.

3.1. Calbindin D-28k in pcd Mice. Calbindin D-28k is typi-
cally used as a marker for the PCs of the cerebellum [20].
The closely spaced somas and axons of the PCs are strongly
labeled by antibodies against calbindin. In pcd mice this
calbindin immunoreaction is significantly reduced.Only very
few remaining cells are stained already at one month of age
(Figure 1).

3.2. Purkinje Cell Degeneration in the Cerebellum Leads
to Reduced GABAergic and an Increase of Glutamatergic
Synapses in DCN and LVN. Similar to DCN neurons the
neurons of the LVN are highly innervated by the GABAergic
Purkinje axons. In addition, they receive excitatory input
from mossy fibers and climbing fibers [21]. Previous studies
demonstrated that pcd is accompanied by a volume reduction
and a decrease in cell number in the DCN and LVN with
focusing onto inhibitory neurons [22, 73–75]. Thus, we
studied if the degeneration of PCs in the cerebellar cortex
modifies the terminating synapses of the afferent fibers at
the large excitatory PN-bearing projection neurons in the
DCN and LVN. Therefore, we investigated the GABAer-
gic terminals by anti-GAD65/67 antibody labeling and the
majority of glutamatergic terminals labeled by a mixture of
anti-vGlut1 and 2 antibodies at the PN-ensheathed neurons.
The different nuclei (DCN, LVN) show similar distribution of
these markers. Hence, the data of the nuclei were pooled.

We could identify a high density of GABAergic terminals
at the cell surface (up to 3 𝜇m distance) as well as in the
periphery (≥3 𝜇m; for details see Section 2) of each PN-
bearing neuron. The number of GABAergic synapses at
large PN-ensheathed neurons of pcd mice was significantly
lower than in the wt mice (Figures 2(a) and 3(a); somatic
boutons: wt: 17.34 ± 0.58 and pcd: 10.27 ± 0.41; Mann-
Whitney 𝑈 𝑝 < 0.0001; peripheral boutons: wt: 18.18 ±
0.83; pcd: 10.44 ± 0.55; Mann-Whitney 𝑈 𝑝 < 0.0001).
There were no differences between the densities of somatic
versus peripheral GABAergic boutons in both genotypes.
Western blot analyses ofwholeDCN tissue homogenateswith
anti-GAD65/67 antibody identified the typical molecular
weight bands at 65 and 67 kDa, respectively, though the
quantification of the GAD band of wt and pcd showed no
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wt pcd

(a)

(b)

Figure 1: Labelling of calbindin expressing PC neurons in wt and pcd mice. Purkinje cells and their axons in the cerebellum show a strong
immunoreactivity for calbindin. In one month old wt anti-calbindin antibodies detect the Purkinje cells and their axon in the cerebellum.
The neurons of the cerebellum in one-month-old pcdmice reveal less calbindin immunoreactivity. Scale bar: 100 𝜇m (a) and 50𝜇m (b).

wt

wt
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pcd

pcd

pcd

ACANACAN

GAD 65/67 GAD 65/67

Merge Merge

(a)
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pcd

pcd

ACAN ACAN

vGlut1+2 vGlut1+2

pcdMerge Merge

(b)

Figure 2: Detection of glutamatergic and GABAergic terminals in DCN. The large DCN neurons are enwrapped by aggrecan-based ECM
(red). (a) DCN neurons are innervated by GABAergic boutons, labeled by GAD 65/67. GABAergic terminals seem to be reduced in pcd. (b)
The glutamatergic boutons at DCN neurons are discovered by moderate vGlut 1 and vGlut 2 staining. The staining in pcd appears slightly
enhanced. Scale bar: 20𝜇m.
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Figure 3: Quantification of GAD65/67 and vGlut in DCN. (a) Quantification shows the distribution of GABAergic terminals in different
distances from the PN-bearing neurons. The total number of boutons are reduced in pcd compared to wt, regardless of the distance. (b)
Somatic glutamatergic terminals at DCN neurons appear to be enhanced in pcd mice. The peripheral synapses remain unaffected by the
insult. (c) Western blot analyses of GAD65/67 and vGlut1 with protein extracts of DCN sections. Typical specific bands are visible in both
genotypes. Quantification of these bands reveals slight but no significant differences between wt and pcd (GAD65/67 𝑝 = 0.419; vGlut1
𝑝 = 0.087). Data are given as mean ± SEM.

significant differences (Figure 3(c); wt: 0.423 ± 0.05 and pcd:
0.473 ± 0.03 𝑡-test 𝑝 = 0.419).

Beside the inhibitory innervation, the DCN neurons
receive excitatory glutamatergic input from collaterals from
themossy and climbing fibers [21, 76]. Immunolabeling of the
glutamatergic synapses at PN-bearing neurons reveals that
the majority of glutamatergic boutons is not directly located
at the soma of these neurons, but rather in their periphery,
about ≥3 𝜇m away from the cell body. By quantification
of somatic and peripheral terminals, we could verify the
differences between somatic and peripheral density of the
glutamatergic synaptic terminals (Figure 3(b)). The density
of somatic glutamatergic synapses in DCN and LVN of pcd

mice is increased, while the number of peripheral terminals
is not altered (Figures 2(b) and 3(b); somatic boutons: wt:
7.93±0.51 and pcd: 9.43±0.38; Mann-Whitney𝑈 𝑝 = 0.010;
peripheral boutons:wt: 20.08±0.77; pcd: 20.50±0.67; Mann-
Whitney 𝑈 𝑝 = 0.084). In addition, the quantification of
the 55 kDa anti-vGlut1 immunoreactive band in western blot
confirmed an increase of vGlut1 in pcdmice without reaching
significance (Figure 3(c); wt: 0.985 ± 0.07 and pcd: 1.295 ±
0.14; 𝑡-test 𝑝 = 0.087).

3.3. ECM Composition in DCN of pcd Mutant Mice. The
axons of the Purkinje cells are the sole output of the cerebellar
cortex and innervate the neurons of the DCN. The DCN
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mainly contain 2 types of neurons: large excitatory and
smaller inhibitory neurons [53, 77]. As previously described,
the large neurons of the DCN are ensheathed by very
prominent PNs [25, 58].TheDCNneurons inwtmice express
the major ECM components aggrecan, brevican, neurocan,
tenascin-R, hyaluronan, and hapln [25].

3.3.1. Brevican. Recently it was shown that the proteoglycan
brevican is enriched at perisynaptic sites and is suggested to
be associated with synaptic molecules [18, 78]. Brevican has a
metalloproteinase specific cleavage site and can occur as 50
and 80/90 kDa cleavage product and as full length protein
of 145 kDa with no chondroitin sulfate (CS) and the CS-
bearing variant of over 245 kDa [14, 64]. We investigated the
incidence of the cleavage products and the CS-free type of
full-length brevican pcd mice. For immunocytochemistry,
three different antibodies against brevican were used: anti-
brevican (BD Bioscience, FL) which detects the full length
and the cleavage products, anti-B50 detecting exclusively the
50 kDa cleavage product of brevican and anti-B756, which
detects mainly the 90 kDa and the full length isoform. In wt
DCN immunostaining with all brevican antibodies clearly
revealed an immunoreactivity around the large DCN neu-
rons and illustrates the typical brevican-based PN structure
surrounding soma and proximal dendrites. In pcd mice the
DCN neurons show only very weak anti-B50 immunoreac-
tion. Neurons and dendrites are still surrounded by faint
immunoreactivity, whereas neurons in nontarget areas of PC
axons like the cochlear nucleus (CN) are not affected and
show the typical brevican-based PN structure (Figure 4(b)).
The FL and B756 antibodies show similar intensities of
immunoreactivity in the pcd mice. In the DCN not only the
neuronal surface is detected, but thewhole extracellular space
reveals a slight and uniform immunoreactivity. Asmentioned
above, the neurons of the CN, as an internal reference, show
no alterations in the immunoreactivity with FL and B756.
The neurons and proximal dendrites still display the typical
brevican-based PN structure in pcd mice (Figures 4(a) and
4(c)). To further clarify if the altered immunodetection of
brevican in pcdmice is caused by reduced protein expression
we investigated the protein levels of full length and the
50 kDa cleavage product of brevican by western blot analyses.
Surprisingly, a significant increased protein level of brevican
could be detected in both the full length as well as the 50 kDa
cleavage product in the DCN containing tissue of pcd mice
compared towtmice.The brevican protein amount in the pcd
mice almost reached a 2-fold increase compared to wt mice
(Figure 4(d), BCAN: wt: 0.599 ± 0.04 and pcd: 1.180 ± 0.06;
𝑡-test 𝑝 < 0.001).

3.3.2. Link Proteins. Link proteins are known to interact
with hyaluronan and CSPGs and stabilize this connection.
Hapln1 (Crtl-1) and hapln4 are the two link proteins which
are associated with PNs and exclusively expressed by PN-
bearing neurons [25, 26, 59]. It is supposed that hapln1 is an
important component in PN formation. The upregulation of
hapln1 expression correlates with PN development and
hapln1 deficient mice showed attenuated PNs [32].

The PN of the large excitatory DCN neurons of wt
mice is characterized by a strong aggrecan staining and a
comparably intensive staining by hapln1.The labeling of both
PN-components, aggrecan and hapln1, is for the most part
congruent and they seem to be colocalized. In pcd mice
the detection of aggrecan and hapln1 is less intensive but
still clearly present (Figure 5(a)). The immunoreactions of
both components appear largely colocalized, although the
immunoreactions appear to be redistributed away from the
nets into the neuropil and extracellular space, whichmight be
in agreement with immunoblot analyses revealing increased
occurrence of hapln1 (Figure 5(c), hapln1: wt: 4.164 ± 0.6 and
pcd: 8.165 ± 0.6; 𝑡-test 𝑝 = 0.001).

Hapln4 immunodetection also marks PN-bearing neu-
rons in the DCN of wt mice. The large DCN neurons
are surrounded by delicate hapln4 staining and the label-
ing is colocalized with the aggrecan immunoreaction. The
DCN neurons of pcd mice are immunopositive for aggre-
can, but virtually no hapln4 immunoreaction is detectable
(Figure 5(b)). In contrast, on western blots the hapln4 pro-
tein, in DCN enriched homogenate, is slightly significantly
elevated (Figure 5(c), hapln4:wt: 0.424±0.04 and pcd: 0.637±
0.05; 𝑡-test 𝑝 = 0.014).

3.3.3. Hyaluronan andTenascin-R. Hyaluronan is a very large
linear polymer and is supposed to be the backbone of PNs.
To visualize hyaluronan in the DCN we used biotinylated
hyaluronan binding protein (HABP). Hyaluronan shows a
ubiquitous distribution in theDCNofwt and pcd, with a typi-
cal elevated reactivity around PN-bearing neurons, and colo-
cates with aggrecan immunoreaction in PNs (Figure 6(a)).
Immunolabeling with tenascin-R reveals similar staining
patterns in DCN of both genotypes and show no obvious
differences between transgenic and wt mice (Figure 6(b)).

3.4. Gliosis in DCN after Purkinje Cell Degeneration. Lesions
and injuries are often followed by gliosis and an increased
expression of glial proteins and strong formation of glial
structures [79], which replace the degenerated tissue and lost
cellular structures. The distribution of astrocytes and their
expression level were analyzed with anti-GFAP antibodies,
an astrocytic marker. The double immunolabeling with anti-
aggrecan showed that the wt DCN bears only a few GFAP
positive astrocytes. Inwt astrocytes only appear at the edge of
theDCN, while the complete DCNof pcdmice aremarked by
a massive glia invasion (Figure 7(a)). These results agreed
with the enhanced expression level of GFAP in pcdmice and
support the assumption that the degeneration of the PCs leads
to a strong gliosis in their target area (Figure 7(b), GFAP: wt:
0.785 ± 0.03 and pcd: 2.086 ± 0.26; Mann-Whitney 𝑈 𝑝 =
0.008).

4. Discussion

4.1. Synaptic Input. DCN and LVN neurons are the direct
targets of the cerebellar Purkinje cell axons. After their
degeneration at an age when nearly all PCs degenerated, the
GABAergic terminals in the target regions are significantly
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Figure 4: Detection of different brevican fragments. (a) Immunoreaction with pan-specific brevican antibodies (BD Bioscience, FL) clearly
surroundsDCNneurons inwt but not in pcdmice. As internal control nontarget region of PC axons, the cochlear nucleus shows no alterations
in immunoreactions with FL. (b) The 50 kDa isoform of brevican seems to be nearly absent around DCN neurons of pcd mice, whereas the
not affected region (CN) revealed brevican-bearing neurons. (c)The B756 antibodies detect mainly the 80/90 kDa and full length isoforms of
brevican.These cleavage products aggregate around the neurons inDCNofwtmice and seem to be integrated in PNs. In pcd, PNs appear with
lower intensity, but with potential higher parenchymatic reaction. PN-detection with all three antibodies in the internal nontarget control
region (CN) is unchanged. Scale bar: 20 𝜇m. (d) Biochemical detection of brevican with SDS-PAGE with pan-specific antibodies revealed
most known isoforms at 50, 80, 90, and 145 kDa. Quantification of the 50 and 145 kDa brevican isoform showed a significant increased protein
expression in pcd (𝑝 < 0.001), respectively, for the different isoforms. Therefore, the diagram is supposed to display the optical density (OD)
values of pan-brevican chemiluminescent signal summed values (OD 50 kDa + 145 kDa brevican/actin). Data are given as mean ± SEM.
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Figure 5: Comparison of link protein expression inDCN.DCNneurons are visualized by aggrecan immunoreaction (red). (a)Hapln1 labeling
(green) surrounds theDCNneurons in both genotypes,matching the aggrecan immunoreactivity; additionally in pcd hapln1 immunoreaction
is distributed throughout the whole parenchyma. (b) Hapln4 (green) encloses the DCN neurons in wt mice. In contrast, hapln4 in pcd
exhibits virtually no immunoreaction. Scale bar: 20𝜇m. (c) Western blot reveals protein bands at approximately 40 kDa for link proteins.
Quantification of the link proteins yielded an elevated protein level of both components in pcd (hapln1 𝑝 < 0.01; hapln4 𝑝 < 0.05). Data are
given as mean ± SEM.



10 Neural Plasticity

HA

ACANACANwt

wt

wt

HA

pcd

pcd

pcd MergeMerge

(a)

wt

TNR

ACAN ACAN

wt

wt

TNR

pcd

pcd

pcd MergeMerge

(b)

Figure 6: Distribution of hyaluronan and tenascin-R in DCN. The labeling shows important constituents of PNs. The neurons in DCN are
surrounded by strong aggrecan immunoreaction (red). (a) Hyaluronan is ubiquitously distributed and concentrated around the neurons. (b)
Tenascin-R is equally present in DCN of wt and pcdmice and mainly encloses the neurons. Scale bar: 20𝜇m.

reduced [22, 43, 80]. At PN-bearing neurons in DCN and
LVN, a subset of large excitatory neurons, the GABAergic
terminals are affected as shown by previous investigators [22,
80]. Terminals at the PN-positive neurons are decrease down
to 40% independent from terminal localization; somatic
terminals as well as peripheral boutons are similarly reduced.
In contrast, glutamatergic terminals are increased at PN-
bearing neurons after pcd. The degeneration of the PCs and
the granule cells in the cerebellar cortex seems to result in a
significant reorganization of the synaptic input (reviewed in
[75]). Glutamatergic synapses in DCN mainly derive from
mossy fibers, which additionally innervate granular cells in
cerebellar cortex [81]. Strazielle et al. postulated for another
pcdmodel that the loss of Purkinje and granule cells leads to
enhancedmossy fiber innervations at DCNneurons [82].The
pcd-3j/J model used in this study is also accompanied by an
additional decline of cerebellar granule cells. Hence, a similar
modification could take place in theDCNof the pcdmice and
might explain the increased glutamatergic innervations. The
excitatory input of the LVN derives mainly from the fastigial
nucleus of the DCN [83]; thus the enhanced glutamatergic
projection in LVN might be a secondary effect of the lacking
inhibition in the DCN neurons. The missing inhibitory

innervation and the increased excitatory input might be
interpreted as an altered activity of these neurons that could
provide an explanation for the ataxic motion. However, in
the VN of pcd mutants neither the spontaneous activity nor
the evoked activation of the neurons are altered ([84, 85]
reviewed in [75]). This is in agreement with the observation
of axonal sprouting with flat vesicle terminals at the pcd
DCN neurons [80], which are known to represent inhibitory
synapses [86].The lost GABAergic contacts could be replaced
by new non-GABAergic terminals. The massive gain and
enhancement of glycinergic boutons observed in DCN and
VN could maybe balance the deafferentation of GABAergic
axons [74, 80]. Glycine seems to play a predominant role in
inhibition andmodulates the excitation ofDCNneurons; this
could temper the symptomatology of the mutants.

4.2. Modifications in PN Formation after pcd. The large
neurons in DCN are surrounded by PNs composed of
hyaluronan, CSPGs, tenascin-R, and link proteins hapln1 and
hapln4 [25, 59]. Most of the PN-components are produced by
neurons and several are synthetized by glia as well. Decline
of Purkinje cells and consequently deafferentation of DCN
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Figure 7: Reactive astrogliosis in the DCN of pcdmouse brain. (a) DCN of wtmouse brain is characterized by the virtual absence of reactive
astrocytes. In pcd, the degeneration process is accompanied by a strong astrocytic activation; the DCN seem to be filled with astrocytes. Scale
bar: overview 100𝜇m, detail 20𝜇m. (b) Western blot analyses confirm the immunocytochemical data. In pcd tissue, the GFAP protein level
is more than 2-fold increased (𝑝 < 0.01). Data are given as mean ± SEM.

neurons induce a significant reduction of certain PN-
components around the PC-target cells. PNs themselves are
still present consisting of the main components hyaluronan,
aggrecan, tenascin-R, and hapln1, but brevican and hapln4
are apparently absent. That points to the assumption that
brevican and hapln4 are involved in synaptic stabiliza-
tion and/or maintenance [78, 87]. Brevican is typically
enriched at perisynaptic sites and is suggested to accumulate
molecules necessary for synaptic formation and preservation
[14, 18, 87].

It has been reported that brevican expression is altered
after brain injuries [15, 88, 89] and a loss of synapses is
associated with a loss of brevican and hapln4 or vice versa

[8, 87]. In case of pcd the decay of cells and their axons in
cerebellar cortex results in altered expression of brevican and
hapln4 in the DCN.

The fact that brevican and hapln4 seem to be no longer
an integral part of the PNs in the DCN of the pcdmice might
confirm the assumption that they might be more sensitive to
degeneration than the other PN-components and that both
components seem to be strongly dependent on each other for
integration into the PNs [90, 91]. In early development, most
CSPGs are more soluble and have only a low affinity to bind
hyaluronan [92, 93]. Link proteins play an important role
in promoting the connection of CSPGs to hyaluronan by
inducing conformation changes at the CSPGs allowing a
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strong interaction with hyaluronan [59, 94]. Hapln4 in the
DCN is supposed to derivemainly from the PC axons [25, 59,
87], so in pcdmice the supply of the link protein is interrupted
and potentially affects the localization of brevican [59].

4.3. Enhanced Gliosis Determines Protein Properties. CNS
injury or degeneration processes are often combinedwith cell
death leading to secretion of molecules triggering an exten-
sive glial response and activation. The activation of different
glial cells mostly follows a specific timeline.The first response
to acute injuries is the migration of macrophages and
microglia, followed by an activation of oligodendrocytes, and
finalized with the proliferation of astrocytes [95]. While in
the area of insult (cerebellar cortex) in pcdmice an activation
of microglia and astroglia was observed [96], this study
identified that the DCN as a secondary affected area has rare
microglia (IBA1 and S100b, data not shown) but extensive
astrogliosis. Reactive astrocytes play an important role in
regeneration by occupation of the vacated space, uptake of
potentially excitotoxic glutamate, stabilization of extracellu-
lar fluid and ion balance, and protection from oxidative stress
[97]. Beyond these functions, the expression of CSPGs in
the injured brain is strongly upregulated due to astrocytes
[98]. In regard to these findings several studies focused on
brevican, which is expressed by reactive glia in response to
brain injuries [14, 92, 93, 97, 99–107]. In the pcd mice the
SDS-PAGE also reveals an elevation of brevican in DCN after
denervation. It is supposed that the cellular source of brevican
can switch after injuries and is predominantly produced
by astrocytes [14, 108]. Brevican is sensitive to a number
of matrix metalloproteinases (MMPs) and a disintegrin
and metalloproteinase with a thrombospondin type 1 motif
(ADAMTS) creating cleavage fragments of approximately
50 kDa and 80 kDa [64, 109]. In the adult and healthy brain,
most MMPs are downregulated. After injuries the expression
and enzymatic activity of MMPs and ADAMTS have been
shown to be increased [14, 96, 110–118] caused by activated
glial cells [118, 119]. MMP9 expression that is enhanced in
the cerebellum of pcd mice [96] is linked with the growth-
associated protein GAP43 and promotes nerve regeneration
and axonal sprouting [4, 120, 121]. The increased expression
of the 50 kDa cleavage fragment of brevican discovered
in this study implies that there might be an increase of
protease activity after degeneration in DCN contributing to
extracellular matrix proteolysis, which is what loosens the
PNs around the DCN neurons and facilitates new sprouting
and synaptogenesis [4, 14, 107, 120].

It is not yet clarified if link proteins, which are mainly
expressed by neurons, could also switch to glial expression
after injury. In pcd mice not only the nna1 gene is disrupted,
it is reported that the general gene transcription is downregu-
lated [122, 123]. Furthermore inflammatory events, which are
known to be associatedwith degeneration, cause an increased
methylation of the genomic region of hapln4 and potentially
decrease the neuronal gene expression [93, 124].The inhibited
neuronal gene expression could promote a potential glial
expression of hapln4. Sim et al. suggest that a glial hapln4
expression leads to altered protein properties with a rather

soluble nature [93]. However, it is supposed that the glial
produced brevican is strongly associated with fibronectin
which is highly enriched in cerebellum of pcd mice [96] and
modulates the cell adhesion and motility [93, 104] which
may enable the reinnervation of PN-bearing DCN neurons.
We speculate that the high amount of brevican could indeed
stimulate the expression of the link protein, but hapln4 has no
binding partner anymore and cannot be robustly integrated
into PNs.

4.4. Technical Consideration. Injuries, diseases, and degener-
ation-processes often lead to changes of PN-composition. It
was reported that remodeling sometimes induces enhanced
CSPGexpression [88, 108, 125, 126], but it has also been shown
that loss of synapses could be associated with reduced CSPG
occurrence [4, 8, 87]. Our data display both reduction and
enhancement of PN-constituents after degeneration. Deepa
et al. [60] showed that detectability is strongly dependent
on the solubility of the proteins and the used method.
Immunohistochemical methods rather detect proteins in sta-
ble complexes and discover soluble fractions less efficiently.
In contrast, pretreatment of the tissue for SDS-PAGE with
special buffer releases most protein fraction, membrane asso-
ciated, and soluble fractions [60]. The different techniques
could lead to different but not contradictory results.

5. Conclusions

Degeneration of cerebellar Purkinje cells affects large PN-
bearing DCN neurons. The following events are an interplay
of degeneration and regeneration. Not only the Purkinje cell
derived GABAergic terminals decrease, but also the PN-
components brevican and hapln4 are virtually absent in the
stable structure of the PNs of DCN neurons in pcd mice.
Simultaneously, the hapln4 and brevican protein expression is
increased, probably caused by severe local inflammation
processes with migrating astrocytes.

On one hand the attenuated PNs imply that brevican
and/or hapln4 are more sensitive to degeneration and might
play a vital role in synaptic reorganization and the loss or
variation of themmight enable new sprouting of synapses.On
the other hand, glial produced PN-components reveal altered
properties and could influence cell adhesion and motility to
facilitate axonal path-finding.
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