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Abstract: Lattice structures have shown great potential in that mechanical properties are customizable
without changing the material itself. Lattice materials could be light and highly stiff as well. With this
flexibility of designing structures without raw material processing, lattice structures have been widely
used in various applications such as smart and functional structures in aerospace and computational
mechanics. Conventional methodologies for understanding behaviors of lattice materials take
numerical approaches such as FEA (finite element analysis) and high-fidelity computational tools
including ANSYS and ABAQUS. However, they demand a high computational load in each geometry
run. Among many other methodologies, homogenization is another numerical approach but that
enables to model behaviors of bulk lattice materials by analyzing either a small portion of them using
numerical regression for rapid processing. In this paper, we provide a comprehensive survey of
representative homogenization methodologies and their status and challenges in lattice materials
with their fundamentals.

Keywords: homogenization method; lattice materials; periodic cellular materials; multiscale mechanics

1. Introduction

Lattice material is a cellular material consisting of a periodic network of structural
elements such as rods or beams. This network of lattices exists over a wide spectrum of
scale from the nanoscale to macroscale and has been applied in a wide area of applications.
In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based sensors are made
using lattice materials [1] as shown in Figure 1a. Micro-lattices material is being developed
intensively as it offers high energy absorption capability [2,3]. On a macroscale, due to its
high stiffness and lightweight properties, lattice materials are widely used in aerospace
applications [4–8].

Lattice structures or materials could be also classified into several parameters, namely,
geometry, deformation properties, and rigidity. These determine a proper approach for un-
derstanding dynamics of lattice accurately extend to design. Geometry-based classification
is widely received in mathematics and solid-state physics and especially in 2-D, two main
categories are considered: regular and semi-regular [9]. Representatives of each group are
illustrated in Figure 1. Sub-sequentially, three types exist under the regular lattice, namely,
square lattice, triangular lattice, and hexagonal lattice. In semi-regular lattices, unit cells are
tessellated Later, eight semi-regular lattices are introduced in this paper for more details [9].
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Figure 1. Examples of different lattice topologies: (a) triangular; (b) Kagome; (c) diamond; (d) snub
square [10].

In engineering applications, spatially periodic patterns of lattices can be viewed as a
material or a structure depending on its length scale. When the deformation is at a much
larger length scale than the individual beam length, such a network of a lattice is defined as
“lattice material”. Figure 2 shows such an example of lattice materials. On the other hand, if
the length scale between deformation and the individual beam is the same, then it is viewed
as a “lattice structure”. Asymptotic Theory might be a more suitable approach when we
are dealing with lattice materials [11]. Meanwhile, modeling the beam individually is a
better approach for lattice structure. This paper will more focus on lattice materials rather
than structure as it is more relevant to the homogenization method.
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Figure 2. Lattice materials formed by network of beams; (a) ultralight Nano-metal truss hybrid lattice;
(b) penta-mode lattice [12].

The other key parameter that determines a suitable approach for understanding lattices
is relative density. The relative density is defined as the density ratio of lattice material
to the solid material (ρ = ρ∗/ρs) and has a pivotal role in determining the elastostatic
behavior of a lattice. Figure 3 shows the relationship between relative density and relative
modulus. Slope 1 depicted in Figure 3 is for stretch-dominated lattice and slope 2 is for
bending-dominated lattice. As it can be seen, honeycombs, one of the commonly used
cores for sandwich panels, are extraordinarily efficient. Physically, relative density depicts
the porosity of lattice material. A low value of relative density indicates high porosity,
meanwhile, a high value of that indicates low porosity. For instance, ρ = 1 means zero
porosity as the density of the lattice is the same as one of the solid or bulk. Therefore,
it is crucial to employ a proper homogenization model or approach according to the
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value of relative density. For the low value of relative density, e.g., ρ < 0.3, applying
Euler–Bernoulli beam or Timoshenko beam elements to model the cell-wall deformation
will give an accurate result [13–16]. Furthermore, Micro-polar theory [17], Bloch Wave
Analysis and Cauchy–Born hypothesis [18] might be employed for such cases as well. For
a high value of relative density, the Asymptotic Homogenization method will give a better
and more accurate result [11].
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Figure 3. Relative modulus plotted against relative density on logarithmic scales for cellular struc-
ture [19].

Lattices can also be categorized into stretching-dominated or bending-dominated
based on their rigidity [19]. Some representatives of both categories are shown in Figure 4.
A bending-dominated lattice reacts to external loads by cell-wall bending due to its low
nodal connectivity at the cell vertices. This results in a microscopic bending-dominated
failure mode, where the cell elements collapse by bending stresses [18]. On the other hand,
stretching-dominated lattices predominantly behave by stretching due to the high value of
nodal connectivity at the cell vertices. For the same porosity or relative density, stretching-
dominated lattices are stronger and have higher stiffness than bending-dominated lattices.
Gibson and Ashby [20] performed structural analysis and found that the stiffness and the
strength of lattice materials scale up with the value of relative density. The strength and
stiffness of stretching-dominated lattice scale up linearly by its relative density (ρ), whereas
the strength and stiffness of bending-dominated lattice are scaled up, respectively, by ρ2

and ρ1.5. For example, at ρ = 0.01, the stretching-dominated lattice is far more superior
than the bending-dominated lattice as it is 100 times stiffer and 10 times stronger.
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2. Background

For a periodic network of lattices to be considered as material, the characteristic length
of its cells needs to be at least one or two orders of magnitude below the medium’s overall
length scale. Hence, microscale study is vital to understand the full behavior of the structure
at the global scale, which is the basic principle of the homogenization method. Numerous
analytical and numerical methods have been constructed to determine the mechanical
behavior of cellular materials [11,13,14,17,18,21–25]. All of these methods are based on
various fields of physics and mathematics ranging from asymptotic theory [11], elasticity
theory [13] to micro-polar theory [17]. Moreover, experimental work has been done as
well [13,26,27] though it is limited in design complexity due to manufacturability in the
process. However, recent advances in 3D manufacturing techniques such as 3D printing has
significantly improved the production of lattice materials in terms of accuracy with various
kind of solid materials. Nowadays the manufacturing process of lattice structure can be
conducted at a very fine scale and with lower overall cost [28–31]. This advancement allows
lattice materials to be more experimented on and be tested against existing numerical and
analytical models [26,32].

The analytical works to analyze and develop a method to obtain mechanical behaviors
and properties of cellular materials have been pioneered by several people; Gibson et al. [13],
Masters et al. [16], Wang et al. [14], and Christensen [33]. They derived an analytical closed-
form formula of mechanical properties of lattice materials for several shapes and geometry.
Their method is based on one common ground assumption, which is that the cell behaves as
Euler–Bernoulli beams. They obtain the mechanical properties by solving deformation and
equilibrium problems for a single cell, which generates some limitations to the application
of the analytical method. It could only be applied to a cell with a simple topology with
small strains and no extreme change in geometry. Furthermore, it only works in lattice
structures with small relative density value (ρ = 0.3).

In terms of computational works, several different approaches have been developed.
Asymptotic Homogenization (AH) has been extensively employed to obtain the mechanical
properties of lattice materials [11,34,35]. AH has been proven and validated to be an effec-
tive homogenization method through comparisons with other methods and experimental
verification [8]. As it does not have limits in the value of relative density. However, its
major shortcoming is the computational cost. It is more expensive than other common
approaches, especially when the problem contains a large number of variables [11,36].
Recently, a variational AH of beam-like square lattice structures has been discussed [34]
and they explain and result when the microscale of the structure is in the finest scale, i.e.,
ε→ 0 . Another computational approach is a matrix-based multiscale method introduced
by Vigliotti et al. [24,37]. They performed a linear multiscale analysis and FEA (finite
element analysis) on a stretching and bending-dominated lattice [37]. Furthermore, they
have applied a method to develop a non-linear model for lattice materials [24].

Some homogenization approaches introduced here come from micro-polar
theory [17,38–40] and solid-state physics [18,41]. The micro-polar theory introduces a
microscopic rotation in addition to translational deformations. The micro-polar elastic
constants of the stiffness matrix can be found through either analysis of the unit cell [17] or
an energy approach [40]. From solid-state physics, the combination of Bloch’s theorem and
the Cauchy–Born hypothesis has been applied to analyze mechanical behavior of planar
lattices [18,41].

Recently, Machine Learning has been adopted to study lattice materials [36,42–45].
Koeppe et al. [36] have used a neural network on a set of simulation data to learn a
parameterized mechanical model of a lattice structure with particular geometry. Mian
et al. [42] obtained an elastic material model for lattice structure using both FEA (finite
element analysis) and NN (Neural Network) approaches. These studies have produced
results that are in good agreement with both experiment and simulation with a significant
increase in computational time and prove that the data-driven method is an effective and
efficient as well as reliable and accurate approach. In addition, Machine learning has been
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used to simulate anisotropic elastic-plastic behavior of cellular structure [45] and deep
learning for topology optimization for lattice materials [44]. As machine learning and AI
are developing in a rapid trend, data-driven methods are a rising prominent approach and
worth looking into in the future of homogenization problems.

As has been briefly summarized above, many varieties of homogenization methods
exist to analyze the behavior of lattice materials. All the methods mentioned came from
various areas of discipline such as elasticity, solid-state physics, and even computer science.
This implies the applications of lattice materials are substantial in many areas of science and
engineering disciplines. The objective of this paper is to thoroughly review all the existing
method that is relevant according to the author’s knowledge and interest. Its foundation,
methodology, strength, and limitation will be discussed comprehensively here in a concise
form. The final goal that this paper wants to achieve is for the reader to be able to carefully
select their homogenization method based on its characteristic so that it could be applied
optimally to each particular research.

3. Homogenization Methods

The fundamentals of the homogenization method are the properties of the heteroge-
neous material could be obtained from the analysis of a small portion of it [12]. The limited
portion of the entire heterogeneous material is defined as Representative Volume Element
(RVE). To obtain the effective properties, the RVE should include the main microstructural
characteristic of the heterogonous material and expand to the global medium when uni-
form strain or stress is applied as boundary condition [12,46,47]. This avoids extensive
full-scale simulations. Furthermore, it is noted that this method could be applied only if
the homogeneities exist at least a couple of orders of magnitude below the characteristic
length of the effective medium.

The concept of homogenization of lattice materials is illustrated in Figure 5 where the
RVE is applied to a square unit cell. A body Ω with a periodic lattice structure subjected to
a traction t at the traction boundary Γt, a displacement d at the displacement boundary Γd,
and a body force f is substituted by a homogenized body Ω. The mechanical properties of
RVE should be determined in such a way that the macroscopic behavior of Ω and Ω are
equivalent [12]. Below is a detailed explanation of representative homogenization methods.
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3.1. Beam Theory Approach

The Beam Theory approach is also known as the force-based approach [12]. It is
employed to model cell-wall deformation just for a unit cell. Then it assumes that the field
quantity obtained from the unit cell is uniform over the RVE. Over the years, analytical
closed-form formula of the mechanical properties of lattice materials for different shapes
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and geometry has been derived [13,14,16]. Christensen [33] also gives a thorough survey
on this approach.

Gibson and Ashby are pioneers in the analysis of cellular materials, in particular of
honeycomb shapes [13]. They analyzed the honeycomb shape by employing beam theory
on a single unit cell as illustrated in Figure 6. They derived a closed-form solution of
mechanical properties for honeycomb shape material and tested their formulation against
experimental measurement under two different directional forces as depicted in Figure 6a,b.
Masters and Evans [16] took it a step further where they included three mechanisms in their
model, namely, flexure, stretching and hinging. They obtained a more general analytical
expression for the mechanical properties. Wang and Mcdowell [14] investigated honeycomb
structures with seven different cell types. They evaluated in-plane shear properties which
had not been considered in most previous research.
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Figure 6. Beam theory analysis on honeycomb structure [13]. (a) and (b) represents structures under
two different directional forces.

Different treatments are expected for a different type of unit cell. For bending domi-
nated lattice, the cell walls are treated as beams. Standard beam theory is employed here to
calculate effective stiffness. In this case, the linear-elastic behavior is predominantly caused
by the bending of the cell walls and edges, with minor contributions from shear and axial
deformation. For stretching dominated lattice, the cell walls are treated as trusses/columns
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where the structure is capable of sustaining residual stresses that make equilibrium equa-
tions are insufficient to determine the state of internal forces on the cell walls. Additionally,
compatibility equations should be used to find the effective elastic properties of the lattice.
If the residual stress is assumed zero, then simple truss analysis suffices.

The main advantage of this approach is that the obtained mechanical properties are
closed-form analytical formulas and they are useful to generate a chart. Assuming cell wall
as a beam limits the applications of this method as follows: First, this formulation can be
applied to only cases with low relative density (ρ < 0.3). Second, this approach cannot be
used where geometrical nonlinearities are introduced or when the geometry of a unit cell
has a complex topology as Euler’s beam formulation assume strains are small enough that
large deformation does not occur.

3.2. Strain Energy Equivalence: Surface Average Approach and Volume Average Approach

Strain energy equivalence based method employs a direct application of the RVE
concept. In this method, the performance of the macroscopic medium are determined solely
by the mechanical behavior of its RVE. The averages of particular mechanical properties
with respect to either the surface of the volume have to be equal in order to obtain the
equivalence condition of effective medium and its RVE [48]. The constitutive equation for
the effective medium and its corresponding RVE needs to be calculated in such a way that
the condition for equivalence of both volume elements is satisfied.

The first approach for this method is the surface average approach. This approach
uses the application of either stress or strain distributions to the surface of the RVE [12].
Hence, stress distribution in the RVE in assumed to be equivalent to a stress distribution in
the volume element consisting of the effective medium if∫

Γi
RVE

TidΓRVE =
∫

Γi
RVE

T∗i dΓRVE (1)

holds, where T∗i is the traction vector on the surface of the RVE and Γi
RVE is a certain part

of its boundary as the part which is orientated parallel to one of the coordinate planes.
The second equivalence condition is between the strain tensor generated in the effective
medium and its RVE, which can be expressed as

εij = ε∗ij (2)

Furthermore, for a volume element of general shape, the mesoscopic strain can be
expressed by

ε =
1
2

1
V

∫
ΓRVE

(
uinj + ujni

)
dΓRVE (3)

wre V denotes the volume of the RVE and ni are the components of the normal vector on
ΓRVE. Equations (2) and (3) states that the surface integral of the quantity

(
uinj + ujni

)
has

to be equal for both volume elements.
Surface average approach has a certain limitation. For more complex geometry, such

as those that are nonorthotropic, the surface average method gives errors in the prediction
of the effective strain energy. This error is due to stress couples that are acting at the
intersections of the cell walls and the surfaces of the RVE. In order to avoid this problem,
a volume average approach can be used. The volume average approach is based on the
assumption that the mechanical behavior of the microscopic scale in the RVE and the
macroscopic medium can be considered equivalent if the RVE strain energy is equal to the
effective medium. This can be expressed as

w =
1
V

∫
ΩRVE

w dΩRVE =
1
V

∫
ΩRVE

w∗ dΩRVE = w∗ (4)
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where w denotes the strain energy density distribution and ΩRVE is the area of the RVE.
Thus, the strain equivalence condition can be written as

εij =
1
V

∫
ΩRVE

εij dΩRVE =
1
V

∫
ΩRVE

ε∗ij dΩRVE = ε∗ij (5)

Strain energy equivalence method has been commonly used in any kind of cellular
structure such as sand which has a corrugated structure [48–52]. The advantage of this
method is that it is directly based on the basic laws of continuum mechanics and the
conservation of energy and of. Furthermore, there is no limitation in using this method in
respect of geometries of the cellular structure and cell topology.

3.3. Micropolar Theory

Classical continuum theory is not suitable when discontinuities or high strain gradients
are observed in the domain such as crack tips or notches. Micropolar theory, also known as
Cosserat theory, is a generalization of classical continuum theory developed by E. and F.
Cosserat [53] and Eringen [54]. The micropolar theory introduces a microscopic rotation in
addition to translational deformations and its key assumption is both displacement and
rotations of a point are independent kinematic properties. In lattice material, this means
joint displacement and joint rotation contribute to the total joint displacement.

In the linear micropolar elasticity theory, the kinematic relations can be written as

εij = uj,i − ekijφk (6)

kij = φj,i (7)

where uj,i is the displacement gradient, εij is the strain tensor, φk is the microrotation, kij is
the curvature strain tensor, and φj,i is the microrotation gradient. The generalized strain
vector of a micropolar medium can be expressed as follows:

ε = [ε11 ε22 ε12 ε21 k13 k23]
T = [u1,1 u2,2 u2,1 − φ u1,2 + φ φ3,1 φ3,2]

T (8)

The generalized stress vector is given by

σ = [σ11 σ22 σ12 σ21 m13 m23]
T (9)

where m13 and m23 are the couple stresses in the x and y planes. The 2D constitutive
relations for anisotropic micropolar solids can be written as:

σ = Cε (10)

where C is the 6× 6 matrix of the constitutive law coefficients for a micropolar medium.
In order to characterize a cellular material as a micropolar continuum, the coefficients

of the constitutive equations, C, must be obtained. The micropolar elastic constants of the
stiffness matrix can be determined through either structural analysis of the unit cell [17] or
an energy approach [40]. The analysis of the unit cell can be done using the beam theory
approach to obtain the general deformation state of the RVE, which is a unit cell in this case.
The effective stresses and strains over the RVE can be computed using constitutive equa-
tions. On the other hand, for the energy approach, the stresses of the cell can be obtained
by obtaining the derivation of the strain energy density concerning the strain vector.

Micropolar theory combined with beam theory approach or energy approach has
several limitations (1) It could only be applied to unit cells with a certain shape that
contains a single joint at the center or the unit cell, and (2) the newly introduced micropolar
variable acts as an additional degree of freedom. Hence, an additional step is required to
solve the governing equations.
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3.4. Solid-State Physics Approach: Bloch’s Theorem and Cauchy Born Hypothesis

Due to its similarity, the concept of solid-state physics can be adapted into solid
mechanics to investigate the characteristics of lattice materials. The lattice, in solid-state
physics, is defined as an infinitely periodic arrangement of points. When periods of the
unit cell are perfectly stacked in two or three dimensions, the space is considered to be
tessellated. The bases are the mathematical formulation for the physical quantities that are
repeated in every cell translation [18]. In continuum mechanics, a lattice material can be
described using the above definition.

Bloch wave analysis and the Cauchy–Born hypothesis, in particular, are methods for
solid-state physics that can be adapted into solid mechanics to investigate the behavior of
lattice materials [18,55]. Bloch’s theorem was originally developed to describe the transport
of electron particles within the crystal structure of a solid [56]. Then the Bloch’s theorem can
be applied to analyze the propagation of a wave function over to an infinite lattice structure.
On the other hand, the Cauchy–Born hypothesis [41] analyzes a macroscopic mechanism
that is induced by an applied strain [12] and states that the infinitesimal displacement
field of a periodic lattice is made up of two parts, namely, the deformation obtained by a
macroscopic strain field and the periodic displacement field of the unit cell. Bloch’s theorem
is used to define the propagation of a wave function over the infinite lattice structure. The
idea is that the nodal deformation function d(pi, ω) ∈ C2 is written as a wave function in
the form of

d(p, ω) = d(ji +
→
R, ω) = d(jl , ω)e2πiω

→
R ∀l ∈ {1, 2, . . . , J} (11)

where ω is the translational vector, p is the position vector for the joints, J is the number

of independent nodes within the unit cell, pi = ji +
→
R is the position vector of any node

throughout the lattice and
→
R is the Bravais cell vector of any unit cell through the entire lat-

tice. For bar deformation functions, the generalized bar deformation vectors e(qm, ω) ∈ C2

can be written as a wave function of the form:

e(qm, ω) = e(bm +
→
R, ω) = e(bm, ω)e2πiω

→
R ∀m ∈ {1, 2, . . . , B} (12)

where B is the number of independent bars within the unit cell and qm = bm +
→
R is the

position vector of any bar throughout the lattice. Periodic boundary conditions needs to be
applied over the unit cell to simplify the forms of the kinematic and equilibrium matrices
for both bars and joints [57,58].

Bloch’s theorem defines the deformation mechanism corresponding to periodic joint
displacement fields. The Cauchy–Born hypothesis is needed to analyze the macroscopic
strain field generated by periodic condition [59,60]. From the definition of the Cauchy–Born
hypothesis [61], the infinitesimal displacement field of a periodic joint in a lattice structure
can be expressed as:

d(jl +
→
R, ε ) = d(j, ε = 0) + ε·

→
R (13)

where d(jl +
→
R, ε ) is the periodic displacement field of joint jl . Assume that the periodic

joints described by the position vectors jl and jl +
→
R, are the two periodic joints i and j

within a lattice structure, then Equation (13) can be written as:⌈
ui
vi

⌉
=

⌈
uj
vj

⌉
+

[
ε11

1
2 ε12

1
2 ε21 ε22

]⌈
xi − xj
yI − yj

⌉
(14)
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where u and v are the joint displacement components in the x and y directions, respectively,
and joint i is the independent joint. Notice that the formulation above is written in terms of
engineering strain. Equation (14) can be expressed as well as:

⌈
ui
vi

⌉
=

⌈
uj
vj

⌉
+

[ (
xi − xj

)
0 1

2
(
yi − yj

)
0

(
yi − yj

) 1
2
(

xi − xj
) ]


ε11
ε22
ε21

 (15)

or in the shorter term:
di = dj + Eε (16)

Equation (16) is the kinematic boundary condition of the Cauchy–Born hypothesis.
Applying this boundary condition to the unit cell joint displacement vector, d, results in:

d = Tdd̃ + Eε (17)

Substituting Equation (17) into the kinematic system of the unit cell results in:

B
{

Tdd̃ + Ẽε
}
= e (18)

Equations (17) and (18) describe the application of the Cauchy–Born kinematic bound-
ary condition to the continuum kinematic system of the lattice microstructure to express
the relation between the microscopic displacements and a macroscopic strain field. The
Cauchy–Born hypothesis cannot be applied to the kinematic compatibility relation of the
unit cell without resorting to the Dummy node scheme [18]. This procedure, along with
a more detailed derivation of this method, has been extensively discussed in previous
literature [18,59–61] and will not be discussed here. This approach has been developed by
assuming cell walls as beam elements. Hence, similar to the elasticity theory approach,
these assumptions limit its application to low relative densities (ρ < 0.3).

3.5. Asymptotic Homogenization Approach

Analytical solutions have shown some limitations in the applications of more general
cases. Hence, one of the well-developed theories, with a sound mathematical foundation,
that has been successfully used to predict mechanical properties in porous materials [35]
is the Asymptotic Homogenization (AH) theory. This method has been validated with
experimental results and proven to be a reliable and accurate method among them [62].
Arabnejad et al. performed extensive work on using AH to obtain mechanical properties of
the lattice structure [11].

The pivot assumption of AH is that each physical quantity depends on two different
scales: one on the macroscopic level x, and the other on the microscopic level, y = x/ε
where ε is a ratio between RVE size and the size of the macroscopic medium means that
stress/strain will vary faster by 1/ε. AH also assumes that field quantities change smoothly
at the macroscopic level and have periodic condition at the microscale. Based on AH, each
mechanical variable, such as the displacement field, u, can be expanded into power series
concerning to ε:

uε = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · (19)

u1 and u2 are perturbations in the displacement field due to the microstructure and u0
is the average value of the displacement field depend only on the macroscopic scale [35].
Take the derivative of the power series we get

du
dx

= ε(u) =
1
2

(
∇uT

0 +∇u0

)
x
+

1
2

(
∇uT

1 +∇u1

)
y
+ O(ε) (20)

ε(u) = {ε(u)}+ {ε∗(u)} (21)
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where ε(u) is the macroscopic strain and ε∗(u) is the fluctuating strain at the microscopic
level. Note that the terms of O(ε) and higher are neglected. Substitute the above equation
into the weak form of equilibrium equation for a cellular body Ωε:∫

Ωε
Cijkl

(
ε0

ij(v) + ε1
ij(v)

)
(εkl(u) + ε∗kl(u))dΩε =

∫
Γ

tividΓ (22)

where Cijkl is the effective stiffness tensor of the RVE, ε0
ij(v) and ε1

ij(v) are the macroscopic
and microscopic strains, respectively, and t is the traction at the traction boundary Γt. The
displacement v is selected to be contant on the macroscopic level and vary only on the
microscopic level. Hence, this leads to:∫

Ωε
Cijklε

1
ij(v)(εkl(u) + ε∗kl(u))dΩε = 0 (23)

Integrating over the RVE volume (VRVE). Equation (23) may be rephrased as:∫
VRVE

Cijklε
1
ij(v)ε

∗
kldVRVE = −

∫
VRVE

Cijklε
1
ij(v)εkldVRVE (24)

The equation above represents a local problem defined on the RVE. For a certain
applied macroscopic strain, the material can be characterized if the fluctuating strain ε∗

is known. The periodicity of the strain field is guaranted by applying periodic boundary
conditions on the RVE edges; the displacements at opposite sides of the RVE are constrained
to be equal [63]. The equation can be discretized and solved via FE analysis. For this
objective, the equation needs to be simplified to obtain a relation between the microscopic
displacement field and the force vector. This step will not be explained in this article.
Instead, a simple example of solving an equation on one-dimensional domain will be
illustrated below.

Consider a composite bar consist of two materials that interchange periodically with
Young’s moduli E1 and E2 which is described in Figure 7. Section 1 of the unit cell has
material with a modulus E1 and length 1− α. Section 2 of the unit cell has material with
modulus E_2 and length α. The RVE on the microstructure of this case is chosen to be of
unit length as is the area of the bar. Equation (24) in 1-D can be rewritten as:∫ 1

0
E(x, y)ε∗ε(v)dy =

∫ 1

0
E(x, y)ε(v)dy (25)

where E(x, y) is Young’s modulus which varies at both the microscopic and macroscopic
levels. First, set E(x, y) = E and rewrite Equation (25) as∫ 1

0
E(1− ε∗)ε(v)dy = 0 (26)

Applying integration by parts∫ 1

0
v

∂

∂y
E(1− ε∗)dy + E(1− ε∗)v |y=1

y=0 = 0 (27)

The strong form of Equation (27) is

∂

∂y
E(1− ε∗) = 0 (28)



Materials 2022, 15, 605 12 of 21

Materials 2022, 15, x FOR PEER REVIEW 12 of 19 
 

 

�̅� = ∫ (1 − 𝜖∗)𝑑𝑦 =
1

0

∫ 𝑐(𝑥) 𝑑𝑦
1

0

= 𝑐(𝑥) =
1

∫
1
𝐸1

𝑑𝑦 
1−𝛼

0
+ ∫

1
𝐸2

𝑑𝑦
1

1−𝛼

 (32) 

Evaluating the above integral gives us: 

�̅� =
𝐸1𝐸2

(1 − 𝛼)𝐸2 + 𝛼𝐸1
 (33) 

Thus, for one-dimensional case, the effective stiffness obtained using AH method and 

the standard mechanics approach is equal. 

The notable advantage of AH is that the stress distribution in microscale can be mod-

eled accurately and thus give us a detailed analysis of the periodic materials. Furthermore, 

AH has neither limitation on the cell topology nor the range of the relative density which 

is a substantial gain of this method [11]. The major drawback of the AH method, however, 

is its computational cost. This can be a high problem if the problem involves complex 

topology and contains a significant number of variables. 

 

Figure 7. Composite bar used for the one-dimensional analysis [63]. 

3.6. Multi-Scale Homogenization Method for Lattice Materials 

This approach is often called global-local analysis as it involves a two-scale process. 

This method is originally applied to heterogeneous material in order to create constitutive 

relationships from the analysis of the RVE. This method is developed based on the earlier 

work done by Eshelby [64] which investigated the mechanics of an ellipsoidal inclusion 

in an infinite matrix with homogeneous boundary conditions. The RVE features are some-

what similar to the ones that Elsheby has studied. It consists of a bounded area of the 

domain that contains the main microstructural properties of the material and behaves as 

an infinite medium if boundary conditions are imposed. 

In general, this method utilizes a two-scale approach. One is the macroscopic FE 

model of the homogeneous continuum where boundary conditions are defined by the 

problem. The other is the microscopic level which numerically investigates the stress-

strain relationship where boundary conditions are generated by the macroscopic scale. 

This approach allows the macroscopic stress to be determined as the gradient of the strain 

energy density involving the components of the macroscopic gradient. This approach re-

sults in a compact matrix formulation for the macroscopic stress as a function of the mac-

roscopic displacement gradient. 

The method that is described here is the application multi-scale homogenization 

method to develop non-linear constitutive models for lattice materials [24]. This homoge-

nization method is done using the principle of work which will be described shortly in 

this section. The details and derivation of this method can be found in the previous liter-

ature by Vigliotti et al. [24,37]. The main procedure for this method is described in Figure 

8. 

Figure 7. Composite bar used for the one-dimensional analysis [63].

Integrating gives the solution

E(1− ε∗) = c(x) (29)

where c(x) is constant over the microstructure. To determine c(x), the equation is integrated
over y ∫ 1

0
(1− ε∗)dy =

∫ 1

0

c(x)
E

dy→ 1− u∗ |10 = c(x)
∫ 1

0

1
E

dy. (30)

Since the displacements u∗ must be equal at the cell boundaries to ensure periodicity, thus

c(x) =
1∫ 1

0
1
E dy

(31)

Hence, the effective stiffness can be expressed as

E =
∫ 1

0
(1− ε∗)dy =

∫ 1

0
c(x) dy = c(x) =

1∫ 1−α
0

1
E1

dy +
∫ 1

1−α
1

E2
dy

(32)

Evaluating the above integral gives us:

E =
E1E2

(1− α)E2 + αE1
(33)

Thus, for one-dimensional case, the effective stiffness obtained using AH method and
the standard mechanics approach is equal.

The notable advantage of AH is that the stress distribution in microscale can be mod-
eled accurately and thus give us a detailed analysis of the periodic materials. Furthermore,
AH has neither limitation on the cell topology nor the range of the relative density which is
a substantial gain of this method [11]. The major drawback of the AH method, however,
is its computational cost. This can be a high problem if the problem involves complex
topology and contains a significant number of variables.

3.6. Multi-Scale Homogenization Method for Lattice Materials

This approach is often called global-local analysis as it involves a two-scale process.
This method is originally applied to heterogeneous material in order to create constitutive
relationships from the analysis of the RVE. This method is developed based on the earlier
work done by Eshelby [64] which investigated the mechanics of an ellipsoidal inclusion in
an infinite matrix with homogeneous boundary conditions. The RVE features are somewhat
similar to the ones that Elsheby has studied. It consists of a bounded area of the domain
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that contains the main microstructural properties of the material and behaves as an infinite
medium if boundary conditions are imposed.

In general, this method utilizes a two-scale approach. One is the macroscopic FE
model of the homogeneous continuum where boundary conditions are defined by the
problem. The other is the microscopic level which numerically investigates the stress-strain
relationship where boundary conditions are generated by the macroscopic scale. This
approach allows the macroscopic stress to be determined as the gradient of the strain
energy density involving the components of the macroscopic gradient. This approach
results in a compact matrix formulation for the macroscopic stress as a function of the
macroscopic displacement gradient.

The method that is described here is the application multi-scale homogenization
method to develop non-linear constitutive models for lattice materials [24]. This homoge-
nization method is done using the principle of work which will be described shortly in this
section. The details and derivation of this method can be found in the previous literature
by Vigliotti et al. [24,37]. The main procedure for this method is described in Figure 8.
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Let s be the vector of the nodal degree freedom of the RVE, the corresponding array of
the nodal forces, F(s), can be obtained using FE analysis of the RVE. The distribution of the
strain energy, due to macroscopic strain, can be obtained by employing the principle of the
virtual work:

dW =
∫

VRVE

PijdGijdV = FTds (34)

where Pij and Gij are the elements of the first Piola-Kirchoff (1PK) stress tensor and the
macroscopic displacement, respectively; ds is the variation of the nodal displacements. As-
suming that Pij and Gij are constant through out the RVE, the stress tensor can be obtained:

Pij =
1

VRVE

∂W
∂Gij

=
1

VRVE
FT ∂s

∂Gij
(35)

Solving the equation above will introduce the boundary conditions for the microscopic
model. Once the microscopic boundary value problem is solved, the components of P as
the derivatives of the strain energy density of the lattice concerning G can be determined.

The main advantages of this method are that it accounts for geometrical material
nonlinearity as have shown above and this approach has no restrictions in terms of relative
density and unit cell shape. This model is capable to capture the local bucking of cell
struts under multiple loading conditions and thus can predict the points where bifurcation
occurs. However, unlike the AH approach, the choice of the RVE’s size might influence the
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equilibrium equation of the lattice especially in the presence of bifurcations [24]. Hence, a
sensitivity analysis should be performed before choosing the size of the RVE.

3.7. Machine Learning Approach: Data-Driven Model

In recent years, there has been significant development of homogenization methods
using machine learning algorithms [36,42–45]. Machine learning has been proven to be a de-
pendable computational tool and employed in constitutive modeling [65–68]. As described
in the previous section, while effective and precise, theoretical and numerical approaches
each post major limitation. Theoretical approaches are limited for low relative density,
small deformation, and simple geometry. Some of these limitations can be overcome us-
ing numerical approaches but these methods, such as FEA or AH, are computationally
expensive. An alternative way is to use neural networks to do constitutive modeling based
on either experiments or homogenization results as training data. In this section, we will
discuss several strategies of implementation of this method that has been developed in
recent years.

The fundamental initial phase of using machine learning algorithms, in this case,
neural network approaches, is to generate training data. Either experimental data [65,68]
or RVE simulations can be utilized for training process [45,66,67]. Settgast et al. [45] used
the volume average method as their RVE simulation method and then used the results as
the training data which is shown in Figure 9. The constitutive functions are obtained using
neural networks instead of classic material modeling. FNET library is used to implement
the neural networks [69]. Their study is limited to small deformation cases for simplicity
but their approach can be straightforwardly extended to large deformation case. They can
obtain an accurate result with much more efficiency than a direct numerical simulation
(DNS) or FEM simulation.
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The other approach is to use finite element simulation (FEA) as the training data [42].
However, instead of full simulation of finite elements, only several models of lattice
materials are simulated using FEA with a significant number of elements to compute the
mechanical properties. Mechanical properties and design parameters data are used to
train a NN to predict the equivalent properties for various cell sizes and materials with
considerably less time than a full FE analysis. The result from this approach is compared
with a full FEA simulation and experimental test. Their approach is briefly described in
Figure 10. They concluded that the NN model of lattice materials is very accurate, swift,
and efficient for use as compared to numerical FEA models. Furthermore, by using this
approach a more complicated geometry of lattice can be investigated with significantly less
computational time. It was shown that the computational time could be reduced from the
order of hours to just order of minutes.
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Another implementation strategy done by Koeppe et al. [36] is to combine experiments
and finite element (FE) simulations to obtain training data. Firstly, lattice materials are
created and tested under certain loading conditions. The experimental results will be
validated against a parameterized FE model. Secondly, the developed FE model is utilized
to predict the stresses considering different design variables. Finally, these deformations
and design variables are used to train a NN to predict the stresses. This approach results
in a significant increase in performance. The computation time for FE simulations is in
order of five to ten hours (wall clock time) while the NN approach takes about 0.47 s. The
obtained stresses by the neural network are in a good agreement with the FE results.

We try to point out each method’s main characteristic, its advantages, and limitation
to give a concise comparison for the reader. The summary can be seen in Table 1.
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Table 1. Summary of Homogenization Method.

Method Underlying Theory Highlights Limitation

Beam Theory Approach [13,14,16,33] Apply beam theory analysis on a single cell
and assume uniform over the RVE

• Close analytical formula.
• Relatively simple and does not need

computational power.

• Low relative density value (ρ < 0.3).
• Simple topology
• Small strain and no large deformation.

Strain Energy Equivalence [48–52]

The averages of particular mechanical
properties with respect to either the surface of
the volume have to be equal in order to obtain
the equivalence condition of effective medium
and its RVE

• Close analytical formula
• No restriction in terms of cell topology

and its geometric symmetry
• Small strain and no large deformation

Micropolar Theory [17,38–40]

Introduce a new variable, microscopic
rotation, in addition to translational
deformations and assume that both
displacement and rotations of a point are
independent kinematic quantities

• Close analytical formula
• It does not need computational power

• It needs to be combined with the beam
theory approach or energy approach

• Only feasible for unit cells with a certain
shape that contains a single joint at the
center or the unit cell

Bloch’s Theorem and Cauchy–Born
Hypothesis [18,55]

• Bloch’s theorem is used to study the
propagation of a wave function over an
infinite lattice structure at a microscopic
level.

• The Cauchy–Born hypothesis investigate
macroscopic mechanisms induced by an
applied strain.

• Able to give a description of wave
propagation over lattice structure

• Able to identify the collapse mechanism
subject to macroscopic strain

• Low relative density value (ρ < 0.3)

Asymptotic Homogenization (AH) [11,35,62]

• The main idea of AH is that each
physical variables consist of two
different scales: macroscopic and
microscopic level.

• No restriction on the unit cell geometry
• Works for all ranges of relative density
• Independent from RVE size

• The computational cost is relatively
expensive
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Table 1. Cont.

Method Underlying Theory Highlights Limitation

Multi-Scale Homogenization Method
[24,37,64]

This method utilizes a two-scale approach

• The macroscopic FE model of the
component with certain boundary
condition

• The microscopic level stress-strain
relationship where boundary conditions
are imposed by the macroscopic scale

• No restriction on the unit cell geometry
• Works for all ranges of relative density
• Capable of capturing local bucking of

cell walls under multiple loading
conditions

• The relatively expensive computational
cost

• Depends on the RVE size. Hence, an
additional convergence analysis needs to
be done before using the method

Machine Learning Approach [36,42–45]
Use neural networks to do constitutive
modeling based on either experiments or
homogenization results as training data

• Significantly low computational cost
• No limitation on cell topology and

relative density

• Needs to generate a huge amount of data
to have an accurate result
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4. Conclusions and Future Work

This paper has provided a concise review of several homogenization methods that
can be applied to the analysis and design of lattice materials. These methods came from
various areas of discipline such as elasticity, solid-state physics, and even computer science.
Relative density, cell geometry, lattice category (structure or materials), and cell element
assumptions have important roles in the behavior of lattice materials. Hence, it is critical
to employ a proper model for the lattice regarding those parameters. A summary of each
strength and weakness of each method has been shown in Table 1.

Out of all methods, due to its efficiency and accuracy, there has been a growing
interest in the homogenization method using machine learning algorithms recently as
it has proven to be a reliable computational tool and has been employed in constitutive
modeling. Furthermore, it has been shown in the previous section how the machine
learning approaches can overcome some major limitations that are posted by the classical
homogenization technique.

Other than increasing efficiency, the recent and future works of homogenization
are directed more towards the area of structure optimization. Homogenization coupled
with optimization method has proven to increase both the efficiency of the optimization
procedure and the overall performance of a lattice structure [70–73]. Stiffness [71], structural
compliance [72], structural vibration [70] and energy absorption [73] have been proved to
increase quite significantly using a homogenization method in a structural optimization
procedure. It can be observed that most of these works use asymptotic homogenization as
their method to be combined in the optimization procedure. As mentioned before, machine
learning approach has a promising future in terms of its efficiency. Hence, it will be seen
in the near future, integrated works of machine learning approach homogenization and
optimization algorithm.

Author Contributions: Conceptualization, B.W.J. and J.S.; methodology, J.S. and B.W.J.; software, J.S.;
validation, J.S.; formal analysis, J.S.; investigation, J.S. and B.W.J.; data curation, J.S.; writing—original
draft preparation, J.S. and B.W.J.; writing—review and editing, J.S. and B.W.J.; visualization, J.S.;
supervision, B.W.J.; project administration, B.W.J.; funding acquisition, B.W.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is sponsored by InnoScience Co., Ltd. (20210901) and supported under the
framework of the international cooperation program managed by the National Research Foundation
(NRF) of Korea (NSFC 2021K2A9A2A06049018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data contained within the article.

Acknowledgments: The authors greatly appreciate National Research Foundation (NRF) of Korea
and InnoScience Co., Ltd. for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2019, 119, 599–663.

[CrossRef] [PubMed]
2. Tancogne-Dejean, T.; Spierings, A.B.; Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy

absorption under static and dynamic loading. Acta Mater. 2016, 116, 14–28. [CrossRef]
3. Rashed, M.G.; Ashraf, M.; Mines, R.A.W.; Hazell, P.J. Metallic microlattice materials: A current state of the art on manufacturing,

mechanical properties and applications. Mater. Des. 2016, 95, 518–533. [CrossRef]
4. Bici, M.; Brischetto, S.; Campana, F.; Ferro, C.G.; Seclì, C.; Varetti, S.; Maggiore, P.; Mazza, A. Development of a multifunctional

panel for aerospace use through SLM additive manufacturing. Procedia CIRP 2018, 67, 215–220. [CrossRef]
5. Han, Y.; Wang, P.; Fan, H.; Sun, F.; Chen, L.; Fang, D. Free vibration of CFRC lattice-core sandwich cylinder with attached mass.

Compos. Sci. Technol. 2015, 118, 226–235. [CrossRef]

http://doi.org/10.1021/acs.chemrev.8b00340
http://www.ncbi.nlm.nih.gov/pubmed/30226055
http://doi.org/10.1016/j.actamat.2016.05.054
http://doi.org/10.1016/j.matdes.2016.01.146
http://doi.org/10.1016/j.procir.2017.12.202
http://doi.org/10.1016/j.compscitech.2015.09.007


Materials 2022, 15, 605 19 of 21

6. Jenett, B.E.; Calisch, S.E.; Cellucci, D.; Cramer, N.; Gershenfeld, N.A.; Swei, S.; Cheung, K.C. Digital Morphing Wing: Active Wing
Shaping Concept Using Composite Lattice-Based Cellular Structures. Soft Robot. 2017, 4, 33–48. [CrossRef] [PubMed]

7. Li, W.; Sun, F.; Wang, P.; Fan, H.; Fang, D. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and
experiments. Compos. Part A Appl. Sci. Manuf. 2016, 81, 313–322. [CrossRef]

8. Wei, K.; Peng, Y.; Qu, Z.; Zhou, H.; Pei, Y.; Fang, D. Lightweight composite lattice cylindrical shells with novel character of
tailorable thermal expansion. Int. J. Mech. Sci. 2018, 137, 77–85. [CrossRef]

9. Cundy, H.M. Mathematical Models; Oxford University Press: Oxford, UK, 1956.
10. Their, T.; St-Pierre, L. Stiffness and strength of a semi-regular lattice. Raken. Mek. 2017, 50, 137–140. [CrossRef]
11. Arabnejad, S.; Pasini, D. Mechanical properties of lattice materials via asymptotic homogenization and comparison with

alternative homogenization methods. Int. J. Mech. Sci. 2013, 77, 249–262. [CrossRef]
12. Phani, A.S.; Hussein, M.I. Dynamics of Lattice Materials; Wiley Online Library: Hoboken, NJ, USA, 2017.
13. Gibson, L.J.; Ashby, M.F.; Schajer, G.S.; Robertson, C.I. The mechanics of two-dimensional cellular materials. Proc. R. Soc. London.

A Math. Phys. Sci. 1982, 382, 25–42. [CrossRef]
14. Wang, A.-J.; McDowell, D.L. In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs. J. Eng. Mater. Technol. 2004,

126, 137–156. [CrossRef]
15. Kelsey, S.; Gellatly, R.; Clark, B. The Shear Modulus of Foil Honeycomb Cores. Aircr. Eng. Aerosp. Technol. 1958, 30, 294–302.

[CrossRef]
16. Masters, I.; Evans, K. Models for the elastic deformation of honeycombs. Compos. Struct. 1996, 35, 403–422. [CrossRef]
17. Wang, X.L.; Stronge, W.J. Micropolar theory for two–dimensional stresses in elastic honeycomb. Proc. R. Soc. A Math. Phys. Eng.

Sci. 1999, 455, 2091–2116. [CrossRef]
18. Elsayed, M.S.; Pasini, D. Analysis of the elastostatic specific stiffness of 2D stretching-dominated lattice materials. Mech. Mater.

2010, 42, 709–725. [CrossRef]
19. Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [CrossRef]
20. Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1999.
21. Gonella, S.; Ruzzene, M. Homogenization and equivalent in-plane properties of two-dimensional periodic lattices. Int. J. Solids

Struct. 2008, 45, 2897–2915. [CrossRef]
22. Rezakhani, R.; Cusatis, G. Generalized mathematical homogenization of the lattice discrete particle model. In Proceedings of

the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain, 10–14 March 2013;
pp. 261–271.

23. Tollenaere, H.; Cailleire, D. Continuous Modelling of Lattice Structures by Homogenization. Dev. Comput. Aided Des. Model. Civ.
Eng. 2009, 29, 699–705. [CrossRef]

24. Vigliotti, A.; Deshpande, V.S.; Pasini, D. Non linear constitutive models for lattice materials. J. Mech. Phys. Solids 2014, 64, 44–60.
[CrossRef]

25. Wang, A.-J.; McDowell, D. Yield surfaces of various periodic metal honeycombs at intermediate relative density. Int. J. Plast. 2005,
21, 285–320. [CrossRef]

26. Park, S.-I.; Rosen, D.W.; Choi, S.-K.; Duty, C.E. Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion
Additive Manufacturing. Addit. Manuf. 2014, 1, 12–23. [CrossRef]

27. Salehian, A.; Inman, D.J. Dynamic analysis of a lattice structure by homogenization: Experimental validation. J. Sound Vib. 2008,
316, 180–197. [CrossRef]

28. Du, Y.; Gu, D.; Xi, L.; Dai, D.; Gao, T.; Zhu, J.; Ma, C. Laser additive manufacturing of bio-inspired lattice structure: Forming
quality, microstructure and energy absorption behavior. Mater. Sci. Eng. A 2020, 773, 138857. [CrossRef]

29. Rehme, O.; Emmelmann, C. Rapid manufacturing of lattice structures with selective laser melting. In Laser-Based Micropackaging;
International Society for Optics and Photonics: San Jose, CA, USA, 2006; Volume 6107, p. 61070K.

30. Tao, W.; Leu, M.C. Design of lattice structure for additive manufacturing. In Proceedings of the 2016 International Symposium on
Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; pp. 325–332.

31. Tran, H.T.; Chen, Q.; Mohan, J.; To, A.C. A new method for predicting cracking at the interface between solid and lattice support
during laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 32, 101050. [CrossRef]

32. Cheng, L.; Liang, X.; Belski, E.; Wang, X.; Sietins, J.M.; Ludwick, S.; To, A.C. Natural Frequency Optimization of Variable-Density
Additive Manufactured Lattice Structure: Theory and Experimental Validation. J. Manuf. Sci. Eng. 2018, 140. [CrossRef]

33. Christensen, R. Mechanics of cellular and other low-density materials. Int. J. Solids Struct. 2000, 37, 93–104. [CrossRef]
34. Barchiesi, E.; Khakalo, S. Variational asymptotic homogenization of beam-like square lattice structures. Math. Mech. Solids 2019,

24, 3295–3318. [CrossRef]
35. Hassani, B.; Hinton, E. A review of homogenization and topology optimization I—homogenization theory for media with

periodic structure. Comput. Struct. 1998, 69, 707–717. [CrossRef]
36. Koeppe, A.; Padilla, C.A.H.; Voshage, M.; Schleifenbaum, J.H.; Markert, B. Efficient numerical modeling of 3D-printed lattice-cell

structures using neural networks. Manuf. Lett. 2018, 15, 147–150. [CrossRef]
37. Vigliotti, A.; Pasini, D. Linear multiscale analysis and finite element validation of stretching and bending dominated lattice

materials. Mech. Mater. 2012, 46, 57–68. [CrossRef]
38. Askar, A.; Cakmak, A. A structural model of a micropolar continuum. Int. J. Eng. Sci. 1968, 6, 583–589. [CrossRef]

http://doi.org/10.1089/soro.2016.0032
http://www.ncbi.nlm.nih.gov/pubmed/28289574
http://doi.org/10.1016/j.compositesa.2015.11.034
http://doi.org/10.1016/j.ijmecsci.2018.01.017
http://doi.org/10.23998/rm.64918
http://doi.org/10.1016/j.ijmecsci.2013.10.003
http://doi.org/10.1098/rspa.1982.0087
http://doi.org/10.1115/1.1646165
http://doi.org/10.1108/eb033026
http://doi.org/10.1016/S0263-8223(96)00054-2
http://doi.org/10.1098/rspa.1999.0394
http://doi.org/10.1016/j.mechmat.2010.05.003
http://doi.org/10.1098/rsta.2005.1678
http://doi.org/10.1016/j.ijsolstr.2008.01.002
http://doi.org/10.4203/ccp.33.9.1
http://doi.org/10.1016/j.jmps.2013.10.015
http://doi.org/10.1016/j.ijplas.2003.12.002
http://doi.org/10.1115/detc2014-34683
http://doi.org/10.1016/j.jsv.2008.02.031
http://doi.org/10.1016/j.msea.2019.138857
http://doi.org/10.1016/j.addma.2020.101050
http://doi.org/10.1115/1.4040622
http://doi.org/10.1016/S0020-7683(99)00080-3
http://doi.org/10.1177/1081286519843155
http://doi.org/10.1016/S0045-7949(98)00131-X
http://doi.org/10.1016/j.mfglet.2018.01.002
http://doi.org/10.1016/j.mechmat.2011.11.009
http://doi.org/10.1016/0020-7225(68)90060-8


Materials 2022, 15, 605 20 of 21

39. Chen, Y.; Liu, X.N.; Hu, G.K.; Sun, Q.; Zheng, Q.S. Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc. R.
Soc. A Math. Phys. Eng. Sci. 2014, 470, 20130734. [CrossRef]

40. Kumar, R.S.; McDowell, D.L. Generalized continuum modeling of 2-D periodic cellular solids. Int. J. Solids Struct. 2004, 41,
7399–7422. [CrossRef]

41. Chiras, S.; Mumm, D.; Evans, A.; Wicks, N.; Hutchinson, J.; Dharmasena, K.; Wadley, H.; Fichter, S. The structural performance of
near-optimized truss core panels. Int. J. Solids Struct. 2002, 39, 4093–4115. [CrossRef]

42. Alwattar, T.A.; Mian, A. Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis
and Neural Networks Approaches. J. Compos. Sci. 2019, 3, 33. [CrossRef]

43. Arbabi, H.; Bunder, J.E.; Samaey, G.; Roberts, A.J.; Kevrekidis, I.G. Linking Machine Learning with Multiscale Numerics:
Data-Driven Discovery of Homogenized Equations. JOM 2020, 72, 4444–4457. [CrossRef]

44. Kollmann, H.T.; Abueidda, D.W.; Koric, S.; Guleryuz, E.; Sobh, N.A. Deep learning for topology optimization of 2D metamaterials.
Mater. Des. 2020, 196, 109098. [CrossRef]

45. Settgast, C.; Hütter, G.; Kuna, M.; Abendroth, M. A hybrid approach to simulate the homogenized irreversible elastic–plastic
deformations and damage of foams by neural networks. Int. J. Plast. 2020, 126, 102624. [CrossRef]

46. Yan, J.; Cheng, G.; Liu, S.; Liu, L. Comparison of prediction on effective elastic property and shape optimization of truss material
with periodic microstructure. Int. J. Mech. Sci. 2006, 48, 400–413. [CrossRef]

47. Xia, Z.; Zhou, C.; Yong, Q.; Wang, X. On selection of repeated unit cell model and application of unified periodic boundary
conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 2006, 43, 266–278. [CrossRef]

48. Hohe, J.R.; Becker, W. Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material
models, and properties. Appl. Mech. Rev. 2002, 55, 61–87. [CrossRef]

49. Buannic, N.; Cartraud, P.; Quesnel, T. Homogenization of corrugated core sandwich panels. Compos. Struct. 2003, 59, 299–312.
[CrossRef]

50. Hohe, J.; Becker, W. Determination of the elasticity tensor of non-orthotropic cellular sandwich cores. Tech. Mech.-Eur. J. Eng.
Mech. 1999, 19, 259–268.

51. Castaneda, P.P.; Suquet, P. On the effective mechanical behavior of weakly inhomogeneous nonlinear materials. Eur. J. Mech A
Solids 1995, 14, 205–236.

52. Staszak, N.; Garbowski, T.; Szymczak-Graczyk, A. Solid Truss to Shell Numerical Homogenization of Prefabricated Composite
Slabs. Materials 2021, 14, 4120. [CrossRef] [PubMed]

53. Cosserat, E.; Cosserat, F. Théorie des Corps Déformables; A. Hermann et fils: Strasbourg, France, 1909.
54. Eringen, A.C. Linear theory of micropolar elasticity. Theory Micropolar Elast. 1965, 15, 909–923. [CrossRef]
55. Phani, S.; Woodhouse, J.; Fleck, N.A. Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 2006, 119,

1995–2005. [CrossRef]
56. Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Eur. Phys. J. A 1929, 52, 555–600. [CrossRef]
57. Langley, R. A Note On The Force Boundary Conditions For Two-Dimensional Periodic Structures With Corner Freedoms. J. Sound

Vib. 1993, 167, 377–381. [CrossRef]
58. Langley, R.; Bardell, N.; Ruivo, H. The response of two-dimensional periodic structures to harmonic point loading: A theoretical

and experimental study of a beam grillage. J. Sound Vib. 1997, 207, 521–535. [CrossRef]
59. Born, M.; Huang, K.; Lax, M. Dynamical Theory of Crystal Lattices. Am. J. Phys. 1955, 23, 474. [CrossRef]
60. Gurtin, M. Phase Transformations and Material Instabilities in Solids; Elsevier: Amsterdam, The Netherlands, 2012.
61. Hutchinson, R.G. Mechanics of Lattice Materials; University of Cambridge: Cambridge, UK, 2005.
62. Takano, N.; Ohnishi, Y.; Zako, M.; Nishiyabu, K. Microstructure-based deep-drawing simulation of knitted fabric reinforced

thermoplastics by homogenization theory. Int. J. Solids Struct. 2001, 38, 6333–6356. [CrossRef]
63. Hollister, S.J.; Kikuchi, N. A comparison of homogenization and standard mechanics analyses for periodic porous composites.

Comput. Mech. 1992, 10, 73–95. [CrossRef]
64. Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London. Ser. A

Math. Phys. Sci. 1957, 241, 376–396. [CrossRef]
65. Al-Haik, M.; Hussaini, M.; Garmestani, H. Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial

neural network. Int. J. Plast. 2006, 22, 1367–1392. [CrossRef]
66. Fritzen, F.; Fernández, M.; Larsson, F. On-the-Fly Adaptivity for Nonlinear Twoscale Simulations Using Artificial Neural Networks

and Reduced Order Modeling. Front. Mater. 2019, 6, 75. [CrossRef]
67. Le, B.A.; Yvonnet, J.; He, Q. Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer.

Methods Eng. 2015, 104, 1061–1084. [CrossRef]
68. Zopf, C.; Kaliske, M. Numerical characterisation of uncured elastomers by a neural network based approach. Comput. Struct.

2017, 182, 504–525. [CrossRef]
69. Wojciechowski, M. Application of artificial neural network in soil parameter identification for deep excavation numerical model.

Comput. Assist. Methods Eng. Sci. 2017, 18, 303–311.
70. Fan, Z.; Yan, J.; Wallin, M.; Ristinmaa, M.; Niu, B.; Zhao, G. Multiscale eigenfrequency optimization of multimaterial lattice

structures based on the asymptotic homogenization method. Struct. Multidiscip. Optim. 2019, 61, 983–998. [CrossRef]

http://doi.org/10.1098/rspa.2013.0734
http://doi.org/10.1016/j.ijsolstr.2004.06.038
http://doi.org/10.1016/S0020-7683(02)00241-X
http://doi.org/10.3390/jcs3020033
http://doi.org/10.1007/s11837-020-04399-8
http://doi.org/10.1016/j.matdes.2020.109098
http://doi.org/10.1016/j.ijplas.2019.11.003
http://doi.org/10.1016/j.ijmecsci.2005.11.003
http://doi.org/10.1016/j.ijsolstr.2005.03.055
http://doi.org/10.1115/1.1425394
http://doi.org/10.1016/S0263-8223(02)00246-5
http://doi.org/10.3390/ma14154120
http://www.ncbi.nlm.nih.gov/pubmed/34361314
http://doi.org/10.21236/ad0473723
http://doi.org/10.1121/1.2179748
http://doi.org/10.1007/bf01339455
http://doi.org/10.1006/jsvi.1993.1341
http://doi.org/10.1006/jsvi.1997.1154
http://doi.org/10.1119/1.1934059
http://doi.org/10.1016/S0020-7683(00)00418-2
http://doi.org/10.1007/BF00369853
http://doi.org/10.1098/rspa.1957.0133
http://doi.org/10.1016/j.ijplas.2005.09.002
http://doi.org/10.3389/fmats.2019.00075
http://doi.org/10.1002/nme.4953
http://doi.org/10.1016/j.compstruc.2016.12.012
http://doi.org/10.1007/s00158-019-02399-0


Materials 2022, 15, 605 21 of 21

71. Vlădulescu, F.; Constantinescu, D.M. Lattice structure optimization and homogenization through finite element analyses. Proc.
Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 1490–1502. [CrossRef]

72. Xu, L.; Qian, Z. Topology optimization and de-homogenization of graded lattice structures based on asymptotic homogenization.
Compos. Struct. 2021, 277, 114633. [CrossRef]

73. Zhang, J.; Sato, Y.; Yanagimoto, J. Homogenization-based topology optimization integrated with elastically isotropic lattices for
additive manufacturing of ultralight and ultrastiff structures. CIRP Ann. 2021, 70, 111–114. [CrossRef]

http://doi.org/10.1177/1464420720945744
http://doi.org/10.1016/j.compstruct.2021.114633
http://doi.org/10.1016/j.cirp.2021.04.019

	Introduction 
	Background 
	Homogenization Methods 
	Beam Theory Approach 
	Strain Energy Equivalence: Surface Average Approach and Volume Average Approach 
	Micropolar Theory 
	Solid-State Physics Approach: Bloch’s Theorem and Cauchy Born Hypothesis 
	Asymptotic Homogenization Approach 
	Multi-Scale Homogenization Method for Lattice Materials 
	Machine Learning Approach: Data-Driven Model 

	Conclusions and Future Work 
	References

