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Abstract: Hypertension is an important public health challenge, affecting up to 30–50% of adults
worldwide. Several epidemiological studies indicate that high blood pressure originates in fetal
life—the so-called programming effect or developmental origin of hypertension. Iron-deficiency
anemia has become one of the most prevalent nutritional problems globally. Previous animal exper-
iments have shown that prenatal iron-deficiency anemia adversely affects offspring hypertension.
However, the underlying mechanism remains unclear. We used a maternal low-iron diet Sprague
Dawley rat model to study changes in blood pressure, the renal renin-angiotensin system, oxidative
stress, inflammation, and sodium transporters in adult male offspring. Our study revealed that
16-week-old male offspring born to mothers with low dietary iron throughout pregnancy and the
lactation period had (1) higher blood pressure, (2) increased renal cortex angiotensin II receptor type
1 and angiotensin-converting enzyme abundance, (3) decreased renal cortex angiotensin II receptor
type 2 and MAS abundance, and (4) increased renal 8-hydroxy-2′-deoxyguanosine and interleukin-6
abundance. Improving the iron status of pregnant mothers could influence the development of
hypertension in their offspring.

Keywords: hypertension; iron deficiency; oxidative stress; programming; renin-angiotensin system

1. Introduction

Hypertension is an important public health challenge, affecting approximately 30–50%
of adults worldwide [1]. Hypertension is associated with a considerably higher risk
of adverse cardiovascular and renal outcomes including heart failure, ischemic stroke,
intracerebral hemorrhage, myocardial infarction, chronic kidney disease, and end-stage
renal disease [2–5]. Hypertension results from complex interactions between genetic and
environmental factors. Although the exact etiology of primary hypertension remains
unclear, some risk factors (e.g., age, obesity, race, family history, reduced nephron number,
high-salt diet, excessive alcohol consumption, and physical inactivity) are profoundly but
independently associated with its development [6]. However, several epidemiological
studies have indicated that high blood pressure arises from fetal life [7–9]—the so-called
programming effect or the developmental origin of hypertension [10]. Paauw et al. [11]
emphasized that pregnancy can be a window of opportunity to improve the long-term
cardiovascular health of children; they proposed that improved perinatal care potentially
reduces the incidence of hypertension and burden of cardiovascular disease in later life.

Iron-deficiency anemia (IDA) has become one of the most prevalent nutritional prob-
lems worldwide, particularly in preschool-age children, women of reproductive age, and
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even in high-income countries [12]. Pregnancy is associated with an increase in iron de-
mand for the expansion of blood volume and growth of the fetus, placenta, and other
maternal tissues, therefore, the risk of IDA is increased. Recent animal experiments have
shown that prenatal IDA adversely affects offspring hypertension. The mechanism un-
derlying the developmental disturbances in the pathological process of hypertension is
poorly understood.

2. Results
2.1. Effect of Low-Iron Diet on Mother Rats

There was no significant difference in the dams’ body weight from 42 d/o to 63 d/o
between the low-iron-diet and control-diet groups. Serum iron concentration was signifi-
cantly lower in dams who had consumed the low-iron diet for 14 days than in those who
had consumed the control diet. The mothers’ hemoglobin concentration was significantly
lower after 3 weeks of the low-iron diet (Table 1).

Table 1. Mothers’ body weights, serum iron, and hemoglobin concentrations after taking control or
low-iron diet (from 42 d/o) (N = 6 in each group).

Day-Old 42 49 56 63

Body weight (g) Control diet 180.5 ± 16.9 200.5 ± 13.5 221.9 ± 16.9 239.8 ± 14.1
Low-iron diet 184 ± 10 204 ± 7.2 228.5 ± 10 243.7 ± 13.2

Serum Iron (µM) Control diet 58 ± 7.4 58.2 ± 2.7 70.1 ± 9.7 42.6 ± 5.9
Low-iron diet 38.3 ± 1.2 40.5 ± 0.6 23.9 ± 4.2 ** 16.4 ± 4.5 **

Hemoglobin (g/dL) Control diet 14.5 ± 0.1 14.7 ± 0.4 14.4 ± 0.5 14.8 ± 0.1
Low-iron diet 14.2 ± 0.1 14.6 ± 0.3 13.3 ± 0.5 12± 0.6 *

* vs. control diet, p < 0.05; ** vs. control diet, p < 0.01.

2.2. Body Weight, Serum Iron, and Hemoglobin Concentration of Adult Male Offspring

At 16 weeks of age, the body weight of male offspring in the LLL group was lower than
that of those in the other three groups. Serum iron concentration was lower in the LLL group
than in the SC group. There was no significant difference in hemoglobin concentration
among the four groups, which revealed that hemoglobin concentration recovered but serum
iron concentration was still low after feeding with the control diet (Table 2).

Table 2. Adult male offspring’s body weights, serum iron, and hemoglobin concentrations at 16 w/o
(N = 8 in each group).

Group SC LCC LLC LLL

Mean ± SD

Body weight (g) 567.1 ± 6.2 542.1 ± 24.8 552.4 ± 24.7 463.75 ± 13.3 ** # §

Serum Iron (µM) 33.5 ± 1.5 28.5 ± 5.8 22.6 ± 5.2 19.6 ± 4.2 *

Hemoglobin (g/dL) 15.9 ± 0.3 16 ± 0.2 15.9 ± 0.5 15.5 ± 0.5

* vs. SC, p < 0.05; ** vs. SC, p < 0.01; # vs. LCC, p < 0.05; § vs. LLC, p < 0.05.

SC, offspring of sham group. LCC, offspring of mother taking iron-deficient diet before
mating. LLC, offspring of mother taking iron-deficient diet before mating and pregnancy.
LLL, offspring of mother taking iron deficient diet before mating, pregnancy, and lactation.

2.3. Blood Pressure and Kidney Index

As shown in Figure 1, blood pressure was significantly higher in the LLL group than
in the SC and LCC groups in the 8-week-old (w/o) offspring. Blood pressure was higher in
the 16 w/o rats in the LLL group than in those in the other three groups. Kidney weight was
lower in the LLC and LLL groups than in the SC group; however, there was no difference
in kidney index (left kidney weight/body weight) among the four groups (Figure 2).
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Figure 1. Blood pressure of offspring. (A) At 8 weeks old (N = 8 in each group). (B) At 16 weeks
old. Four groups were evaluated by one-way ANOVA with the LSD post hoc test. * vs. SC, p < 0.05;
** vs. SC, p < 0.01; # vs. LCC, p < 0.05; ## vs. LCC, p < 0.01.
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2.4. Renin Angiotensin System

The amount of angiotensin I (ANG I) in the renal cortex of the offspring was lower
in the SC group than in the other three groups. The level of angiotensin-(1–7) (ANG 1–7)
was lower in the LLL group than in the other three groups (Figure 3). As shown in
Figures 4 and 5, renal angiotensin II type 1 receptor (AT1R) and angiotensin-converting
enzyme (ACE) abundance were higher in the LLL group than in the SC group. The
abundance of angiotensin II type 2 receptor (AT2R) and MAS were lower in the LLL group
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than in the SC group. There was no difference in the abundance of ACE2 among the
four groups.
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Figure 4. Offspring renal cortex AT1R, AT2R, MAS, and ACE abundance. Four groups were evaluated
by one-way ANOVA with the LSD post hoc test. * vs. SC, p < 0.05; *** vs. SC, p < 0.001; # vs. LCC,
p < 0.05; ### vs. LCC, p < 0.001; § vs. LLC, p < 0.05.
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2.5. Renal Cortex Sodium Transporter

The abundance of serum and glucocorticoid-inducible kinase 1 (SGK1) was lower in
the LCC group than in the SC group. There was no difference in the level of sodium-chloride
cotransporter (NCC) among the four groups (Figure 5).

2.6. Renal Cortex IL-6 and 8-OHdG

The abundance of interleukin 6 (IL-6) was higher in the LLC and LLL groups than
in the SC and LCC groups (Figure 5). Higher 8-hydroxy-2′-deoxyguanosine (8-OHdG)
intensities were observed in the LCC, LLC, and LLL groups than in the SC group (Figure 6).
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3. Discussion

We reported that maternal iron deficiency may program adult male offspring blood
pressure. Our study showed that the adult male 16 w/o offspring of a mother with a
low-iron diet before pregnancy and throughout the lactation period had (1) higher blood
pressure; (2) increased renal cortex AT1R and ACE abundance; (3) decreased renal cortex
AT2R and MAS abundance; and (4) increased renal 8-OHdG and IL-6 abundance.

Barker et al. found that birth weight was inversely correlated with increased early
death secondary to coronary heart disease [13]. Gluckman et al. proposed the concept
of development of health and disease and emphasized the importance of influences on
early development that interact with developmental plasticity to determine patterns of
noncommunicable chronic diseases [14]. Gillman stated that it was implausible that a
mother’s exposure to stress or toxins while pregnant, how she fed her offspring during
infancy, and how fast the offspring grew during childhood can determine that offspring’s
risk for chronic disease as an adult [15]. Therefore, maternal factors can influence a baby’s
future profoundly.

Numerous factors are involved in the pathogenesis of the developmental program-
ming of hypertension, including epigenetic processes, glucocorticoids, reduced nephron
number, activation of the sympathetic nervous system and renin-angiotensin system (RAS),
and endothelial dysfunction [16–18]. Suboptimal environmental conditions during fetal
development, such as maternal illnesses, exposure to environmental chemicals, and medi-
cation use during pregnancy and lactation, are also reportedly relevant to the development
of hypertension in adult offspring [19–21]. Maternal nutrition acts as a double-edged sword
in the developmental programming of hypertension. An imbalance in maternal nutrition
causes hypertension in offspring, and some nutritional interventions during pregnancy
and lactation may work as reprogramming strategies to reverse programming processes
and prevent the development of hypertension [22].

Recommendations for iron supplementation for pregnant women vary across coun-
tries, with no routine use by Canadian and Australian health authorities, but universal
supplementation exists, with 30 mg/day of iron recommended by the United States Center
for Disease Control and 30–60 mg/day recommended by the WHO [23,24]. In the UK, an
iron supplement was suggested if the serum ferritin level was less than 30 ug/L [25]. In
New Zealand, doctors screen for hemoglobin and serum ferritin levels of pregnant women
at a gestational age of 26–28 weeks, and supply them with 65 mg/day if iron deficient and
130 mg/day if IDA [24]. In our study, we used the iron supplementation dose of 2.9 mg/kg
in the experiment group and 52.3 mg/kg in the control group, which was published pre-
viously [26]. We can see the occurrence of lower serum iron concentration was before the
drop of hemoglobin in dams who have consumed the low-iron diet. This mimics a common
clinical scenario, in which some patients have IDA before pregnancy, when the increased
demands or blood-volume expansion from pregnancy have not happened yet.

3.1. Programming Hypertension and IDA

Lewis et al. found that blood pressure was elevated in 3-month-old rats whose mothers
were iron-restricted during pregnancy [27]. They also reported that systolic blood pressure
was higher in the offspring of iron-restricted dams at 16 months of age [28]. Gambling et al.
reported that male (but not female) pups born to iron-deficient dams had higher blood
pressures than their normal counterparts [29]. In our study, we found that offspring of
dams that consumed the low-iron diet before conception and throughout gestation and
lactation had the highest blood pressure, which is comparable with the results of previous
reports. The results of human studies were heterogeneous, however, some studies did
not check for direct biomarkers of iron status, such as serum ferritin [30]. Lindberg et al.
reported that low-birth-weight children who received iron supplementation (1 or 2 mg
iron/kg/day) in infancy had lower systolic blood pressures at 7 years of age [31]. This
observation suggests that the increased risk of hypertension observed in children and
adults who are born smaller might be reduced with early iron supplementation [31]. It
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is worth noting that a significant decrease in serum iron levels occurs earlier than that in
hemoglobin levels in dams fed a low-iron diet. Iron deficiency could be present before
anemia and might cause programming effects despite normal hemoglobin levels. The
speed at which iron deficiency is corrected can also affect the programming effect.

3.2. Programming Hypertension and RAS and IDA

The importance of the RAS in the developmental programming of hypertension has
been shown by the ACE inhibitor to normalize blood pressure in undernourished offspring,
relative to their control counterparts [32]. Vehaskari et al., reported that young offspring of
low-protein dams showed decreased plasma renin activity and increased renal expression
of AT1R, which was associated with an increase in plasma aldosterone levels [33,34]. In
addition, the relative importance of RAS was demonstrated by the normalization of blood
pressure observed with chronic RAS blockade [35].

Few studies have explored the role of the RAS in blood pressure programming by
maternal dietary-iron restriction in rats. Lewis et al. reported that serum ACE concentra-
tions were significantly elevated in the offspring of iron-restricted dams at 3 months but
not at 14 months of age [28]. The elevation of blood pressure in iron-restricted offspring
does not appear to be mediated by changes in ACE levels. Local regulation of the RAS and
changes in other components of the RAS may contribute to the elevated blood pressure
observed in this model. In our study, increased renal cortex AT1R and decreased levels of
renal cortex AT2R, ACE2, and MAS reemphasized the fact that the RAS, whether classical
or non-classical, played an important role in programming hypertension by IDA.

3.3. Programming Hypertension and Oxidative Stress and IDA

Oxidative stress (OS) is thought to be a cause, consequence, or potentiating factor in
the development of hypertension [35]. Pretreatment of undernourished mothers during
gestation with antioxidants prevents the development of hypertension in offspring [36].
Our previous work revealed that dimethyl fumarate administration during pregnancy
protected adult offspring from the hypertension programmed by prenatal dexamethasone
plus a postnatal high-fat diet (which are relevant to the downregulated mRNA expression
of renin, angiotensinogen, ACE, and AT1R) [37]. In addition, maternal undernutrition is
associated with increased OS in the placenta, indicating that exposure to OS originates in
early life [38].

Woodman et al. reported that prenatal IDA caused hypoxia, mitochondrial dysfunc-
tion, and an increase in reactive oxygen species in term rat fetuses [39]. These adverse
outcomes were organ- and sex-specific, and the kidneys of male fetuses exposed to prenatal
ID were most affected [40], suggesting that renal development is particularly sensitive to
programming effects. Aly et al. reported that dietary iron supplementation in pregnant
women with IDA had an antioxidant effect with a significant decrease in the concentration
of OS markers and an increase in antioxidant activity [41]. In our study, we found that
increased renal cortex 8-OHdG intensity suggested that OS plays an important role in
programming hypertension by IDA.

3.4. Programming Hypertension and Inflammation and IDA

Systemic inflammation contributes to the development of cardiovascular diseases,
including endothelial dysfunction, atheroma plaque formation, acute thrombotic complica-
tions, and hypertension [42]. Maternal serum IL-6 concentrations are positively associated
with fetal growth, thus linking the maternal proinflammatory environment to intrauterine
overgrowth in obese mothers [43]. Maternal obesity and a high-fat diet reportedly program
offspring hypertension [44]. Wei et al. reported that prenatal exposure to lipopolysac-
charide resulted in increased blood pressure in rats [45]. In our study, we found that
renal cortex IL-6 increased in the LLL group (which is compatible with previous reports),
suggesting that inflammation plays an important role in programming hypertension.
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3.5. Programming Hypertension and Sodium Transporter and IDA

Inappropriate tubular sodium reabsorption may play an important role in mediating
hypertension (in adults) induced by adverse fetal environments. The upregulation of
renal sodium transporters may contribute to hypertension in the fetal programming of
hypertension. Bertram et al. found that the mRNA expression of the apical Na+-K+-
ATPase pump increased in low-protein-exposed offspring [46]. Manning et al. reported
that the thick, ascending-limb bumetanide-sensitive Na+-K+-2Cl- cotransporter and distal
convoluted tubule thiazide-sensitive NCC were upregulated prior to the development of
hypertension [47]. In our study, we did not observe changes in SGK-1 and NCC in the LLL
group, although hypertension was noted. Thus, the role of renal sodium transporters may
differ in different stages and models of fetal programming of hypertension.

Our study has several limitations. First, we only studied male offspring in this study.
Next, the relative markers in some possible mechanisms were only partially studied. Never-
theless, we have explored four possible mechanisms in programming hypertension. Further
study, including female offspring in the experiments and a searching deprogramming strat-
egy, is indicated for the future.

4. Materials and Methods
4.1. Animals and Experimental Design

We purchased 6-week-old virgin Sprague Dawley (SD) rats (BioLASCO Taiwan Co.,
Ltd., Taipei, Taiwan) and housed them in the animal care facility in Chang Gung Memorial
Hospital, Kaohsiung, Taiwan in a 12 h light/dark cycle (the lights were turned on at 7 a.m.).
All purified diets (Research Diets Inc.) were based on the AIN-93G diet and were similar in
composition except for the iron concentration, which was 2.9 mg/kg in the low-iron diet
(D03072501) and 52.3 mg/kg in the control diet (D10012G).

Blood was drawn from the tail vein of SD female rats, and the iron profile and
hemoglobin concentrations were checked every week for 3 weeks, after feeding them
with their respective diets. Next, they were allowed to mate with the male rats for 24 h.
They were then separated from the male rats and housed individually in a standard plastic
home cage, one day later. Dams consuming the control diet were maintained on it through-
out pregnancy and the lactation period. Dams consuming the low-iron diet were randomly
divided into three groups: (1) control diet through pregnancy and lactation; (2) low-iron
diet during pregnancy, but control diet during the lactation period; and (3) low-iron diet
throughout pregnancy and lactation. To decrease gender interference, only male rats were
used in this study. Their offspring were, therefore, categorized into four groups according
to maternal diet: (1) SC group: offspring of dams fed the control diet throughout the whole
course; (2) LCC group: offspring of dams fed a low-iron diet before pregnancy; (3) LLC
group: offspring of dams fed a low-iron diet before lactation; and (4) LLL group: offspring
of dams continuously receiving the low-iron diet. All the offspring received the control diet
after weaning; they were sacrificed at 16 + 1 weeks of age by rompun + zoletil and exsan-
guination (Supplementary Materials Figure S1). Blood and kidney samples were collected
for further analysis. The protocols described herein were approved by the Animal Care and
Use Committee (Chang Gung Memorial Hospital, Kaohsiung, Taiwan, No. 2019030502),
with minimal animal suffering during the experiments.

4.2. Blood Pressure Measurement

We measured the blood pressure of conscious rats at 8 and 16 weeks of age, using the
indirect tail-cuff method (BP-2000, Visitech Systems, Inc., Apex, NC, USA) after systematic
training. To ensure accuracy and reproducibility, the rats were adapted to restraint and
tail-cuff inflation for 7 days before the experiment commenced, and measurements were
taken between 1:00 PM and 5:00 PM daily. Rats were placed on the device platform and
their tails were passed through tail cuffs and secured in place with a tape. After a 10-min
warm up period, 10 preliminary cycles were performed to allow the rats to adjust to cuff
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inflation. For each rat, five measurements were recorded at each time point, as previously
described [48]. Three consecutive stable measurements were obtained and averaged.

4.3. Immunohistochemistry

Reactive oxygen species can damage cellular structures such as nucleic acids, proteins,
and lipids. Hydroxyl radicals damage all components of DNA molecules, including
purine, pyrimidine, and deoxyribose structures; 8-OHdG is an important biomarker for
the evaluation of oxidative DNA damage [49]. For immunohistochemical staining, the
renal cortex was dissected, fixed, cut into sections (4 µm thick), and transferred onto
polylysine-coated slides. Sections were immunostained for 8-OHdG. Immunoreactivity
was demonstrated using horseradish peroxidase-3′-diaminobenzidine cell- and tissue-
staining kits.

4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

The RAS plays an important role in the regulation of renal, cardiac, and vascular
physiology, and its activation is central to many common pathologic conditions, including
hypertension. Plasma ANG I and ANG 1-7 levels were determined by ELISA with adequate
dilution, as indicated.

4.5. Western Blot Assay

Infiltration of innate and adaptive immune cells and other inflammatory processes in
the kidneys and other organs occurs in individuals with hypertension [50,51]. Of these cells,
IL-6 is positively correlated with hypertension [52]. The expression and phosphorylation of
the NCC are regulated by dietary salt, potassium, and SGK1 and affect blood pressure reg-
ulation [53]. Renal AT1R, AT2R, ACE, ACE2, MAS, SGK 1, NCC, and IL-6 were examined
by Western blotting, as previously described [54]. Briefly, measurements were conducted
on the kidney (100–200 µg of total protein). We used primary antibodies, including AT1R,
AT2R, ACE, ACE2, MAS, SGK 1, and IL-6, followed by secondary antibodies. Bands of
interest were visualized using enhanced chemiluminescence reagents and quantified by
densitometry as integrated optical density (IOD) after subtracting the background. The IOD
was factored for Ponceau S staining to correct for any variations in total protein loading.
Protein abundance was represented as IOD/PonS.

4.6. Statistical Analyses

Biochemical parameters, pathology, and Western blot data were analyzed by one-way
analysis of variance with a least significant difference post hoc test. All analyses were
performed using SPSS software on a compatible personal computer. Values were expressed
as mean ± standard error of mean, and significance was defined as p < 0.05 for all tests.

5. Conclusions

This study is likely to enhance our understanding of the mechanisms by which ma-
ternal iron-deficiency affects blood pressure in offspring. Improving the iron status of
pregnant mothers could positively influence the future development of hypertension in
their offspring. These studies have major potential clinical significance because many adult
diseases may develop in children, even before birth.
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