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Abstract
Objective
To determine whether the punctuated administration of low-dose rituximab, temporally linked
to B-cell hyperrepopulation (defined when the return of CD19+ B cells approximates 40%–50%
of baseline levels as measured before alemtuzumab treatment inception), can mitigate
alemtuzumab-associated secondary autoimmunity.

Methods
In this hypothesis-driven pilot study, 10 patients received low-dose rituximab (50–150 mg/
m2), a chimeric anti-CD20 monoclonal antibody, after either their first or second cycles of
alemtuzumab. These patients were then routinely assessed for the development of autoimmune
disorders and safety signals related to the use of dual monoclonal antibody therapy.

Results
Five patients received at least 1 IV infusion of low-dose rituximab, following alemtuzumab
therapy, with a mean follow-up of 41 months. None of the 5 patients developed secondary
autoimmune disorders. An additional 5 patients with follow-up over less than 24 months
received at least 1 infusion of low-dose rituximab treatment following alemtuzumab treatment.
No secondary autoimmune diseases were observed.

Conclusions
An anti-CD20 “whack-a-mole” B-cell depletion strategy may serve to mitigate alemtuzumab-
associated secondary autoimmunity in MS by reducing the imbalance in B- and T-cell regu-
latory networks during immune reconstitution. We believe that these observations warrant
further investigation.

Classification of evidence
This study provides Class IV evidence that for people with MS, low-dose rituximab following
alemtuzumab treatment decreases the risk of alemtuzumab-associated secondary autoimmune
diseases.
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Alemtuzumab, a humanized anti-CD52 monoclonal antibody
that depletes circulating B and T lymphocytes, is approved in
the United States and Europe for the treatment of MS.1,2

Patients who receive alemtuzumab have an estimated 60%
rate of attaining No Evidence of Disease Activity status, which
is defined by no new clinical relapses, disease progression, or
new MRI activity in a 5-year follow-up period.3,4 Antibody-
mediated secondary autoimmune disease in patients with MS
treated with alemtuzumab approaches an incidence of
40%–50% in prolonged follow-up, with a peak incidence by
the third year following treatment initiation and waning in-
cidence thereafter.5–16

Themain adverse effect of alemtuzumab is the development of
predominantly antibody-mediated secondary autoimmune
disorders. The most common secondary autoimmune disor-
der is antibody-mediated thyroid disease; with autoimmune
hyperthyroidism being the most common and exceeding those
developing hypothyroidism.5,6 Other antibody-mediated au-
toimmune diseases have been reported, including idiopathic
thrombocytopenic purpura, anti–glomerular basement mem-
brane (GBM) disease, neutropenia, hemolytic anemia, and
vitiligo, among others. T cell–mediated autoimmunity and
granulomatous inflammatory diseases (principally sarcoidosis)
occur at a considerably lower incidence.1–16 An increased risk
of opportunistic infections continues to be an important and
potentially serious complication of all cell-depleting disease-
modifying treatment strategies, although there are a number of
systematic risk-mitigating strategies.

Cooperation between B cells and T cells is required for B-cell
differentiation and mature antibody formation, and yet it is
now well established that following alemtuzumab disease-
modifying therapy for MS, that there is a marked discordance
in B vs T lymphocyte reconstitution kinetics; with the former
being detected earlier and in considerably greater proportion,
using objective methods for characterizing peripheral blood
mononuclear cells.

Some evidence suggests that lymphocyte repopulation pat-
terns, in patients treated with alemtuzumab, are not neces-
sarily associated with the risk of developing secondary
autoimmune diseases.16,17 Instead, a compromise in the in-
tegrity of cellular regulatory networks, corroborated sto-
chastically by diminution in the regulatory signature ratios
(e.g., the clonal frequency of regulatory T cells (Tregs) to
TH-17 proinflammatory cells), could influence the functional
thresholds that determine the ignition of dynamic immune
response oscillations and their disposition toward activation
vs anergy.11 Furthermore, reduced thymopoiesis can result in

the restricted heterogeneity in the T-cell receptor repertoire,
creating conditions that can predispose to a heightened risk of
secondary autoimmunity.18 Therefore, the discrepancy be-
tween humoral and cellular immune networks appears to be
beyond the simplistic stochastic considerations.

The kinetic disparities in the development, release, and
recirculation of B and T lymphocytes may have implications
for the coordinate-regulatory mechanisms, which represent
the immune basis for self-tolerance, and the corresponding
molecular check-point verification strategies, which are im-
perative for ensuring the perpetual fidelity to discriminate
between self and non-self (i.e., tolerance and its durability in
response to challenges fundamental to its integrity, and with
time, especially with advancing age and the emergence of the
increasingly recognized property of immune senescence).

We hypothesize that anti-CD20 B-cell depletion, punctually
administered and temporally coinciding with the precocious
B-cell hyperrepopulation, may represent a viable strategy for
mitigating the risk of alemtuzumab-associated secondary
autoimmunity.

Here, we report a strategic approach, along with pilot observa-
tions, suggesting that the risk of secondary autoimmunity can
potentially be mitigated when low-dose anti-CD20 therapy is
administered during B-cell repopulation (i.e., what is referred to as
a “whack-a-mole” strategy19–23) following alemtuzumab therapy.

Methods
The study was approved by the Investigational Review Board
of the Dell Medical School at the University of Texas at
Austin. All patients consented for the off-label use of
rituximab.

Our primary research question was to ascertain whether the
punctuated administration of low-dose rituximab, temporally
linked with the discordant B-cell hyperrepopulation (when
the return of the CD19+ cells approximated 40%–50% of
baseline measures examined before alemtuzumab therapy
intervention), represents an effective strategy for mitigating
alemtuzumab-associated secondary autoimmunity (Class IV
evidence).

We examined 2 small cohorts of 5 patients each. The first
cohort (see table 1 for demographics), which was originally
treated with alemtuzumab, received at least 1 infusion of low-
dose rituximab (range 1 to >3 doses; 50–150 mg/m2) after
B-cell reconstitution began. Follow-up of these individuals

Glossary
ANC = absolute neutrophil count; EAE = experimental autoimmune encephalitis; GBM = glomerular basement membrane;
NMOSD = neuromyelitis optica spectrum disorder; Tregs = regulatory T cells.
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occurred for more than 24 months. All patients who received
alemtuzumab for treatment of MS were eligible. Patients were
not selected on the basis of prior immunotherapy. Rituximab
is an anti-CD20 monoclonal antibody therapeutic. In addition
to CD20, CD19 is also a pan B-cell marker. Anti-CD20
therapeutic monoclonal antibody interferes with the recog-
nition of the CD20 antigen. As such, the CD19+ B-cell level,
as measured by flow cytometry, was used as a proxy to mea-
sure extent of B-cell depletion following anti-CD20 therapy.24

Alemtuzumab-treated patients were scheduled to receive
rituximab when CD19+ B cells repopulated to 40%–50% of
their baseline levels. Baseline B-cell frequency was de-
termined before initiation of alemtuzumab treatments by
performing lymphocyte subset analysis on 3–4 weekly blood
draws. Rituximab dosing was predicated on insurance cov-
erage. Some dosages were delayed due to difficulties
obtaining insurance approval.

In addition to monthly monitoring of T- and B-cell
(i.e., CD3+ and CD19+) lymphocyte subsets, we also mea-
sured thyroid function, urinalysis, and complete blood counts
at baseline and monthly thereafter. This was performed in
accordance with the Risk Evaluation andMitigation Strategies

program for alemtuzumab to identify evidence of autoim-
mune thyroiditis, anti-GBM antibody disease, or immune
thrombocytopenic purpura.

The second cohort of 5 patients (demographics are shown in
table 2), whichwas originally treatedwith alemtuzumab, received
at least 1 infusion of low-dose rituximab after B-cell re-
constitution to 40%–50% of baseline. Follow-up of these indi-
viduals occurred for less than 24 months. Lymphocyte subsets,
thyroid function, urinalysis, and complete blood counts were
measured at baseline andmonthly thereafter, as described above.

Given the low number of patients in this retrospective case
series, and variations in protocol, we did not have adequate
power to perform statistical tests to determine the efficacy of
anti-CD20 therapy in preventing alemtuzumab-mediated
secondary autoimmunity.

Data availability
Deidentified data will be shared with other investigators fol-
lowing requests made to the corresponding author.

Results
Of the 5 patients with follow-up greater than 24 months
(table 1) who received low-dose rituximab infusions following
alemtuzumab, 1 patient received 2 rituximab infusions, and 1
patient received greater than 3 rituximab infusions due to
prolonged T-cell suppression. Two of the patients received
rituximab after a single cycle of alemtuzumab, and 3 of the
patients received rituximab after 2 cycles of alemtuzumab.
None of the patients received 3 cycles of alemtuzumab, given
evidence of clinical remission, and radiographic stabilization,
as confirmed on follow-up MRI investigations.

Table 1 Clinical characteristics and results of patients
with long-term follow-up

Characteristic Value

No. of patients 5

Age, mean (SD), y 47 (11)

Sex, female, % 60

Cycles of alemtuzumab, %

1a 20

2 80

Follow-up, mean (SD), mo 41 (5)

Rituximab doses, individuals

1 3

2 1

3+ 1

Rituximab timing, individuals

1st cycle 2

2nd cycle 3

Both 0

Secondary autoimmune disease 0

Shown are clinical characteristics of patients who received low-dose ritux-
imab with follow-up duration greater than 24 months characterized by age,
sex, cycles of alemtuzumab, follow-up duration, doses of rituximab, timing
of doses, and development of secondary autoimmune disease.
a One patient received only a single cycle of alemtuzumab at the patient’s
request due to disease stability.

Table 2 Clinical characteristics and results of patients
with short-term follow-up

Characteristic Value

No. of patients 5

Age, mean (SD), y 44 (13)

Sex, female, % 80

Follow-up, mean (SD), mo 14 (2)

Rituximab doses, individuals

1 2

2 3

Median time to CD19 50% baseline, mo 2

Median time to first rituximab dose, mo 3

Shown are clinical characteristics of patients who received low-dose ritux-
imabwith follow-up duration less than 24months characterized by age, sex,
follow-up duration, doses of rituximab, time to rise in CD19 count, and time
to first rituximab dose.
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For all 5 patients, the mean follow-up duration from the initial
dose of alemtuzumab was 41 months (range 34–48 months).
None of the patients developed secondary autoimmune
complications as defined by the Comparison of Alemtuzumab
and Rebif Efficacy in Multiple Sclerosis (CARE-MS) I and II
trials.3,4 Based on the results of CARE-MS I, we anticipated
that 30%–40% of patients with long-term follow-up would
have developed autoimmune thyroid disease.3,4

Of the 5 additional patients with a follow-up duration of less than
24 months (table 2) who received low-dose rituximab treatment
following alemtuzumab, 2 patients received 1 infusion of ritux-
imab, and 3 patients received 2 infusions of rituximab. The
median time to 40%–50% recovery of the CD19+ cell count was
2 months post-alemtuzumab, and the median time to the first
rituximab dose administration was 3 months post-alemtuzumab.

In this second cohort, 1 patient developed transient neu-
tropenia with an absolute neutrophil count (ANC) <500/μL
2 months after the second dose of 100 mg of rituximab. This
patient was treated with granulocyte colony-stimulating factor
and reconstituted the ANC within 1 month. Another patient
developed a urinary tract infection, and an additional patient
developed an upper respiratory tract infection after receiving
low-dose rituximab, while both B- and T-cell lymphocytes
were suppressed.

Late-onset neutropenia is a well-described phenomenon after
rituximab infusion, which has been considered to be related
to transient autoimmunity.25 Alternately, neutropenia has
also been documented in postmarketing surveillance of
alemtuzumab-treated patients, albeit at a much lower in-
cident rate when compared with the frequency of the most
common alemtuzumab-induced secondary autoimmune
conditions, particularly thyroiditis (e.g., Graves disease and
Hashimoto thyroiditis).3,4

All patients treated in both patient cohorts were on pro-
phylactic valacyclovir or acyclovir for 24 consecutive months,
including during treatment with low-dose rituximab, given
high rates of herpes reactivation in the clinical trials.

Discussion
Alemtuzumab treatment in MS is associated with an early
hyperrepopulation of B cells that emerge between 3 and 6
months following treatment, which precedes the repopulation
of T cells that occurs between 12 and 24 months following
treatment. A fundamental discordance in the return of humoral
and cellular networks is likely to play a role, at least in part, in the
incidence of the adverse event most strikingly associated with
alemtuzumab treatment; secondary autoimmunity.26–29

T-cell help is required for B-cell differentiation, isotype
switching, and antibody secretion. The interaction between
B cells and T cells is bidirectional. As such, anti-CD20 B-cell

depletion in MS and experimental autoimmune encephalitis
(EAE) promotes T-cell immune modulation characterized
by a significant reduction in proinflammatory Th1 and Th17
cells, which likely reflects a decrease in B-cell antigen-
presenting cell function.26 In this context, selective de-
ficiency of major histocompatibility complex (MHC) Class
II expression by B cells in mice eliminates both susceptibility
to EAE and the expansion of Th1 and Th17 cells.29

In the absence of T-cell help, B cells are rendered unable to
differentiate between the antigen presentation of self- vs
non–self-epitopes, at least in part secondary to a considerably
lower threshold for presentation of low-magnitude antigens,
when compared with macrophages or dendritic cells. Fur-
thermore, anti-CD20 treatment of MS and EAE promotes
T-cell immune modulation characterized by a significant re-
duction in the proinflammatory network, at least in part,
mediated by Th17.26–29 Conspicuously, B cell–specific MHC
Class II–deficient mice are rendered resistant to the de-
velopment of EAE.28

Secondary humoral autoimmunity resulting in hyper- or hy-
pothyroidism, thrombocytopenia or renal disease are well
known risks following alemtuzumab treatment of MS.5,6 We
hypothesize that anti-CD20 B-cell depletion after alemtuzu-
mab administration may mitigate the risk of secondary auto-
immunity and have investigated this possibility. Our initial
results suggest that anti-CD20 B-cell depletion is safe and
potentially efficacious. However, given the small sample size,
and unrandomized and unblinded cohort, more rigorous
studies need to be pursued before making any declaration
regarding efficacy.

Several hypotheses attempt to delineate the cause of sec-
ondary autoimmune disease associated with alemtuzumabMS
disease-modifying therapy. Unlike traditional B-cell return
after anti-CD20 therapies, B-cell repopulation occurs rapidly
following alemtuzumab treatment and is associated with
hyperrepopulation of immature and mature B cells above
baseline levels.30 Following alemtuzumab treatment, B-cell
repopulation occurs well in advance of T-cell repopulation
(;3–6 months compared with ;12–24 months, re-
spectively), which may compromise the counterbalancing of
humoral and cellular mechanisms that serve to maintain im-
mune regulation.

Notwithstanding these findings, secondary autoimmune dis-
ease after alemtuzumab treatment, exhibits a long latency
before presentation, that is well beyond the observed B-cell
hyperrepopulation, and in fact coincides more closely with
T-cell repopulation; as autoantibody production is likely CD4
T-cell dependent.31

T-cell regeneration after depletion in adults is predominantly
achieved by thymic-independent homeostatic peripheral ex-
pansion. This process, unlike T-cell regeneration in children,
which occurs primarily in the thymus, is associated with
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decreased self-tolerance, a potential molecular scaffolding on
which autoimmunity can result.31

The goal of the temporally associated administration of low-dose
rituximab is not exclusively restricted to delaying the return of
the CD19+ B-cell population or an attempt to solely synchronize
the reconstitution of B- and T-cell subsets. Data from clinical
trials that have analyzed the kinetics of humoral and cellular
subsets reveal no evidence of correlation that dichotomizes the
risk predilection for alemtuzumab-mediated secondary autoim-
munity.16 Future work should also characterize the effect of
rituximab on a unique and proinflammatory mononuclear cell,
which coexpresses both CD20 andCD3 (i.e., CD20+ T cells and
chimeric or C cells), which may serve to promote secondary
autoimmunity, and would be expected to be deleted along with
CD20+ B cells during our administration of low-dose rituximab.

A uniquemember of the immune system’smononuclear cell pool
is the CD20+ T cell (i.e., a chimeric lymphocyte or C cell; figure
1), which includes both CD4+ and CD8+ cells, with the latter
being the predominant of this cell type. Its T-cell origin has been
confirmed via the detection of CD3 encoded mRNA via reverse
transcriptase-polymerase chain reaction (RT-PCR).32,33 The
distribution of these cells is broad and includes the primary and
secondary lymphoid tissue, thymus, bone marrow, lymph node,
adenoids, liver, and cerebrospinal fluid (CSF). Conspicuously, at
resting conditions, CD20+ T cells exhibit augmented release of
cytokines vs CD20−T cells. Specifically, they release interferon γ,
interleukin (IL) 1 β, IL-2, IL-4, IL-8, IL-10, transforming growth
factor β, tumor necrosis factor α, and c-c chemokine.34

Under conditions of immune stimulation, there is an escala-
tion in cytokine production in CD20+ T cells.32 Furthermore,
enhanced expression of IL-17 is also characteristic of this
small population of lymphocytes.33 In patients with relapsing-
remitting and primary progressive MS vs healthy controls,
there is an increased frequency of CD20+T cells in peripheral
blood.35

In those with MS, there is an increased clonal frequency of
such cells in CSF when compared with the analysis of pe-
ripheral blood mononuclear cells, and the magnitude of that
clonal frequency is correlated with clinical disability in pa-
tients with MS as measured by the long-validated Expanded
Disability Status Scale score.36 Also, CD20+ T cells are
identified within chronic white matter plaque lesions derived
from the MS brain.36 In drastic contrast to the small pro-
portion of such cells from the peripheral blood of controls, the
CD20+ T-cell fraction in patients with MS represents a
striking 18.4% of all CD20+ cells including those mono-
nuclear cells that are CD19+ B cells.37

B-cell hyperrepopulation, accompanied by a reduction of
T-cell help, establishes circumstances whereby antigen pre-
sentation coordinated by B cells, renders them unable to
differentiate between self (whereby antigen presentation of
autoantigens stereotypically produces immune anergy), and

foreign epitopes (which appropriately culminates in immune
activation). Alternately, the B-cell depletion also comes with
the downregulation of inflammatory cytokines, secondary to
B-cell induction of T-cell activity and the eventual cytokine
release syndrome.

A detailed figure (figure 1) delineates our hypothetical con-
stellation of features proposed as the basis for a low-dose anti-
CD20 whack-a-mole strategy aimed at mitigating secondary
autoimmunity.

If our proposed risk mitigation strategy were to be used more
broadly, for feasibility, there would need to be a straightfor-
ward way of timing rituximab infusions. As such, figure 2
illustrates a schematic for a potential protocol using a low-
dose anti-CD20 (rituximab) whack-a-mole secondary auto-
immunity mitigation strategy post-alemtuzumab treatment
and its effect on B-cell repopulation. Specifically, we timed
low-dose rituximab infusion with a CD19+ B-cell recovery of
;50% of normal baseline. We chose this as a relatively easy
marker to measure and to ensure that patients would receive
rituximab synchronous to the B-cell hyperrepopulation phase
of post–alemtuzumab-induced bone marrow mononuclear
cell mobilization.

Alternatively, rituximab could be given at a fixed interval, such
as 3 or 4 months after alemtuzumab infusion, a common,
albeit not consistent, duration for the bone marrow mobili-
zation and peripheral repopulation of B cells. However, if
B-cell hyperrepopulation is delayed (e.g., until 4–6 months), a
fixed timing for whack-a-mole administration of low-dose
anti-CD20 therapy could predispose a significant proportion
of patients to harbor a temporal discordance between such
treatment and its intended targets, consequently producing an
ineffective depletion of both CD20+ B cells and CD20+/
CD3+ T cells (likely resulting in a potential type II error in
efficacy analyses).

Given the heterogeneity in the kinetics of B-cell repopu-
lation following alemtuzumab therapy, coupled with the
known median half-life of rituximab at 22 days (with a range
of 6.1–52 days, as per package insert), we strongly advise for
monthly lymphocyte subset analysis to precisely synchro-
nize administration of a rituximab low-dose anti-CD20
whack-a-mole therapy strategy to buffer against the dis-
cordant B-cell hyperrepopulation in the absence of ade-
quate T-cell help. In addition, this strategy will attenuate
the reemergence of the proinflammatory CD20+ T cells.
It remains to be seen if a single dose of rituximab will
be sufficient or whether multiple whack-a-mole cycles
will be required for a therapeutic effect of preventing
alemtuzumab-associated secondary autoimmunity.

It is of interest that anti-CD20 therapy achieves about a 99%
loss of peripheral blood B lymphocytes, without affecting
plasma cells or plasmablasts, the principal antibody-secreting
cells, which are devoid of cell surface CD20 expression. In
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Figure 1 A model for the mitigation of secondary autoimmunity in patients with MS post-alemtuzumab

In the upper portion of the figure, we illustrate alemtuzumab treatment and its effect on elimination of anti–self-lymphocytes by 2 principal mechanisms,
clearance through the reticular endothelial system (RES; on the left) and assembly of themembrane attack complex (MAC) facilitating the passage of C9, which
compromises cell membrane integrity, thereby culminating in cytotoxicity and cell death. The lower middle illustration emphasizes post-alemtuzumab
treatment-inducedmobilization of bonemarrow stem cells, reconstituting the immune system. B cells undergo a discordant hyperrepopulation approaching
pretreatment baseline numbers, 3–6 months following alemtuzumab treatment, whereas T-cell reconstitution is considerably delayed (12–24 months).
Hypothetically, the highly discordant hyperrepopulation of B cells plays a role in the development of secondary autoimmunity. Post-alemtuzumab treatment,
circulatingmononuclear cells are principally CD3+-naive T cells, CD19+ CD20+-naive B cells, as well as a unique population of cells that express both the B-cell
antigen CD20 and the T-cell antigen CD3. These latter cells we refer to as Chimeric lymphocytes (C cells), and they are known to express proinflammatory
cytokines, which in the absence of adequate T-cell help can foment the production of anti–self-antibodies. This can initiate corresponding autoantibody-
mediated disorders, such as those designated by green labels in the figure, as well as to T cells capable of orchestrating cellularmechanisms of autoimmunity
(designated by purple labels). To the lower left of the lower diagram, one can see an enrichment in the CD3+ CD20+ C cells simultaneouswith the discordant B-
cell hyperrepopulation (generally emerging approximately 3–6 months following alemtuzumab treatment) in the context of a deficiency in the clonal
frequency of regulatory T cells (Tregs) (i.e., identified as CD4+CD25hiFoxP3+). In the absence of T-cell help, such B cells are rendered incapable of discriminating
between self and foreign epitopes to both other B cells, thereby coordinating the development of antibodies as well as to T cells leading to T-cell receptor
maturation, with elaboration of cytokine and chemokine expression profiles commensurate to foment cellular autoimmunemechanisms. The central portion
of the diagram serves to illustrate the potential diversity of antibody-mediated secondary autoimmune states (green line paths). We also see activation of
T cells, which can mediate secondary autoimmunity (purple line paths), and granulomatous inflammatory disease, most specifically sarcoidosis. Monitoring
monthly lymphocyte subsets facilitates detection of the discordant B-cell hyperrepopulation phase of bone marrow mononuclear cell mobilization after
alemtuzumab therapy and thereby provides for the discrete and temporally punctuated administration of an anti-CD20 “whack-a-mole” strategy for
mitigating secondary autoimmunity. Specifically, we administered low-dose rituximab to orchestrate the deletionof bothCD20+B cells in conjunctionwith the
CD20+CD3+ C cells, along with their B-cell activation capabilities via the elaboration of proinflammatory cytokine and chemokine cascades. The net effect is
seen approximately 4months later (in the upper circle on the right lower side of the diagram) when there is amarked diminution of both effector/memory B
cells and autoimmunity-inducing C cells, with a corresponding expansion in the clonal frequency of Tregs.
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keeping with this observation, anti-CD20 therapy appears to
exert no impact on CSF antibody indices such as oligoclonal
banding, increased immuno gamma globulin (IgG) index,
and/or an elevation in IgG synthesis rates, characteristic ab-
normalities identified in approximately 90% of patients with
MS, when using isoelectric focusing techniques. Alternately,
the peripheral loss of B cells does correspond to a marked
reduction in the development of both T1 gadolinium-
enhancing and combined unique MS plaque lesions.38,39

In a recent study, the third-generation, glycoengineered chi-
meric anti-CD20 therapy, ublituximab, was shown to reduce
both effector and memory CD8 T-cell populations, while also
augmenting the clonal frequency of naive CD8+ T cells.38 One
of the most conspicuous observations was the identification of
a population of lymphocytes with cell surface expression of
both CD20+ and CD3+ (those designated as chimeric or C
cells in our hypothetical model; figure 1), with further char-
acterization revealing that such cells exhibit features in
keeping with memory CD8+ T cells.40

The functionally chimeric lymphocytes produce proin-
flammatory mediators, which may play a key role in the
promiscuous antigen presentation of self-motifs during the
discordant hyperrepopulation of B cells following alemtuzu-
mab treatment (figure 1). Lovett-Racke et al. categorically
characterized both the cellular identification and cytokine/
chemokine expression profiles using flow cytometric tech-
niques from 47 patients withMS treated with ublituximab and

confirmed that such treatment resulted in significantly at-
tenuated expression of proinflammatory cytokines, reduced
antigen presentation, a shift from the effector/memory phe-
notype to repopulation of naive lymphocytes, and importantly
augmentation in the clonal frequency of regulatory T cells
(Tregs).33

A primary immune defect in patients with MS is a deficiency
in Tregs. Efficacy in treating the disorder, at least in part,
involves reconstitution of the immune network’s regulatory
capabilities through the expansion of Tregs, specifically
identified as CD4+CD25hiFoxP3+.28,38 The observations
from this investigation suggest that anti-CD20 therapy is ca-
pable of provoking a skewing or immune deviation that may
be secondary, perhaps at least in part, to the deletion of
CD20+/CD3+ C cells, thereby resulting in reduced B cell–
mediated degenerate antigen presentation of self-motifs,
along with a broadening in the clonal frequency of Tregs, all of
which may be germane to our understanding of how we can
use alemtuzumab while actively reducing (vis a vis with the
application of a ‘whack-a-mole’ cell depletion strategy) the
incidence of secondary autoimmunity (figures 1 and 2).33

We successfully used low-dose rituximab 100 mg (;50–75
mg/m2) for patients with neuromyelitis optica spectrum
disorder (NMOSD) who could not afford access to higher
doses of rituximab. A 100-mg infusion depletes the CD19
population of B cells to less than 2% for an average of 99 days
(in essence, B-cell suppression is highly titratable, analogous

Figure 2 Low-dose anti-CD20 therapy post-alemtuzumab schematic illustrating a potential pilot protocol

This schematic depicts normal CD4+ and CD19+ cell reconstitution,9 as well as the theoretical CD19+ reconstitution with our proposed low-dose rituximab
protocol. Low-dose rituximab (e.g., 100 mg) is given subsequent to the detection of the precociously discordant B-cell hyperrepopulation phase of bone
marrow mononuclear cell mobilization following alemtuzumab treatment; an intervention which attenuates promiscuous antigen presentation by B cells,
capable of activating anti–self-humoral and cellular networks, while also serving to promote a more synchronized repopulation across the bone marrow
mobilization of mononuclear cell heterogeneity (i.e., achieving a more balanced return of B and T lymphocyte populations; with the added dividend of
amplifying the clonal frequency of Tregs; and observation akin to tolerance induction in patients with MS).
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to immunologic labetalol, the latter commonly used as a
highly titratable agent for management of hypertensive crises,
such as hypertensive encephalopathy, where loss of cerebro-
vascular autoregulation precludes the employment of long-
acting agents, which could result in a protracted compromise
in cerebral blood flow dynamics, predisposing to a hypoxic-
ischemic insult) in patients with NMOSD compared with 184
days for a 1,000 mg dose of rituximab.41

Low-dose rituximab is a more attractive alternative to stan-
dard doses of 1,000 mg or 375 mg/m2. First, doses of ritux-
imab as low as 1 mg/m2 suppress B cells by 97% in healthy
controls, and B cells remain suppressed to 75% of baseline
levels at 12 weeks after infusion.42,43

Second, low-dose anti-CD20 therapy does not result in pro-
longed B-cell depletion, so as not to interfere with repeat
cycles of alemtuzumab therapy.41

Third, low-dose rituximab may facilitate greater control of
B-cell repopulation and improved temporal synchronization
with T-cell repopulation.

Last, reduced dosing magnitude reduces the duration of im-
munosuppression compared with conventional doses of rit-
uximab and may eventually be shown in evidence-based
studies to demonstrate both safety and cost advantages if few
complications are identified with the low-dose regimen.

A more robust clinical trial with a primary outcome of the
development of secondary autoimmunity would not likely
require a large number of participants, given the incidence rate
of 40% of autoimmune thyroid disease in patients with MS
who have received alemtuzumab.3,4 Hence, we would esti-
mate an incidence of 40% in the control group of
alemtuzumab-only treated patients and with an assumption of
an incidence of 10% in patients who would receive adjunct
rituximab. If we assign the probability of a type I error of 5%
and a power of 80%, a trial would need approximately 80
patients total (40 in each arm), accounting for drop-outs.

In addition to our small sample size, and an unrandomized,
and unblended cohort, many physicians prescribe steroids
with rituximab infusion (methylprednisolone 250 mg before
each and every alemtuzumab infusion in our center) to pre-
vent infusion reactions. It is possible that the potential positive
effects of secondary autoimmunity prevention attributed to
rituximab are instead, or at least in part, due to steroid usage.
In addition, treatment may simply delay secondary autoim-
munity rather than preventing it, and longer periods of as-
certainment will be required to assess for this prospect.

An alternate explanation concerning the impact of rituximab
on secondary autoimmunity is that some individuals may
respond differently to low-dose anti-CD20 therapy due to the
effects of the FCGR3A polymorphism.42 We do not know the
effect of the polymorphism on low-dose rituximab kinetics;

however, binding affinity may play a larger role in low-dose
rituximab compared with conventional doses, given the lower
absolute concentration of rituximab. Such issues should be
carefully considered in the design of a larger trial, particularly
given potential effects of such factors on response character-
istics as well as on study cost.

As the field of neurology shifts from amodel of step escalation
to induction therapy for the treatment of MS, strategies that
are aimed at mitigating the risks of potent disease modifying
therapies are urgently needed.43

Only through the scientific method of subjecting our hy-
pothesis to the rigors of a controlled, adequately blinded,
prospective and adequately powered clinical trial can we
confirm or refute the hypothesis-driven question; can the
application of low-dose anti-CD20 therapy, temporally syn-
chronized with objective confirmation of B-cell hyper-
repopulation, serve to adequately reduce or even prevent
alemtuzumab-associated secondary autoimmunity?

Furthermore, the addition of anti-CD20 therapy could po-
tentially confer benefits on immune deviation that would exert
added efficacy in synergy with the alemtuzumab-mediated
mechanisms of action in the establishment of disease re-
mission, while constituting augmented and durable regulatory
properties in keeping with those achieved during the critical
period that we now recognize collectively as self-tolerance.

Buffeted by the broad dissemination of bone marrow mobili-
zation of stem cells, following alemtuzumab treatment may
promote the process of restoration and neurologic functional
reconstitution. Recent evidence has demonstrated that an
emerging biomarker for assessing tissue damage in the CNS of
patients withMS, the neurofilament light chain, is reducedmost
markedly following the administration of alemtuzumab when
compared with other disease-modifying therapies and that such
levels remain reduced to the greatest magnitude over time.44

It was once thought that a proposition such as repair and
functional recovery from MS was wholly enigmatic and un-
likely. However, we have arrived at a point in the history of our
understanding of the disorder’s pathobiology, in concert with
the corresponding derangements in immune regulatory in-
fluences, and how to remediate them. We believe our work to
represent but a single small step toward this constellation of
goals that are so important to our deserving patients, their
families, our community, and those of us who serve on those
teams who care for and about them.
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