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Abstract

Background: Epithelial ovarian cancer (EOC) constitutes more than 90% of ovarian cancers and is associated with high
mortality. EOC comprises a heterogeneous group of tumours, and the causes and molecular pathology are essentially
unknown. Improved insight into the molecular characteristics of the different subgroups of EOC is urgently needed, and
should eventually lead to earlier diagnosis as well as more individualized and effective treatments. Previously, we reported a
limited number of mRNAs strongly upregulated in human osteosarcomas and other malignancies, and six were selected to
be tested for a possible association with three subgroups of ovarian carcinomas and clinical parameters.

Methodology/Principal Findings: The six selected mRNAs were quantified by RT-qPCR in biopsies from eleven poorly
differentiated serous carcinomas (PDSC, stage III–IV), twelve moderately differentiated serous carcinomas (MDSC, stage III–
IV) and eight clear cell carcinomas (CCC, stage I–IV) of the ovary. Superficial scrapings from six normal ovaries (SNO), as well
as biopsies from three normal ovaries (BNO) and three benign ovarian cysts (BBOC) were analyzed for comparison. The gene
expression level was related to the histological and clinical parameters of human ovarian carcinoma samples. One of the
mRNAs, DNA polymerase delta 2 small subunit (POLD2), was increased in average 2.5- to almost 20-fold in MDSC and PDSC,
respectively, paralleling the degree of dedifferentiation and concordant with a poor prognosis. Except for POLD2, the serous
carcinomas showed a similar transcription profile, being clearly different from CCC. Another mRNA, Killer-specific secretory
protein of 37 kDa (KSP37) showed six- to eight-fold higher levels in CCC stage I compared with the more advanced staged
carcinomas, and correlated positively with an improved clinical outcome.

Conclusions/Significance: We have identified two biomarkers which are markedly upregulated in two subgroups of ovarian
carcinomas and are also associated with stage and outcome. The results suggest that POLD2 and KSP37 might be potential
prognostic biomarkers.
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Introduction

In Norway and the United States, ovarian cancer is the fourth

and fifth most frequent cause of cancer death in women,

respectively [1,2]. At the time of diagnosis, almost 70% of the

patients have distant spread of disease (stage III–IV), and their 5-

year relative survival rate is only about 30% [1,2]. The cause(s)

and mode of progression are poorly understood, and the patients

are treated similarly in spite of tumour heterogeneity [3–6].

EOC comprises several subtypes of histopathologically different

tumours [7]. There is growing evidence for the existence of at least

two distinct tumourigenetic pathways, corresponding to the devel-

opment of type I and type II tumours [3,6,8–10]. Type I tumours

include highly differentiated serous carcinomas, mucinous carcino-

mas, endometroid carcinomas, clear cell carcinomas and malignant

Brenner tumours. They are thought to arise from precursor lesions

such as cystadenomas, borderline tumours or endometriosis and

suggested to be a result of mutations in e.g. KRAS, BRAF, CTNNB1

or PTEN genes [4,6,8,9]. Type II carcinomas include moderately

and poorly differentiated serous carcinomas, carcinosarcomas and

undifferentiated carcinomas, and appear to originate de novo from as

yet no known identified precursor lesions, possibly resulting from

mutations in e.g. TP53 [4,6,8,9,11]. Thus, ovarian carcinogenesis

appears to be associated with abnormalities in multiple gene families.

How these genetic alterations are reflected in changes in transcrip-

tional activity and carcinogenesis are not understood.
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Previously, we reported a limited number of mRNAs strongly

upregulated in human osteosarcomas and several other malignan-

cies [12]. Further analyses on various types of human malignant

cell lines and normal tissues showed that six mRNAs were highly

expressed: KSP37, C9orf89, PRAT4A, NOLA2, ANT2 and POLD2

(Table 1). Apart from C9orf89 and PRAT4A (unknown at project

start), these mRNAs code for proteins known to be associated with

malignancy [13–16]. We hypothesized that these mRNAs might as

well be associated with ovarian cancer. In the present study, we

quantified these mRNAs by RT-qPCR in biopsies from eleven

PDSC (stage III–IV), twelve MDSC (stage III–IV) and eight CCC

(stage I–IV) as well as control tissue representing six SNO, three

BNO and three BBOC. The expression levels were related to

histological, clinical and laboratory parameters. We found that two

of the mRNAs were markedly upregulated in two subgroups of

ovarian carcinomas and also associated with stage and outcome.

Results

Mean expression levels of six selected mRNAs in three
subgroups of ovarian carcinomas compared with three
different control groups

Expression levels of the six selected mRNAs in PDSC, MDSC

and CCC are presented in Figures 1,2,3. Figure 1 shows heat-

maps of log10 transformed p-values (t-test) comparing the mean

expression levels as DCq (delta quantification cycles) values in

PDSC, MDSC and CCC with SNO, BNO and BBOC. P-values

less than 0.05 were used as cut-off value for significance. When

comparing PDSC with SNO and BBOC, respectively, the

following mRNAs were significantly differentially expressed:

PRAT4A (p = 8.161025 and 2.661023), NOLA2 (p = 1.361024

and 3.561023), ANT2 (p = 6.361025 and 2.661023) and POLD2

(p = 3.461028 and 2.461025), whereas comparing these carcino-

mas with BNO, ANT2 (p = 1.961022) and POLD2 (p = 3.161022)

showed a differential expression. For MDSC, POLD2

(p = 9.161024) showed differential transcription when compared

with SNO. NOLA2 (p = 1.161022) and POLD2 (p = 4.361022)

were differentially expressed when CCC were compared with

BNO. These significantly differentially expressed mRNAs were all

upregulated in PDSC and MDSC, while downregulated in CCC

(data not shown). Thus, several of the six previously shown

upregulated mRNAs in osteosarcomas were also differentially

expressed in the ovarian carcinomas. Furthermore, the overall

transcriptional activity of these genes was similar when comparing

BBOC with SNO and BNO, while PRAT4A and POLD2 showed

significant differential expression (p,0.05) when BNO and SNO

were compared (data not shown).

Individual expression levels of six selected mRNAs in
three subgroups of ovarian carcinomas compared with
SNO controls

Figure 2 shows mRNA expression profiles of all 31 carcinomas

employing SNO as a control group, depicted as heat-maps of

normalized log2 transformed original fold change (FC) values.

Higher mRNA levels were detected in PDSC and MDSC for

PRAT4A, NOLA2, ANT2 and POLD2. PRAT4A, NOLA2 and ANT2

showed a similar mRNA expression in PDSC and MDSC in

contrast to POLD2, being clearly more upregulated in PDSC

compared with MDSC. The mRNA levels were reduced for

KSP37 and C9orf89 in both PDSC and MDSC. Furthermore,

except for C9orf89, a distinct mRNA expression pattern of the

mRNAs was present in CCC. The heat-maps looked almost

identical when BBOC were used as the control group, but differed

slightly when BNO were used (Figure S1).

Mean expression levels of six selected mRNAs in three
subgroups of ovarian carcinomas compared with SNO
controls

Figure 3 shows bar plots of mean mRNA expression (loge

transformed original FC values) in PDSC, MDSC and different

stages of CCC, using SNO for comparison. In PDSC, POLD2 was

almost 20-fold upregulated (FC 19.4), whereas C9orf89, PRAT4A,

NOLA2 and ANT2 were only moderately upregulated (FC 1.2–3.1)

and KSP37 slightly downregulated (FC 0.7). In MDSC, transcrip-

tion levels of KSP37 and C9orf89 were reduced (FC 0.5 and 0.7

respectively), while the other mRNAs showed moderate upregula-

tions (FC 1.8–2.5). In CCC stage I, KSP37 was markedly

upregulated (FC 4.3), but downregulated in the more advanced

stages of CCC (FC 0.5). In both stage I and stages II–IV of CCC,

PRAT4A, ANT2 and POLD2 were slightly upregulated (FC 1.4–

1.7), whereas C9orf89 and NOLA2 were slightly downregulated (FC

0.6–0.96). Thus, when comparing KSP37 expression levels in CCC

stage I with the more advanced stages of CCC, MDSC and

PDSC, a six- to eight-fold difference was detected. Further

analyses of the FC values in Figure 3 are shown in Table 2. The

mean mRNA profiles were almost identical when BBOC were

used as control tissue, but differed more when BNO were used

(Figure S2).

The mean mRNA expressions, given as loge transformed

original FC values, in the different ovarian carcinoma subgroups

were also compared (t-test). P-values less than 0.001 were used as

cut-off value for significance. POLD2 mRNA levels were

significantly higher in PDSC compared with both MDSC (FC

19.4 vs. 2.5; p = 1.761028) and CCC (FC 19.4 vs. 1.5;

p = 5.661028), whereas transcription levels of NOLA2 and ANT2

Table 1. Title and assumed function of six selected mRNAs [12].

Title Assumed function

Killer-specific secretory protein of 37 kDa; KSP37 Cytotoxic lymphocyte-mediated immunity [13]

Chromosome 9 open reading frame 89; C9orf89 CARD binding region* [29]

Protein associated with TLR4,A; PRAT4A TLR4 associated* [30]

Nucleolar protein family A, member 2; NOLA2 Associated with telomerase and snoRNPs [14]

Adenine nucleotide translocator 2; ANT2 ADP/ATP exchange [15]

DNA polymerase delta 2 small subunit; POLD2 DNA replication and repair [16]

*Unknown at project start. CARD: Caspase Recruitment Domain. TLR: Toll-like receptor. SnoRNPs: small nucleolar ribonucleoproteins. KSP37 is synonymous with
fibroblast growth factor binding protein 2; FGFBP2 (www.ncbi.nlm.nih.gov/genebank).

doi:10.1371/journal.pone.0013837.t001

POLD2, KSP37 in Ovarian Cancer
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were significantly higher in PDSC compared with CCC (FC 3.0

vs. 0.8; p = 3.061026 and FC 3.1 vs. 1.5; p = 5.761024,

respectively). The results were similar irrespectively of the control

tissue used (data not shown).

Correlation of mRNA expression to clinical, laboratory
and histological parameters

In a single-factor linear regression model, normalized FC values

of the six mRNAs, employing SNO as controls, were correlated

with clinical, laboratory and histological parameters. The

parameters shown in Table S1 as well as histological subgroups

were included in the regression analysis. The significant positive

correlations (p,0.05) between mRNA expression levels and these

parameters are shown in Table 3. Only KSP37 was significantly

associated with several clinical parameters, being positively

associated with favourable prognostic factors such as localized

disease, long progression-free survival (.18 months) and long

overall survival (.36 months). Furthermore, it was negatively

associated with unfavourable prognostic factors such as more

advanced disease, short progression-free survival and short overall

survival (data not shown). When correlating the FC values with

histological subgroups, KSP37 expression was positively associated

with CCC, whereas PRAT4A, NOLA2 and POLD2 were positively

associated with PDSC. The transcriptional levels of C9orf89 and

ANT2 did not correlate with any of the parameters.

Discussion

A major finding in this study was the strong upregulation of

POLD2 in PDSC compared to control tissues and other

histological subgroups of ovarian carcinomas examined. POLD2

is a subunit of the DNA polymerase delta complex, encoding a

protein involved in DNA replication and repair [16]. It is

downregulated by the PTEN tumour suppressor gene [17],

already known to be involved in ovarian carcinogenesis

[4,6,8,9]. In gliomas, a consistent pattern of chromosomal

Figure 1. Mean differential expression levels of six selected mRNAs (horizontal) in three subgroups of ovarian carcinomas
compared with three different control tissues (vertical). Log10 p-values of the T-test of delta Cq values are shown as heat-maps, where the
smaller the p-value, the brighter the blue colour (scale bar). P,0.05 represents significant differential expression. SNO: superficial scrapings from
normal ovaries. BBOC: biopsies from benign ovarian cysts. BNO: biopsies from normal ovaries.
doi:10.1371/journal.pone.0013837.g001
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alterations were found involving altered regions which harboured

seven ‘‘landscape genes’’ associated with patient survival, among

these POLD2 [18].

KSP37 mRNA levels were clearly and distinctly regulated in

early stage of CCC, another histological subgroup of ovarian

cancer. KSP37 is identified as FGFBP2, a member of the fibroblast

growth factor binding protein 2 family (www.ncbi.nlm.nih.gov/

genebank). It is expressed in cytotoxic T lymphocytes and natural

killer cells, and is suggested to have a ‘‘cytotoxic potential’’ which

so far has not been identified [13]. Yamanaka et al. found that a

high KSP37 expression in high-grade gliomas was positively

correlated with survival. Furthermore, KSP37 was more closely

correlated with survival than histological grade [19], while in the

present study, a positive correlation with histological type, clinical

stage as well as good prognosis was observed.

A challenge related to the understanding of molecular portraits of

ovarian cancer has been the lack of representative control tissue.

Histologically, EOC is thought to originate from the single layer of

ovarian surface epithelium (OSE) [5,7,20–22], which therefore

should be the most representative control tissue. Because the OSE

represents only a small fraction of the total ovary, the availability of

OSE RNA is limited. Zorn et al [23] compared the gene expression

profiles of OSE brushings, whole ovary samples, cultures of normal

OSE and immortalized OSE cell lines. The transcriptional profiles

were markedly distinct, but it was concluded that OSE brushings

were most representative as control material, since it is not exposed

to in vitro manipulations and does not contain stromal components.

In the present study, OSE, as represented by six superficial

scrapings from normal ovaries (SNO) was used as reference

material. Furthermore, three biopsies from normal ovaries (BNO)

and three biopsies from benign ovarian cysts (BBOC) were included

for additional comparisons. Our results showed that the investigated

six mRNAs were similarly expressed in SNO and BBOC, but

differed more in BNO (data not shown). Furthermore, the mRNA

levels of the carcinomas were similar both when compared to SNO

and BBOC, but different when compared to BNO (Figures 1,2,3

and Figure S1, S2). Apparently, SNO and BBOC showed

comparable transcriptional activity for these six mRNAs. The

findings are not unexpected, since the benign ovarian cysts used for

control tissue are believed to originate from OSE, whereas BNO

mainly consist of stromal tissue [7]. Thus, for study purposes, benign

cysts originating from OSE, being simpler to obtain than OSE, and

superficial scrapings of normal ovaries appear to be alternative

choices as control tissue for EOC.

Except for the marked upregulation of POLD2 in PDSC, the

expression levels of the other mRNAs in PDSC and MDSC were

similar, in agreement with a common tumourigenetic pathway for

moderately and poorly differentiated serous carcinomas as previously

suggested [10]. Thus, the fact that POLD2 mRNA expression

paralleled the dedifferentiation of MDSC to PDSC, increasing from

2.5-fold in MDSC to almost 20-fold in PDSC, underscores the

uniqueness of this transcript. Since patients with PDSC generally

have a worse clinical outcome than patients with MDSC, the

significantly higher POLD2 expression in PDSC compared with

MDSC could have a bearing on a poor prognosis, possibly through a

replication advantage in cells overexpressing POLD2.

The marked upregulation of KSP37 confined to CCC stage I, as

well as its positive association with clinical variables of good

prognosis, suggest also a possible predictive role of this transcript.

Even though these results are very much in concordance with

overall results from studies on other malignancies, the present

results are novel related to ovarian carcinomas and need to be

confirmed. The different transcriptional profiles for clear cell

carcinomas and serous carcinomas are in agreement with distinct

Figure 2. Differential expression levels of six selected mRNAs
(vertical) in 31 individual tissue samples (horizontal) of three
subgroups of ovarian carcinomas compared with superficial
scrapings from normal ovaries. Normalized log2 transformed
original FC values (Z-scores) are shown as heat-maps, where the
higher/lower the FC value, the brighter the red/green colour,
respectively (scale bar). Black colour illustrates no difference in FC
values of cancer tissue and control tissue.
doi:10.1371/journal.pone.0013837.g002
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tumourigenetic pathways for these carcinomas and also consistent

with other studies [24,25]. Although the present study is based on

a limited patient cohort of only three subgroups of ovarian

carcinomas, the strong association of two of the mRNAs with

histology, stage and outcome suggest that they may have potential

as cancer markers.

Materials and Methods

Patients and tissue material
The study was approved by the Regional Committee of Medical

and Health Research Ethics (REK) in Eastern Norway and all

participating women signed informed consent. Tissue specimens as

well as clinical and laboratory information were obtained from

women primarily operated for gynecological tumours at Oslo

University Hospital, Ulleval, in the period 2003 to 2008. All tissue

samples were snap-frozen in liquid nitrogen, except SNO, which

were transferred to 500 ml TRIzol solution (Invitrogen.com)

immediately after harvesting in order to avoid mRNA degrada-

tion. The samples were stored in a biobank at 280uC until

processed.

The expression of the six selected mRNAs was studied in a total

of 31 epithelial ovarian carcinomas and twelve benign samples.

The carcinomas included twelve MDSC (stage III–IV), eleven

PDSC (stage III–IV) and eight CCC (stage I–IV). Six SNO, three

BNO and three BBOC were used for comparison. SNO were

taken from the surface of normal ovaries by scraping the ovaries

with a scalpel, as cervical pap smear brushings yielded too little

material (data not shown). By this method, the vast majority of

harvested cells were immunologically verified as epithelial (data

not shown). The three benign cysts were cystadenofibromas,

containing both epithelial and stromal cells. BNO consisted almost

exclusively of stromal cells as confirmed by histology. In

accordance with the literature [23], we used OSE, represented

by SNO, as reference material. The histological diagnoses of all

samples were confirmed by an experienced pathologist.

Clinical and laboratory information was collected from hospital

records and additional preoperative patient interviews, shown in

Table S1. All patients and controls were of Western European

descent, postmenopausal (apart from two being perimenopausal)

and had no diseases influencing survival other than the ovarian

cancer. All patients but four (two with MDSC and two with

PDSC) were primarily operated by at least a total hysterectomy or

a uterus amputation, a bilateral salpingo-oophorectomy and an

omentectomy. No patients received neoadjuvant chemotherapy,

whereas all patients but three (one in each histological group)

received adjuvant chemotherapy. The effect of treatment was

evaluated by clinical examinations and serum CA125 measure-

ments at minimum.

Selected mRNAs
Six mRNAs were selected from a subtraction cDNA library of

human osteosarcoma [12]. They represented interesting candi-

date genes, being strongly upregulated in several osteosarcoma

and other malignant human cell lines, and showed a differential

expression between human cancers and normal tissues. Except

for C9orf89 and PRAT4A, whose identities and functions were

unknown at project start, these mRNAs code for proteins

possibly associated with malignancies. The titles and assumed

protein functions of the selected candidate mRNAs are shown in

Table 1.

Primer sequences
PCR primers (Table S2) were designed by using the Invitrogen

database and tested for homology with other sequences at the

Figure 3. Mean expression levels of six selected mRNAs in moderately and poorly differentiated serous carcinomas (stage III–IV)
and clear cell carcinomas (stage I and II–IV) compared with superficial scrapings from normal ovaries. Loge transformed original FC
values with standard deviation are shown as bar plots.
doi:10.1371/journal.pone.0013837.g003
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NCBI gene website (www.ncbi.nlm.nih.gov). All primers were

intron spanning to avoid co-amplification of genomic DNA.

RNA isolation
Tissue specimens were either crushed frozen or homogenized

directly for 262 minutes in 750 ml TRIzol using a Tissuelyzer

(Qiagen.com). Total RNA was extracted using the TRIzol method

according to the manufacturer’s instructions. Isolated total RNA

was quantified (Nano Drop spectrophotometer, Saveen Werner

AB) and quality controlled by the RNA Nano 6000 assay on the

Bioanalyzer 2100 system (Agilent). RNA integrity number (RIN)

and 28S/18S ratios were calculated to ensure a satisfactory RNA

quality and integrity of the samples. To remove genomic DNA,

total RNA was treated using RNase-free DNase I (Roche.com).

Total RNA was further purified on RNeasy MinElute clean up

spin columns (Qiagen.com), eluted with RNase free water,

aliquoted and stored at 280uC until analyzed.

Quantitative reverse transcription-polymerase chain
reaction (RT-qPCR)

One mg of total RNA from each sample was reversely

transcribed using 2.5 U/ml Omniscript enzyme (Qiagen.com), 1

X RT-buffer, 1 mM dNTPs, 2.5 mM oligo-d(T)-primer and 1 U/

ml RNase inhibitor (final concentrations) in a total volume of 20 ml

for one hour at 37uC. For all samples, a negative RT-control

without Reverse Transcriptase enzyme was included. cDNA was

PCR-amplified with primers from the six specific mRNAs and two

endogenous reference genes (b-actin and GAPDH) in replicate sets

of two to six, with a coefficient of variation of less than 1.6 percent.

The samples were analyzed on a real-time fluorescence Light-

Cycler instrument (Roche.com) according to the manufacturer’s

instructions in a final volume of 20 ml using a LightCycler Fast

start SYBR Green kit. PCR conditions essentially contained 2 ml

cDNA, 25 mM MgCl2 and 0.5 mM of forward and reverse

primers. The following cycle conditions were used: 10 min

denaturation at 95uC before 45 cycles at 95uC for 0 s, 56uC for

10 s and 70uC for 5 s.

Gene expression patterns for the six selected mRNAs were

calculated using the comparative crossing threshold method of

relative quantification (DDCq method) [26], and presented as

relative (DCq) and fold change (FC) values. All expression levels

were normalized to the reference genes separately, giving overall

similar results. b-actin quantification was most linear over a wide

dilution range and preferred as reference gene. DCq was

designated as the mean quantification cycle of an mRNA in a

tissue subtracted with the mean quantification cycle of a reference

RNA in the same tissue. DDCq was calculated as mean DCq of

each of the three different control groups subtracted by DCq of

each cancer tissue sample (mean of replicates), whereas FC was

2DDCq.

Table 3. Results of single-factor regression analysis.

KSP37 PRAT4A NOLA2 POLD2

Clinical parameters

FIGO stage I (all CCC) 7.961027

Progression-free survival $18 months 1.661022

Overall survival $36 months 3.361022

Status at last follow-up: Alive, no relapse of EOC 8.061025

Status at last follow-up: Alive, relapse of EOC 1.261022

Histological parameters

PDSC 1.861022 2.161023 1.261025

CCC 6.861023

CCC: Clear cell carcinomas. PDSC: Poorly differentiated serous carcinomas. EOC: Epithelial ovarian cancer. Significant positive correlations (p-values) between mRNA
expression levels and parameters are shown. Detailed explanation is given in Table 1 and Table S1.
doi:10.1371/journal.pone.0013837.t003

Table 2. Statistical analyses of the FC values shown in
Figure 3.

KSP37 C9orf89 PRAT4A NOLA2 ANT2 POLD2

PDSC,
stage III–IV

Average 0.70 1.17 2.77 3.03 3.12 19.42

Stdev 0.62 0.93 1.06 1.43 1.11 14.79

Min 0.07 0.50 1.24 1.36 1.51 5.90

Max 1.64 3.27 4.82 6.73 4.92 59.30

MDSC,
stage III–IV

Average 0.52 0.69 1.98 1.78 2.40 2.50

Stdev 0.39 0.46 1.15 1.42 2.36 1.13

Min 0.06 0.29 0.60 0.74 0.77 1.38

Max 1.42 1.79 3.97 6.06 9.42 4.66

CCC, stage I

Average 4.28 0.69 1.42 0.96 1.35 1.66

Stdev 3.11 0.46 1.32 0.50 0.28 1.54

Min 0.95 0.17 0.39 0.57 1.17 0.67

Max 8.40 1.29 3.34 1.68 1.77 3.94

CCC, stage II–IV

Average 0.49 0.64 1.38 0.73 1.60 1.43

Stdev 0.40 0.23 0.65 0.12 0.91 0.35

Min 0.12 0.36 0.90 0.56 0.82 1.11

Max 1.04 0.90 2.31 0.83 2.76 1.75

PDSC: Poorly differentiated serous carcinomas. MDSC: Moderately differentiated
serous carcinomas. CCC: Clear cell carcinomas. Stdev: Standard deviation. Min:
minimal value. Max: Maximal value. mRNA description is given in Table 1.
doi:10.1371/journal.pone.0013837.t002

POLD2, KSP37 in Ovarian Cancer
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Statistical analysis
Mean DCq values of each histological subgroup of ovarian

carcinomas were compared to mean DCq values of each control

group by performing a two-tailed t-test, presented in heat-maps by

log10 transformed p-values (Figure 1). Log2 transformed original

FC values of each individual sample (n = 31) were normalized (Z-

scores) and shown as heat-maps by applying a two-way clustering

method [27] (Figure 2 and Figure S1). Mean original FC values of

the three ovarian carcinoma subgroups were presented by loge

transformed bar plots (Figure 3 and Figure S2). Finally, a linear

regression model [28], testing the correlation of histological,

clinical and laboratory parameters with mRNA expression levels

given as normalized FC values, was used (Table 3).

Supporting Information

Figure S1 Differential expression levels of six selected mRNAs

(vertical) in 31 individual tissue samples (horizontal) of three

subgroups of ovarian carcinomas compared with biopsies from

benign ovarian cysts (a) and biopsies from normal ovaries (b).

Normalized log2 transformed original FC values (Z-scores) are

shown as heat-maps, where the higher/lower the FC value, the

brighter the red/green color, respectively (scale bar). Black color

illustrates no difference in FC values of cancer tissue and control

tissue.

Found at: doi:10.1371/journal.pone.0013837.s001 (1.92 MB TIF)

Figure S2 Mean expression levels of six selected mRNAs in

moderately and poorly differentiated serous carcinomas (stage III–

IV) and clear cell carcinomas (stage I and II–IV) compared with

biopsies from benign ovarian cysts (a) and biopsies from normal

ovaries (b). Loge transformed original FC values with standard

deviation are shown as bar plots.

Found at: doi:10.1371/journal.pone.0013837.s002 (2.74 MB

TIF)

Table S1 Clinical and laboratory information for patients

included.

Found at: doi:10.1371/journal.pone.0013837.s003 (0.05 MB

DOC)

Table S2 Primer sequences of six selected mRNAs.

Found at: doi:10.1371/journal.pone.0013837.s004 (0.04 MB

DOC)
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