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Abstract

Background: Clostridium difficile is an anaerobic, spore-forming bacterium that is the most common cause of healthcare-
associated diarrhea in developed countries. Control of C. difficile is challenging because the spores are resistant to killing by
alcohol-based hand hygiene products, antimicrobial soaps, and most disinfectants. Although initiation of germination has
been shown to increase susceptibility of spores of other bacterial species to radiation and heat, it was not known if
triggering of germination could be a useful strategy to increase susceptibility of C. difficile spores to radiation or other
stressors.

Principal Findings: Here, we demonstrated that exposure of dormant C. difficile spores to a germination solution containing
amino acids, minerals, and taurocholic acid resulted in initiation of germination in room air. Germination of spores in room
air resulted in significantly enhanced killing by ultraviolet-C (UV-C) radiation and heat. On surfaces in hospital rooms,
application of germination solution resulted in enhanced eradication of spores by UV-C administered by an automated
room decontamination device. Initiation of germination under anaerobic, but not aerobic, conditions resulted in increased
susceptibility to killing by ethanol, suggesting that exposure to oxygen might prevent spores from progressing fully to
outgrowth. Stimulation of germination also resulted in reduced survival of spores on surfaces in room air, possibly due to
increased susceptibility to stressors such as oxygen and desiccation.

Conclusions: Taken together, these data demonstrate that stimulation of germination could represent a novel method to
enhance killing of spores by UV-C, and suggest the possible application of this strategy as a means to enhance killing by
other agents.
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Introduction

Clostridium difficile is an anaerobic bacterium that is the most

common cause of healthcare-associated diarrhea in developed

countries [1]. During the past decade, the emergence of an

epidemic C. difficile strain, termed North American pulsed-field gel

electrophoresis type 1 (NAP1) or restriction endonuclease analysis

(REA) type BI, has been associated with large outbreaks of C.

difficile infection (CDI) in North America and Europe [1,2]. These

outbreaks have posed enormous challenges for infection control

programs in hospitals and long-term care facilities. One feature of

C. difficile that is particularly problematic for control efforts is the

formation of spores. C. difficile spores are resistant to killing by

alcohol-based hand hygiene products and by antimicrobial soaps

that are commonly used in healthcare facilities [3]. C. difficile

spores survive for months on surfaces and are resistant to killing by

many commonly used disinfectants [4]. Moreover, low levels of

some disinfectants may actually promote increased sporulation by

C. difficile [5,6]. Sodium hypochlorite (bleach) is a disinfectant with

sporicidal activity, but it has several disadvantages, including being

corrosive to many materials, irritating to some patients and staff

members, and dependent on correct application by housekeepers

[7]. There is a need for new strategies to reduce the burden of C.

difficile spores on skin and in the environment.

Spore germination is defined as the irreversible loss of spore-

specific properties and is an essential step required prior to

outgrowth of vegetative cells [8,9]. Because germinated spores

become more susceptible to killing by heat and other stressors,

induction of germination could be a potential strategy to facilitate

eradication of C. difficile spores. This strategy has been studied as a

possible measure to eliminate spores from food products (i.e.,

addition of germinants to reduce heat resistance of spores) [10].

Initiation of germination has been shown to increase susceptibility of

spores of Bacillus spp. (B. subtilis, B. coagulans, and B. cereus) and

Clostridium botulinum to killing by radiation and heat [11–15]. It is not

known if initiation of germination of C. difficile spores results in

similar increased susceptibility to killing by radiation or a variety of

other stressors. However, Wheeldon et al. [16] recently demon-

strated that exposure of C. difficile spores to the germinant sodium

taurocholate resulted in increased susceptibility to killing by copper.
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We previously demonstrated that a mobile, automated room

disinfection device that utilizes ultraviolet-C (UV-C) radiation is

effective in killing C. difficile spores and other pathogens (i.e. the

Tru-DTM Rapid Room Disinfection device, Lumalier, Memphis,

TN) (author’s unpublished data). Although promising, the UV-C

device did not completely eradicate spores from surfaces and ,45

minutes were required to disinfect a 1-bed hospital room on the

spore setting (i.e., a reflected dose of 22,000 mWs/cm2). Here, we

tested the hypothesis that triggering germination could provide a

novel strategy to enhance UV-C-induced killing of C. difficile spores

on surfaces, thereby reducing the time and radiation dose

necessary for disinfection of hospital rooms with the UV-C device.

In addition, we evaluated the potential for initiation of

germination to enhance killing of C. difficile spores by heat,

alcohol, and exposure to room air.

Materials and Methods

Ethics Statement
Bacterial strains isolated from patients were collected from the

Cleveland Veterans Affairs Medical Center. The Institutional

Review Board of the Cleveland VA Medical Center approved the

study protocol for collection of all patient isolates. Informed

consent was not obtained because the isolates were cultured from

clinical samples with no collection of patient identifiers or

interaction with subjects.

C. difficile, MRSA, and VRE Strains
Two C. difficile strains from the American Type Culture

Collection (ATCC) and 2 strains cultured from patients with

CDI in Cleveland were studied. ATCC 43593 and 43598 are from

serogroups B and F, respectively. VA 17 is an epidemic restriction

endonuclease analysis (REA) BI strain and VA 11 is an REA J

strain. An MRSA pulsed-field gel electrophoresis type USA300

(i.e., community-associated MRSA strain) and a vanB-type VRE

isolate (C68) were included for comparison in the initial UV-C

experiments.

Preparation of C. difficile Spores
Spores were prepared by growth on Duncan and Strong agar

medium as previously described [17,18]. Briefly, pre-reduced

Duncan-Strong plates were spread with 100 mL of a four hour

culture (0.8 McFarland) of C. difficile grown in enriched brucella

broth. The plates were incubated for one week at 37uC in an

anaerobic chamber and then for one week at room temperature

on the bench-top. Spores were harvested from the plates using

sterile swabs and two mL of sterile distilled water and absolute

ethanol (50% final concentration). Spores were washed four times

by centrifuging at 30006g for 5 min and re-suspending in 1 mL of

sterile distilled water. Spores were stored at 4uC in sterile water

until use. Prior to testing, spore preps were confirmed by phase

contrast microscopy and malachite green staining to be .99%

dormant, bright-phase spores.

Spores were also prepared similarly on BHI agar and TSA

supplemented with 5% sheep blood. There were no significant

differences in the results of any of the experiments performed

based upon the spore preparation medium (author’s unpublished

data).

Germination of C. difficile Spores
Germination was induced using a defined medium consisting of

amino acids, minerals and taurocholic acid as listed in Table 1.

Germination was confirmed by two methods: 1) bright (dormant

spores) to dark (germinating spores) phase transition under phase

contrast microscopy and 2) a modified Wirtz-Conklin stain was

performed as previously described by Hamouda et al. [19] to

differentiate between dormant (green) or germinated (pink) spores.

The amount of spores used, application of the germination

medium and length of time spores were exposed to the

germination medium were variable and described in detail for

each individual experiment.

Determination of Optimal Doses of UV-C for Killing of
Germinating Versus Dormant C. difficile Spores, MRSA,
and VRE

Initial experiments were conducted with spores of one strain of

C. difficile (strain VA17) to determine if germination of spores in

room air results in enhanced killing by UV-C and to determine the

optimal UV-C doses for killing of spores on surfaces. We also

examined optimal doses of UV-C for killing of MRSA and VRE.

Ten ml aliquots of the organisms were allowed to air dry on

laboratory bench tops 3 feet from the UV-C device. Surfaces

inoculated with C. difficile spores were sprayed with either sterile

deionized water (i.e., negative controls) or germination solution 5

minutes before UV-C was administered. The surfaces were

subjected to specific reflected doses of UV-C radiation with the

device or left untreated (i.e., controls). Pre-moistened swabs were

applied to the surfaces and plated directly onto selective agar

plates and the number of colonies recovered was counted. For C.

difficile recovery, the swabs were transferred to an anaerobic

chamber (Coy Laboratories, Grass Lake, MI) and plated onto pre-

reduced C. difficile brucella agar (CDBA) [18]. Swabs from VRE

and MRSA specimens were plated onto Enterococcosel agar

(Becton Dickinson, Cockeysville, MD) containing 20 mg/mL of

Table 1. Formulation of Clostridium difficile spore
germination solution consisting of amino acids, minerals and
taurocholic acid prepared in sterile deionized water.

Component Concentration Component Concentration

(mg/L) (mg/L)

Amino acid Mineral

Histidine 100 KH2PO4 300

Trytophan 100 Na2HPO4 1500

Glycine 100 NaCl 90

Tyrosine 100 CaCl2.2H2O 26

Arginine 200 MgCl2.6H2O 20

Phenylalanine 200 MnCl2.4H2O 10

Methionine 200 (NH4)2SO4 40

Threonine 200 FeSO4.7H2O 4

Alanine 200 CoCl2.6H2O 1

Lysine 300 NaHCO3 5000

Serine 300

Valine 300 Bile salt

Isoleucine 300 Taurocholic acid 1000

Aspartic acid 300

Leucine 400

Cysteine 500

Proline 600

Glutamic acid 900

doi:10.1371/journal.pone.0012285.t001
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vancomycin and CHROMagar (Becton Dickinson) containing

6 mg/mL of cefoxitin, respectively. All plates were incubated for

48 hours.

For each pathogen, the inoculum applied to the bench top was

adjusted such that 104 to 105 colony-forming units (CFU) were

recovered from the control specimens. Reflected UV-C doses

ranging from 5,000 to 22,000-mWs/cm2 were applied; the time to

apply the doses ranged from ,5 to 45 minutes. The reflected doses

recommended by the manufacturer are 12,000 and 22,000 mWs/

cm2 for killing of vegetative organisms and spores, respectively.

The experiments were repeated four times.

Examination of Susceptibility of Germinating and
Dormant Spores to UV-C, Heat, and Ethanol

Because the initial experiments indicated that initiation of

germination in room air increased susceptibility of spores of one C.

difficile strain to UV-C, all 4 experimental strains were tested to

determine the effect of initiation of germination on susceptibility to

UV-C radiation at 12,000- mWs/cm2 (i.e., the vegetative killing

dose). In addition, we assessed the effect of initiation of

germination on susceptibility to heat (80uC for 5 minutes) and

90% ethanol. Ten ml aliquots of dormant spores (105 CFU) were

inoculated into 200 ml sterile deionized water or germination

solution. Suspensions were mixed thoroughly to allow saturation

with ambient oxygen and incubated at room temperature for 5

minutes. To assess susceptibility to UV-C radiation, 10 ml aliquots

of each spore suspension were inoculated onto bench tops and left

untreated (i.e., negative controls) or subjected to UV-C as

previously described. Exposure to the dose of UV-C required

,10 minutes. The spore counts on surfaces after exposure were

assessed as described previously. Heat susceptibility was assessed

by placing half of each spore suspension in an 80uC water bath for

5 minutes and ethanol susceptibility was assessed by adding 10 ml

of each spore suspension to 90 ml of either absolute ethanol or

sterile deionized water. After heat or ethanol exposure, the

samples were transferred to the anaerobic chamber, serially

diluted, and plated on CDBA agar. Following 48 hours of

incubation, colonies of C. difficile were counted and log reduction

was calculated. The experiments were repeated three times.

Evaluation of UV-C Killing of Dormant and Germinating
C. difficile Spores from Surfaces in Hospital Rooms

To evaluate the potential benefit of initiation of germination in

a real-world setting, we assessed the effectiveness of UV-C

radiation administered at a reflective dose of 12,000-mWs/cm2

(i.e., vegetative killing dose) for eradication of dormant versus

germinating C. difficile spores from high-touch surfaces in hospital

rooms. The call light, bedside table, telephone, bed rail and toilet

were split into three areas and inoculated with spores of ATCC

strain 43593 (,104 CFU in 10 mL aliquots). After drying in room

Figure 1. Optimal doses of ultraviolet-C radiation for killing germinating versus dormant Clostridium difficile spores, MRSA, and
VRE. Mean reduction (log10 colony-forming units) in recovery of C. difficile spores from an epidemic NAP1/BI strain, a PFGE type USA 300 strain of
methicillin-resistant Staphylococcus aureus (MRSA), and a vanB-type strain of vancomycin-resistant Enterococcus (VRE) from laboratory bench top
surfaces after the use of a UV-C device at reflected doses ranging from 5,000 to 20,000 mWs/cm2. C. difficile spores were incubated in either water or
germination solution for 5 minutes before exposure to UV-C radiation. Spores were confirmed as dormant or germinated by phase contrast
microscopy.
doi:10.1371/journal.pone.0012285.g001
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air, the samples were sprayed with sterile deionized water (two

areas) or germination solution (one area). One of the areas sprayed

with water served as a before treatment control; pre-moistened

swabs were used to collect samples before UV-C radiation. The

remaining two areas were treated with UV-C radiation and pre-

moistened swabs were used to collect post-treatment samples. The

cultures for C. difficile were processed as described previously.

Effect of Anaerobic Conditions and Increased
Temperature on Ethanol Susceptibility of Dormant and
Germinating Spores in Solution

Because initiation of germination did not increase susceptibility

of spores to killing by ethanol in room air, we examined whether

increased temperature and/or anaerobic conditions would

facilitate killing of germinated spores by ethanol. Ten ml of

dormant spores of epidemic strain VA17 (104 CFU) were

inoculated into 200 ml of oxygenated or pre-reduced germination

solution. Aerobic and anaerobic spore suspensions were incubated

at either room temperature (22uC) or in an incubator at 37uC. An

anaerobic gas pack system (BD GasPak, Becton Dickinson,

Franklin Lakes, NJ) was used to maintain anaerobic conditions

outside of the anaerobic chamber. Ten ml aliquots were transferred

into an anaerobic chamber at several time points during a 24 hour

period and inoculated into 90 ml of absolute ethanol or sterile

deionized water. The samples were serially diluted and plated on

CDBA agar. Following 48 hours of incubation, colonies of C.

difficile were counted and log reduction was calculated.

Survival of Dormant and Germinating C. difficile Spores
on Surfaces in Room Air

It is possible that initiation of germination might result in

decreased survival of C. difficile spores on surfaces in room air by

increasing susceptibility to desiccation, oxygen, or other stressors.

Therefore, we assessed survival of dormant and germinating

spores of the four C. difficile strains in room air either in solution or

on surfaces. Ten mL of dormant spores were inoculated into

200 mL of either sterile deionized water or germination solution.

Four aliquots (10 mL) of each spore suspension were inoculated

onto four types of surface materials (i.e. plastic, wood, glass and

laboratory bench top). Spore suspensions on surfaces dried within

30 minutes of inoculation. At several time points over a 24 hour

period pre-moistened swabs were applied to the surfaces,

transferred to the anaerobic chamber, and plated directly onto

selective agar plates. Colonies recovered from the surfaces were

counted at each time point and compared with baseline (time zero)

levels of spores. Aliquots of the spores in either sterile deionized

water or germination solution were also transferred into an

anaerobic chamber at several time points during a 24 hour period

and quantitative cultures were performed. Experiments were

repeated twice.

Figure 2. Examination of susceptibility of germinating and dormant spores to ultraviolet-C radiation, heat, and ethanol. Spores of
the four experimental strains were incubated in either sterile deionized water or germination solution under ambient conditions for five minutes
(confirmed as bright or dark-phase). Spores were exposed to ultraviolet-C (UV-C) radiation (12,000 mWs/cm2), heat (5 minutes at 80uC), or 90%
ethanol. Mean reduction (log10 colony-forming units) in viable spores was assessed by enumerating serially diluted plate cultures before and after
exposure to UV-C, heat and ethanol.
doi:10.1371/journal.pone.0012285.g002
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Data Analysis
Data were analyzed using STATA 9.0 (StataCorp, College

Station, TX). Continuous data were analyzed using unpaired t

tests and categorical data were assessed using Fisher’s exact

test.

Results

Determination of Optimal Doses of UV-C for Killing of
Germinating Versus Dormant C. difficile Spores, MRSA,
and VRE

Figure 1 shows the average reduction of C. difficile isolate VA17,

with and without pre-treatment with germination solution, and of

the MRSA and VRE test strains, in response to different reflected

doses of UV-C. For the MRSA and VRE strains, greater than 3

log reductions occurred at each reflected dose with no enhance-

ment of killing at higher doses. Killing of dormant C. difficile spores

increased as the reflected dose increased, and a reflected dose of

20,000-mWs/cm2 requiring ,45 minutes was required to achieve

a 3 log reduction. In contrast, spores exposed to germination

solution had increased susceptibility to UV-C such that a reflected

dose of 10,000-mWs/cm2 requiring only ,10 minutes was

sufficient to achieve a 3 log reduction. It was confirmed that

germination occurred within 5 minutes after exposure to the

germination solution, as indicated by a change of spores from

bright to dark phase under phase contrast microscopy and by

change from green to pink color after staining with a modified

Wirtz-Conklin stain [19].

Examination of Susceptibility of Germinating and
Dormant Spores to UV-C, Heat, and Ethanol

Figure 2 shows the mean reductions of dormant versus

germinating spores in response to treatment with UV-C radiation

at 12,000-mWs/cm2 (i.e., the vegetative killing dose), heat to 80uC
for 5 minutes, and 90% ethanol. Dormant spores were not killed

by heat or ethanol exposure, but UV-C treatment resulted in a 1

to 1.8 log reduction in dormant spores. Stimulation of germination

did not enhance killing by ethanol (P = 1), but killing by heat and

UV-C was enhanced (P,0.001 for germinated versus dormant

spores). For UV-C exposure, the increase in killing for germinated

versus dormant spores ranged from 0.85 log (strain VA17) to 2.15

log (strain ATCC 43593) (P,0.001 for each strain comparison).

Evaluation of UV-C Killing of Dormant and Germinating
C. difficile Spores from Surfaces in Hospital Rooms

UV-C treatment at a reflective dose of 12,000-mWs/cm2 for

,20 minutes reduced recovery of dormant spores by 1.3 log

(P,0.001). Stimulation of germination resulted in a further 0.9 log

reduction (P,0.001). Germinating the spores reduced the

frequency of positive cultures on commonly touched surfaces in

patient rooms from 78% (44 of 52 sites) to 15% (6 of 27 sites) after

a reflective dose of 12,000 mWs/cm2 (P,0.001).

Figure 3. Effect of anaerobic conditions and increased temperature on ethanol susceptibility of dormant and germinating spores in
solution. An epidemic NAP1/BI strain of Clostridium difficile spores was incubated in germination solution either aerobically or anaerobically at 22uC
or 37uC. Mean reduction (log10 colony-forming units) in viable spores was assessed after exposure to 90% ethanol at several time points over
24 hours by enumerating serially diluted plate cultures.
doi:10.1371/journal.pone.0012285.g003
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Effect of Anaerobic Conditions and Increased
Temperature on Ethanol Susceptibility of Dormant and
Germinating Spores in Solution

Figure 3 shows the mean reductions (log10 CFU/mL) of spores

germinating under various conditions after exposure to 90%

ethanol. Germinating spores were not significantly reduced by

exposure to 90% ethanol during the 24 hour testing period in the

presence of room air at either 22uC or 37uC (P = 0.5). However,

spores became increasingly susceptible to ethanol while germinat-

ing under anaerobic conditions for 24 hours. The increased

susceptibility of spores to killing by ethanol was independent of

temperature; there was no significant difference whether incubated

anaerobically at 22uC or 37uC (P = 0.66). After 24 hours of

exposure to germination solution under anaerobic condition,

spores were dark phase and swollen under phase contrast

microscopy however no mature vegetative cells were visualized.

Survival of Dormant and Germinating C. difficile Spores
on Surfaces in Room Air

Figure 4 shows the mean reductions of dormant and

germinating spores exposed to room air on surfaces (desiccated)

or in solution. There was no significant difference among the four

strains of C. difficile tested or in recovery of spores from different

types of surfaces (i.e. plastic, wood, glass or laboratory bench top).

Spores suspended in water were confirmed to be dormant by

phase contrast microscopy during the 24 hour test period. In

comparison to spores suspended in water or sprayed with water

and desiccated on a surface, spores suspended in germination

solution demonstrated significant reductions in viable counts

recovered at 1, 3, and 24 hours (P,0.005). In comparison to

spores suspended in germination solution, spores sprayed with

germination solution and desiccated on a surface demonstrated a

trend toward significant reductions in viable counts recovered at 1

and 3 (P = 0.07), but not 24 hours (P = 0.76).

Discussion

We found that exposure of dormant C. difficile spores to

germination solution resulted in initiation of germination in room

air. Germination of the spores in room air significantly enhanced

killing by UV-C radiation and heat, but not by ethanol. On

surfaces in hospital rooms, application of germination solution

resulted in significantly enhanced eradication of spores by UV-C

such that the ,15 minute vegetative cycle of the UV-C device

provided a greater than 2 log reduction in recovery of spores.

Stimulation of germination also resulted in reduced survival of

spores on surfaces in room air, possibly due to increased

susceptibility to stressors such as oxygen and desiccation. These

findings demonstrate that stimulation of germination could

Figure 4. Survival of dormant and germinating C. difficile spores on surfaces in room air. Spores of the four experimental strains were
incubated in sterile deionized water or germination solution under ambient conditions. Spore either remained in solution or were allowed to
desiccate on surfaces over a 24 hour period. Mean reduction in recovery of viable dormant and germinating spores exposed to room air on surfaces
(desiccated) was compared with baseline levels of spores inoculated onto surfaces. Mean reduction of viable spores in solution was assessed by
enumerating serially diluted plate cultures at each time point in comparison with baseline levels of spores.
doi:10.1371/journal.pone.0012285.g004
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represent a novel method to enhance killing of C. difficile spores by

UV-C, and suggest the possible application of this strategy as a

means to enhance killing by other agents.

Spore germination consists of two distinct constitutive stages

[20]. Stage I is composed of three processes: 1) release of H+,

monovalent cations and Zn2+ from the spore core (increasing core

pH from ,6.5 to 7.7), 2) release of dipicolonic acid and Ca2+ from

the spore core, and 3) increase in the spore core’s hydration. Stage

II is composed of two processes: 1) hydrolysis of the spore’s cortex,

and 2) swelling of the spore core due to further increase in

hydration and expansion of the germ cell wall. Following stage I

and II of germination the conditions are favorable for metabolism

to resume during outgrowth. Because vegetative cells are

susceptible to killing by ethanol, our findings suggest that spore

germination was initiated in room air by exposure to the

germinant solution, but that the process was stopped at an

intermediate point prior to outgrowth (i.e., germination of spores

in room air did not result in susceptibility to killing by ethanol). In

contrast, initiation of germination under anaerobic conditions did

result in susceptibility to killing by ethanol, suggesting that

exposure to oxygen might prevent C. difficile spores from

progressing fully to outgrowth.

Our findings have important practical applications. First,

reducing the time required for use of UV-C devices might

significantly increase the feasibility of their use in hospital settings

that require rapid disinfection of rooms. Our findings suggest that

application of a germinant solution could reduce the time required

for disinfection of CDI rooms from ,45 minutes (i.e., the spore

cycle) to ,15 minutes (i.e., the vegetative cycle). Because spore

contamination is not uncommon in non-CDI rooms in hospitals

[21,22], application of a germination solution in non-CDI rooms

may be beneficial in outbreak situations. Second, stimulation of

germination of C. difficile spores resulted in reduced survival on

surfaces in room air. Therefore, stimulation of germination could

potentially be beneficial as a strategy to reduce the burden of

spores in the environment even in the absence of UV-C treatment.

Finally, our findings should stimulate additional research to

identify other stressors that might kill germinated spores. As noted

previously, Wheeldon et al [16] recently reported that exposure of

C. difficile spores to a germinant (sodium taurocholate) under

aerobic conditions resulted in enhanced killing on copper surfaces.

Our study has some limitations. First, only 4 strains of C. difficile

were studied. However, the results were consistent for each of the

4 strains. Second, it is not known which components of the

germination solution are essential to stimulate germination to a

stage in which enhanced killing by stressors such as UV-C are

possible. Further studies of C. difficile germination are needed.

Third, the studies in hospital rooms involved inoculation of spores

onto surfaces rather than spore contamination from CDI patients.

Additional studies are needed in CDI rooms. Fourth, it is possible

that factors such as organic matter might reduce the efficacy of

germination solutions and of UV-C. A previous study has

demonstrated that gross particulate matter (silica powder)

significantly reduced UV-C’s effectiveness in killing spores [23].

However, in practice, hospital rooms would be cleaned to remove

organic material prior to application of germination solution and

UV-C. Finally, as previously described by Gould et al. [12] a

persistant ‘‘superdormant’’ fraction of spores remains unaltered by

exposure to germinants. More recently Ghosh and Setlow [24]

isolated superdormant spores of Bacillus subtilis and Bacillus

megaterium and found that super-dormant spores require an

increased signal for triggering spore germination compared to

most spores in populations. Further studies are necessary to

optimize a germination solution for C. difficile that can further

enhance killing by triggering germination in the super-dormant

fraction of spores.
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