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Abstract 

Purpose:  Diabetic foot is a common complication associated with diabetes mellitus (DM) leading to ulcerations in 
the feet. Due to diabetic neuropathy, most patients have reduced sensitivity to pain. As a result, minor injuries go 
unnoticed and progress into ulcers. The timely detection of potential ulceration points and intervention is crucial in 
preventing amputation. Changes in plantar temperature are one of the early signs of ulceration. Previous studies have 
focused on either binary classification or grading of DM severity, but neglect the holistic consideration of the prob-
lem. Moreover, multi-class studies exhibit severe performance variations between different classes.

Methods:  We propose a new convolutional neural network for discrimination between non-DM and five DM severity 
grades from plantar thermal images and compare its performance against pre-trained networks such as AlexNet and 
related works. We address the lack of data and imbalanced class distribution, prevalent in prior work, achieving well-
balanced classification performance.

Results:  Our proposed model achieved the best performance with a mean accuracy of 0.9827, mean sensitivity of 
0.9684 and mean specificity of 0.9892 in combined diabetic foot detection and grading.

Conclusion:  To the best of our knowledge, this study sets a new state-of-the-art in plantar foot thermogram detec-
tion and grading, while being the first to implement a holistic multi-class classification and grading solution. Reliable 
automatic thermogram grading is a first step towards the development of smart health devices for DM patients.

Keywords:  Diabetis mellitus, Diabetic foot ulceration, Thermography, Deep learning, Image processing, Medical 
image analysis
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Introduction
Diabetes mellitus (DM), or diabetes, is a condition 
characterized by excessive blood sugar levels. According 
to the World Health Organization (WHO), over 422 
million people worldwide suffer from diabetes [1]. 
Diabetes results in several complications such as diabetic 

retinopathy which damages the retina and may result in 
blindness, diabetic nephropathy which affects the kidney 
and diabetic neuropathy which causes nerve damage and 
results in loss of sensation. Another complication that 
presents itself in Diabetics is ulceration or destruction 
of tissues of the foot. Diabetic Foot Ulcers (DFUs) are 
open sores or lesions that will not heal or that recur 
over a long period of time. The lifetime occurrence of 
a foot ulceration in diabetic patients is estimated to be 
up to 25% [2]. Furthermore, foot ulcers reoccur after 
healing, with a recurrence incidence of 40% within 1 
year, 60% within 3 years, and 65% within 5 years [3]. 
When accompanied by diabetic neuropathy, the patient 
does not feel any pain and may not realize the presence 
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of an ulcer. Ulcerations are the precursor leading to 
amputation in more than 85% of major amputations [4].

Proper management and foot care can help in the 
prevention of foot ulcers. If the onset or occurrence of 
ulcerations are identified at an early stage, appropriate 
preventive measures or interventions can be taken to 
avoid amputations. Prior to the appearance of any foot 
ulcer, there is an increase in the local temperature due 
to an underlying inflammatory process [5]. Studies 
provide robust evidence that in addition to the standard 
treatment, thermometry of the feet is effective in 
reduction of the incidence of new foot ulcers [5]. In [6] 
three methods for monitoring plantar temperature have 
been identified, namely infrared thermometers, infrared 
cameras and liquid crystal thermography (LCT). In 
case of IR thermometers, the users have to measure 
and record the temperature manually at pre-identified 
risk points. The LCT technology requires the patient to 
place their feet on a LCT indicator plate, which describes 
the temperature distribution of the foot through the 
imprint. The imprint remains for a short duration and 
it is compared with a template. Recently, however, IR 
thermography has emerged as the preferred mode for 
measuring the temperature owing to its non-invasive and 
non-contact method.

Infrared thermography uses thermal cameras to detect 
heat patterns and blood flow. Temperature differences 
between the feet may indicate the development of foot 
ulceration [7]. A case study by Bagavathiappan et al. [8] 
identified an association between plantar temperature 
and diabetic neuropathy, and substantiated the efficacy of 
thermography for diabetic foot diagnosis.

Thermograms reveal the distribution of plantar tem-
perature which is symmetrical in both feet of non-dia-
betic subjects, with elevated temperature in the arc of the 
foot, resembling a butterfly pattern. However, in diabetic 
patients this pattern is not observed. The emphasis is 
on the temperature distribution across both feet, rather 
than the observed value of the temperature at a point 
for determining points of ulceration. Thermograms for 
a non-diabetic and a diabetic individual are shown in 
Fig.  1, where the previously discussed thermal distribu-
tion patterns can be observed.

There are two popular methods for processing 
thermograms [9]: 

1.	 Asymmetric analysis
2.	 Temperature distribution analysis

Asymmetric analysis is based on the butterfly pattern 
of temperature distribution, where asymmetry in this 
distribution indicates abnormality. The temperature is 
measured at a point and compared with the temperature 

at the same location on the corresponding foot in order 
to determine a point of ulceration. If the temperature 
difference is more than 2.2 ◦ C, it is registered as a point of 
ulceration. This method has the disadvantage of not being 
applicable for patients with deformities or partial foot 
amputations. The second approach involves analysing the 
temperature distribution for each foot independently by 
calculating a reference value with respect to temperature 
distribution in healthy individuals. It is intrinsically 
inclusive of patients with deformities or amputation 
because it does not require comparison between points 
across the feet.

Several studies [10–13] support the evidence that 
temperature-monitoring systems constitute feasible and 
efficient strategies to identify the onset of ulcerations. 
Deep learning (DL) has shown great success in several 
medical application domains such as radiology [14], 
dermatology [15] and opthalmology [16]. A series of 
works have been published, reporting high performance 
for classification and grading of diabetes-related diseases 
such as diabetic retinopathy [17] and diabetic neuropathy 
[18]. However, the classification and detection of diabetic 
foot ulcers is still largely underrepresented in the domain 
of DL-based medical image analysis. To the best of our 
knowledge, only a single work [19] using DL for DFU 
classification has been published. There have been 
several studies using DL, which we have included under 
related works. Moreover, previous works using ML or DL 
have largely neglected the consequences of imbalanced 
data on the classification, most of them considered only 
limited settings of binary or multi-level classification.

In this work, we follow a new, holistic classification 
approach considering thermograms from non-diabetic 
as well as diabetic subjects. This allows our proposed 
convolutional neural network (CNN)-based system to 
both distinguish between diabetic and non-diabetic 
thermograms, based on the deviation from symmetry, 
while also providing a severity grading of the diabetic 

Fig. 1  Symmetrical thermal distribution observed in a non-diabetic 
subject (left) and absent in a diabetic subject (right)
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thermograms into five distinct classes. In contrast 
to previous works, we directly address the biased 
classification that occurs due to the limited availability 
of mostly imbalanced datasets, and explore the influence 
of different input encodings. Using five  fold cross-
validation, we achieve a state-of-the-art performance 
with a mean accuracy of 0.9827, mean sensitivity of 
0.9684 and mean specificity of 0.9892 in combined 
diabetic foot detection and grading.

The rest of the paper is organised as follows. In “Related 
works” section, we provide a short review of previous 
works on the analysis of plantar foot thermograms. 
“Materials and methods” section briefly describes the 
dataset used, as well as the classification pipeline of our 
proposed approach. Experimental investigations along 
with the results are presented in “Experiments” section. 
Finally, the results are discussed in “Discussion” section, 
followed by a conclusion of our work.

Related works
Several works on the analysis of plantar foot 
thermograms have been proposed in the past [19–26]. 
An overview of the different methods, along with 
performances and datasets used is given in Table 1.

Liu et  al. [20] proposed a system for automatic 
detection of diabetic foot complications using 
asymmetric analysis. An accompanying color image 
is used to guide the segmentation as well as non-rigid 
landmark-based registration to overcome the issue of feet 
blending in with the surrounding ambient temperature.

Saminathan et al. [21] carried out asymmetric analysis 
using handcrafted temperature and texture features 
extracted from the thermograms. A support vector 
machine (SVM) then used these attributes to identify the 
region as normal or ulcer.

Vardasca et  al. [22] proposed a system based on the 
k Nearest Neighbours (kNN) classifier. The authors 
identify the points of the foot with the highest risk of 

ulceration and compute temperature features at each of 
these points.

Sudha et al. [26] analyzed the temperature distribution 
pattern in both healthy and diabetic participants using 
statistical methods.

Filipe et  al. [23] have proposed a binary classifier for 
distinguishing between thermograms of diabetic and 
non-diabetic subjects. A temperature index computed 
using a clustering approach is used for classification 
between the two groups.

Eid et  al. [24] proposed a system that is capable 
of distinguishing between four grades of diabetic 
complications. The authors incorporate both 
histogram and texture features, which are provided 
to a classifier, and claim that the combined features 
improve performance. The authors have compared the 
performance of kNN, SVM and Decision Tree, with kNN 
having the best results.

Khandakar et  al. [25] experimented with several 
models for binary classification of plantar thermograms 
into diabetic and non-diabetic subjects. They have also 
investigated relevant features, feature selection and 
optimization techniques in order to increase the model 
performance. The authors compared using a single foot 
thermogram with a using dual foot thermograms as input 
and found that the latter performs better. However, this 
proposed approach reintroduces the previous limitation 
of not being inclusive of subjects with amputation. 
The authors report the best performance and smallest 
inference time by Adaboost classifier coupled with 
feature selection using random forest.

Cruz-Vega et  al. [19] compared the performance of 
standard machine and deep learning based methods 
including pre-trained networks against their specifically 
proposed CNN. Addressing the low number of training 
samples, the authors propose using patches of the feet 
rather than the entire image and also enlarging the data-
set using data augmentation. The authors performed a 
multi-level DM grading using One-vs-One classification. 

Table 1  Summary of the previous efforts in plantar foot thermogram analysis along with the reported results

Author Methods Dataset Performance metrics

D M C G Accuracy Specificity Sensitivity Precision F-Score

Liu [20] Asymmetric 76 0 – 0.9840 0.9780 – –

Saminathan [21] SVM 36 24 0.9561 0.9241 0.9650 – –

Vardasca [22] kNN 56 0 0.9250 – – – –

Filipe [23] k-means 122 45 – – 0.7300 – 0.8100

Eid [24] kNN 50 0 0.9680 0.9910 0.8830 0.9690 0.9230

Khandakar [25] AdaBoost 122 45 0.9671 0.9458 0.9671 0.9670 0.9670

Cruz-Vega [19] DFTNet 110 0 0.9453 0.9375 0.9534 0.9401 0.9457
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The reported results reveal a high discrepancy between 
the performance of different classes. Moreover, their 
patch-based approach is likely to disregard important 
information encoded in a foot’s overall temperature 
distribution.

Our proposed work consolidates holistic efforts 
towards practicable DM classification and grading, 
tackling drawbacks of previous approaches such as 
the dependence on dual foot imagery and imbalanced 
classification performance.

Materials and methods
In this section, we discuss the dataset used as well as 
the classification pipeline for our proposed multi-class 
CNN. Figure 2 depicts the steps involved in the proposed 
pipeline ranging from data labelling, preparation to 
model training.

The publicly available dataset used in this study [27] 
consists of 122 diabetic subjects and 45 control group 
subjects. The dataset is processed and labeled according 
to the thermal change index (TCI) introduced in [28]

Thermal change index (TCI)
TCI is a quantitative index that was proposed by the data-
set’s authors in a previous study [28]. This approach pro-
posed that each foot be analyzed independently with the 
reference butterfly pattern of the control group. As a result, 
this method is similar to the contralateral comparison or 
asymmetric analysis, but it is still applicable when there are 
constraints, such as deformities or amputations. The foot 
is divided into angiosomes for calculating the TCI. Angi-
osomes define distinct vascular areas that are supplied by 
specific arteries. Using the outline defined by the angi-
osomes, regional plantar temperatures are calculated. Here 

the foot is divided into four angiosomes, namely medial 
plantar artery (MPA), lateral plantar artery (LPA), medial 
calcaneal artery (MCA), and lateral calcaneal artery (LCA). 
The four angiosomes of the feet are shown in Fig. 3.

The TCI value is the mean temperature difference of 
corresponding angiosomes between a diabetic subject 
and the reference values obtained from the control group’s 
mean temperature per angiosome. For the control group, 
the mean temperature values were computed and reported 
as MPA  =  25.8  °C, LPA  =  25.7  °C, MCA  =  26.4  °C, 
LCA  =  26.1  °C. Since each foot is assessed individually 
using a temperature index derived from angiosome 
temperature differences, it is not affected by deformities 
or amputations and does not rely on deviation of 
symmetry between the feet to determine ulcerations. The 
computation of TCI for a thermogram is given by the 
formula below, where ang ∈ (MPA, LPA, MCA, LCA)

(1)TCI =

∑
|CGang − DMang |

4

Fig. 2  Overview of the methodology depicting the sequence of steps from data preparation to training

Fig. 3  Division of a thermogram into four regions as defined by the 
angiosomes for computing TCI
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Thermogram classes
According to the TCI value, the individual thermo-
grams are categorized into one of five classes. Labels 
are assigned based on the following conditions: Class 1: 
TCI ≤ 2 ; Class 2: 2 < TCI ≤ 3 ; Class 3: 3 < TCI ≤ 4 ; 
Class 4: 4 < TCI ≤ 5 ; Class 5: TCI > 5.

In our study, thermograms from the control group 
were included as Class 0 in addition to the five classes in 
diabetic subjects. The class distribution of the raw dataset 
of individual thermograms is shown in Fig. 4.

Class balancing
The extremely skewed distribution of thermogram 
classes poses a high risk of imbalanced classification 
performance. Imbalanced classification refers to 
a classification problem in which the number of 
instances in each class in the training dataset is not 
evenly distributed. To address the imbalanced dataset, 
different techniques can be used. Both oversampling 
and undersampling are not used due to the low number 
of overall samples present in the dataset, and the risk 
of overfitting when training from scratch. Advanced 
techniques for the generation of synthetic data are 
not trivial in the image space, and are therefore not 
considered. Instead, we investigate the application of 
weighted classification as well as data augmentation for 
balanced classification performance.

Weighted classification: By purposefully adjusting the 
class weights, a higher importance can be assigned to 
minority classes. In our experiments, we assign class-
weights using the inverse sample frequency for a given 
target task.

Data augmentation: Data augmentation is a simple 
and effective technique for enlarging a dataset without 
drastically increasing the risk of overfitting. For each 
image in the original set, data augmentation generates 
multiple slightly different versions of images. The 

utilised augmentation techniques include image 
rotation, scaling, flipping, and cropping. Figure  5 
shows the implemented augmentation operations 
such as zoom, rotation, flip and shear applied to the 
thermograms.

Data augmentation can be implemented offline 
or online. In this study, we first perform offline data 
augmentation and combine it with the original dataset. 
In the process, we address the class imbalance by 
augmenting the minor class more in comparison to 
the larger classes. This process is applied only on 
the training data and we preserve the original class 
distribution in the validation data to make sure the 
model is assessed in a way that is close to a real world 
setting. This step of data balancing is critical, as merely 
augmenting an already-imbalanced data will further 
drive the imbalance by several magnitudes.

Subsequently, we also perform online augmentation 
as a part of the CNN training process, introducing 
variations in contrast, brightness, image quality as well 
as additional affine transforms. Figure  6 depicts the 
distribution of thermograms across classes following 
data balancing and augmentation.

We used stratified five  fold cross-validation to parti-
tion the data. Cross-validation allows for the most opti-
mal comparison with previous works, lacking public 

Fig. 4  Distribution of thermograms across the six classes

Fig. 5  Different augmentation operations applied to a thermogram

Fig. 6  Distribution of thermograms across the six classes after offline 
augmentation and balancing
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data split information, and for the best possible evalua-
tion of model performance under limited data.

Deep learning model
To alleviate the problems of limited data availability, a 
common approach is to use transfer learning. Transfer 
learning is an approach wherein model weights, pre-
trained on a related task are reused as the starting 
point for the fine-tuning of the model on a target task. 
Here we perform transfer learning using a pre-trained 
AlexNet which takes images in the size of 227× 227.

The feet and correspondingly the dimensions of the 
plantar thermograms are rectangular in shape. Pre-
trained models are rigid in their input requirements, 
as they need images to be resized into fixed square 
dimensions. This issue was also discussed by Cruz-
Vega et al. [19], where the authors make use of rectan-
gular patches of the foot. Another motivation for using 
patches instead of the whole thermogram is to increase 
the size of the data.

However, both patch-based transformation and 
resizing of input images bears the risk of losing patterns 
and information related to the temperature distribution 
of the overall thermal image. Therefore, we propose 
a CNN accepting individual thermograms of size 
( 180× 80 ) as input, using a network structure inspired 
by the work of Cruz et  al. [19] as depicted in Fig.  7. 
The model includes a dropout layer which is randomly 
enforced during training to avoid overfitting the data.

Experiments
To accurately measure the model’s performance and 
expose any biases, the metrics are calculated at the class 
level. For each class we compute accuracy, specificity, 
sensitivity, precision, and F-measure.

Overcoming data imbalance
To assess the effect of the small and skewed dataset, we 
first train AlexNet with the default parameters on the 

raw dataset without any external augmentation. Then, 
we train using weighted classes, where minority classes 
are given a higher weight, and a misclassification is 
penalised to a greater degree. Finally, we train on the 
augmented and balanced data.

The results are reported in Table 2. We observed dras-
tically inconsistent results in different experiments using 
the raw dataset, with only a marginal improvement in the 
results using weighted classification. Using a balanced 
dataset through external augmentation resulted in the 
best performance across all metrics.

Exploring different input formats
We try improving the results achieved with AlexNet, by 
using different input formats. The default approach is 
resizing the images into square images as per the require-
ments of AlexNet. However, in order to preserve the 
spatial patterns in the thermograms which would inevi-
tably be distorted by resizing, we use padding to bring 
the thermogram to the required input size. Finally, we 
slightly modify the AlexNet architecture to accept rec-
tangular inputs of the size 180× 80.

Table  3 presents the results of training with different 
input formats. It can be seen that both training with the 

Fig. 7  Overview of the proposed CNN architecture describing the layers and their sequence

Table 2  Addressing small and skewed data through 
weighted classes and augmentation

Data Accuracy Specificity Sensitivity

Imbalanced data 0.9103 0.9352 0.7283

Weighted classes 0.9154 0.9484 0.7722

Augmented data 0.9335 0.9681 0.8773

Table 3  AlexNet trained with resized, padded and rectan-
gular input images

Input Accuracy Specificity Sensitivity

Resized 0.9335 0.9681 0.8773

Padded 0.9542 0.9710 0.8903

Rectangular 0.9480 0.9686 0.8669



Page 7 of 9Muralidhara et al. Health Information Science and Systems           (2022) 10:21 

padded and rectangular input resulted in a better perfor-
mance across all metrics. This indicates that maintaining 
thermal patterns in the thermogram is critical for a robust 
classification. A reason for the lower performance of the 
rectangular input, is the partial loss of pre-trained weights 
due to the introduced modifications.

Holistic classification
We consider two levels of multi-class classification, 
namely 5-class classification of the diabetic thermograms 
and a 6-class classification including the non-diabetic 
thermograms as an additional class. We argue that the 
holistic consideration of diabetic samples of different 
grades along with non-diabetic thermograms, adds 
additional relevant information during the training process, 
resulting in a more robust classifier. Moreover, this holistic 
perspective allows for a broader applicability in real-world 
scenarios.

Table  4 shows that the 6-class classification results in 
only slightly lower overall performance, although the 
task’s difficulty is increased. Class-wise metrics of the 
6-class classifier for one  fold are presented in Table  5. It 
can be seen that the classification performance is equally 
distributed between all classes, indicating that the model 
is not biased towards a single class. When training on the 
original imbalanced data, a significant model bias towards 
classes 1 and 5 was observable, with low sensitivity to class 
3.

From Fig. 8, it can be observed that the performance of 
the model is largely unaffected even with the inclusion of 
the control group as the 6th class. The non-diabetic ther-
mograms found in Class 0, are very similar to the ther-
mograms in Classes 1 and 2 in terms of the observed 
temperature values, but differ in terms of the distribution 
pattern. As a consequence of using the entire thermogram 
instead of image patches, the thermal distribution patterns 
are preserved and the model is able to differentiate between 
these closely related classes.

Table  6, compares our proposed approach with pre-
trained AlexNet as well as all related studies. Alexnet and 
the proposed CNN were trained with the same data, with 
input image constraints imposed by the networks taken 
into account. In Table  6 we listed all approaches that, to 
the best of our knowledge, proposed relevant works on 
the publicly available dataset [27] of foot thermograms 
which has been used in our study. This way, we provide a 

fair comparison of our method. Due to the lack of other 
DFU datasets, other comparisons are not possible at this 
moment. We also make a distinction with respect to the 
mode of classification. The studies with binary classifica-
tion differentiate between thermograms of diabetic and 
non-diabetic subjects. Cruz-Vega et  al. [19] have carried 
out multi-level classification, which involves combinations 
of one-vs-one binary classifiers covering the five classes. As 

Table 4  Results from 5 vs. 6-class classification

Classes Accuracy Specificity Sensitivity

5-Classes 0.9836 0.9889 0.9583

6-Classes 0.9800 0.9875 0.9583

Table 5  Class-wise metrics reporting the performance of 
our proposed holistic model classifying non-diabetic vs. 
different severity grades of DM

Class Accuracy Specificity Sensitivity Precision F-Measure

Class 0 0.9867 0.9968 0.9365 0.9833 0.9593

Class 1 0.9920 0.9936 0.9844 0.9692 0.9767

Class 2 0.9947 0.9936 1.0000 0.9688 0.9841

Class 3 0.9947 0.9968 0.9836 0.9836 0.9836

Class 4 0.9813 0.9840 0.9677 0.9231 0.9449

Class 5 0.9867 0.9968 0.9365 0.9833 0.9593

Average 0.9893 0.9936 0.9681 0.9686 0.9680

Fig. 8  Multi-class confusion matrix from validation split of 5-class vs 
6-class classification
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can be seen from the table, with the best results highlighted 
in bold, our results outperform previous work on plantar 
foot thermogram classification on most metrics, although 
tackling a more difficult 6-class classification task.

Discussion
A review of the previous literature on plantar foot 
thermogram analysis revealed a significant imbalance 
in previously proposed diabetic foot grading systems, 
caused by highly imbalanced class distributions in 
public datasets. We explored different methods to 
overcome the classifier biases induced by imbalanced 
data and found that a combination of offline and online 
data augmentation leads to an even distribution of 
classification metrics. Class-weighted classification 
potentially failed due to the remaining low diversity of 
input samples in underrepresented classes.

The experiments in “Exploring different input formats” 
section clearly indicate the importance of the image 
integrity for thermogram classification. It is possible that 
resizing leads to artefacts which corrupt some important 
pattern in the thermal distribution of the images.

Moreover, the incorporation of non-diabetic 
subjects turned out to be advantageous for the overall 
classification performance, leading to a holistic view of 
plantar foot thermogram detection and grading.

Several studies [29–31] have demonstrated the 
effectiveness of infrared thermography as a diagnostic 
tool for the early prediction of ulceration. However, one 
of the remaining limitations in the widespread use of 
thermography for the detection and grading of diabetic 
subjects is the lack of standardized thermal imaging. 
The range used to indicate the temperature value differs 
across acquisition systems. This lack of a standard 
methodology hinders the generalizability and practical 
implementation of such decision support systems. 
Another challenge in assessing the generalizability of 
proposed algorithms is the dearth of publicly available 
datasets for evaluation. To the best of our knowledge, 
the dataset utilized in this study is the only one that is 
publicly available, to this date.

Conclusion
Amputations resulting from diabetic foot ulcerations 
can be prevented if the ulcerations are diagnosed early 
on and corrective methods such as pressure offloading, 
special orthopedic shoes, or a modification in gait are 
implemented.

This study is the first to present a holistic multi-class classi-
fication of thermal plantar foot images for the prediction and 
grading of diabetic subjects. In contrast to previous work, 
considering only binary classification or severity grading, we 
organized thermograms into six classes, depending on the 
TCI value, offering a more practical and holistic view on the 
problem. Publicly available data is scarce and often imbal-
anced, leading to a bias towards overrepresented classes 
and low sensitivity towards underrepresented classes. We 
addressed this issue by investigating different methods pre-
venting imbalanced classification, explored the influence of 
different data input formats for thermograms, and compared 
transfer learning with common CNNs to the application of 
custom architectures.

Our results indicate that a mixture of offline and 
online data augmentation is best suited for detection 
and grading of diabetic subjects. We also found that 
maintaining the original aspect ratio of thermogram 
images is extremely important. To the best of our 
knowledge, this study sets a new state-of-the-art for 
the detection and grading of plantar foot thermograms, 
achieving a mean accuracy of 0.9827, mean sensitivity 
of 0.9684 and mean specificity of 0.9892.

As future work, we would like to evaluate previous and 
our proposed methods for the prediction of exact ulcera-
tion points from the thermogram data. Another promising 
direction is the inclusion of clinical data with thermogram 
imagery to predict the likelihood of amputations.
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