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Abstract: In this work, electroluminescence in Metal-Insulator-Semiconductors (MIS) and Metal-
Insulator-Metal (MIM)-type structures was studied. These structures were fabricated with single- and
double-layer silicon-rich-oxide (SRO) films by means of Hot Filament Chemical Vapor Deposition
(HFCVD), gold and indium tin oxide (ITO) were used on silicon and quartz substrates as a back
and front contact, respectively. The thickness, refractive indices, and excess silicon of the SRO films
were analyzed. The behavior of the MIS and MIM-type structures and the effects of the pristine
current-voltage (I-V) curves with high and low conduction states are presented. The structures exhibit
different conduction mechanisms as the Ohmic, Poole–Frenkel, Fowler–Nordheim, and Hopping
that contribute to carrier transport in the SRO films. These conduction mechanisms are related to the
electroluminescence spectra obtained from the MIS and MIM-like structures with SRO films. The
electroluminescence present in these structures has shown bright dots in the low current of 36 uA
with a voltage of −20 V to −50 V. However, when applied voltages greater than −67 V with 270 uA,
a full area with uniform blue light emission is shown.

Keywords: electroluminescence; HFCVD; conduction mechanisms

1. Introduction

Although in the field of optoelectronics there has been substantial research regarding
electroluminescent Metal-Insulator-Metal (MIM) structures [1,2], the use of silicon-based
materials, structures, and devices is a crucial advantage for optoelectronic applications
due to the high-performance, and low-cost manufacturing techniques that are used [3–6],
besides that silicon is the second most abundant chemical element in the earth. Silicon-
based structures focused on optoelectronics include Si nanocrystals, Si nanowires, Ge
alloys, and other methods to achieve the required carrier confinement to increase the
efficiency of radiative recombination [7,8], and it is essential to mention that significant
advances are also being realized with silicon oxide materials containing optically active rare-
earth impurities [7,8].

Some of the most exciting applications of Si-nanostructures include optical emitters for
integrated optical circuits, memory logic circuits; massively parallel optical interconnects
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and cross-connections for integrated circuit chips; light-wave components; high power
matrix and discrete emitters; nano cell optoelectronic matrices to detect biological and
chemical agents [9–15].

The semiconductor nanostructures based on silicon that absorb and emit light, such
as porous silicon (PS), silicon nanowires, silicon oxide nitride (SiON), and silicon-rich
oxide (SRO), present a great opportunity of being applied in electro photonics and they are
compatible with Metal Oxide Semiconductors (MOS) technology [7–13].

Specifically, SRO is considered as a multiphase material consisting of a mixture of
silica (SiO2), non-stoichiometric oxides (SiOx, x < 2), and elemental silicon. This material
has evolved since DiMaria et al. [16] observed electroluminescence (EL) in SRO for the
first time, and Leight Caham [17] obtained a visible emission of porous silicon through
an electrochemical etching process. SiOx materials are strong influenced by the oxygen
content since it determines its optical and electrical properties such as absorption coefficient,
bandgap, luminescence, refractive index, and conductivity [12–14].

The bonds and composition of SRO films are explained following different models;
according to the random bonding model (RBM), Si and O atoms are randomly mixed in the
material, and a SiOx film is composed of five basic units, silicon tetrahedrons, Si-(Si4-nOn),
n = 0, 1, 2, 3, 4, having a statistical distribution, while the mixture model (MM) suggests
the existence of only Si–Si4 and Si–O4 units, neglecting the intermediate oxidation states of
silicon. Finally, the interface clusters mixture model (IM) assumes the presence of both Si
and SiO2 clusters embedded in a SiOx matrix, and this is the adequate model [18].

An outstanding property of the SiOx material is the formation of silicon nanoparticles
(Si-nps) embedded in the Si oxide whose atomic structure may be amorphous (a-Si),
crystalline (c-Si), or a phase mixture of them. Such Si-nps result from the phase separation
phenomenon of the SiOx when annealing treatment is applied to the material. According
to [19], the Si-nps size is determined both by the energy barrier at the interface between
the Si-np and Si oxide and the annealing temperature. The degree of crystallization of the
Si-nps is dependent on its size.

Thinking about optoelectronic applications, it is essential to highlight that the electrical
and optical parameters of the SRO films are tunable, refractive index and conductivity can
be tuned almost independently of each other over a wide range. In contrast, the refractive
index is mainly determined by the [O]/[Si] ratio, and the conductivity depends on the
nanostructure and the nanocrystallites of silicon [20,21].

Earlier investigations linked the high conductivity to the increased nanocrystalline
content and the formation of silicon nanostructures, but in some samples, no signs of a
crystalline phase are shown, which leads to the implication that such structures consist
of amorphous silicon. Within inter crystallite distances of often below 1 nm, the wave
functions of the electronic states generated in the crystallites can overlap, forming energy
bands and allowing electron transport [20].

On the other hand, talking about the methods of obtaining the SRO, this has been
manufactured by various techniques, the most common Chemical Vapor Deposition, such
as Low-Pressure Chemical Vapor Deposition (LPCVD) [9–12], Hot Filament Chemical
Vapor Deposition (HFCVD) [10,22,23], and Plasma Enhanced Chemical Vapor Deposition
(PECVD) [4–7], in addition to sol-gel, silicone implant in SiO2 [24], and sputtering [25]. All
these techniques are compatible with integrated circuit manufacturing technology, and
they have various types of applications, such as waveguides, non-volatile memories, surge
suppressors, light detection, and emission devices. The current manufacture of nanostruc-
tures is carried out mainly with materials such as porous Silicon, Silicon nanowires, Silicon
Oxide Nitride (SiON), and Silicon Rich Oxide (SRO) since they are compatible with MOS
technology [7–12]. Electroluminescence in MIS-type devices has been studied extensively
based on different material systems, including the ZnO, perovskites, seen as [1,2]. In the
present work, the HFCVD technique was used to obtain the SRO films, which are utilized
to make up structures in order to study their blue electroluminescence.
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2. Materials and Methods

The structures that were manufactured for the realization of this work were two,
namely: S1 (Au/Si/SRO/ITO) and S2 (Q/Pn+/SRO/ITO), where Pn+ is polysilicon and
Q is quartz, the structures were formed by SRO films in a simple and double layer (S-L
and D-L) and with ITO contact, in order to compare the electroluminescence (EL) obtained
from these devices. The methodology used to manufacture the structure S1 begins with
the deposit of the SRO films by the HFCVD system. The SRO films were deposited on
silicon substrates, P-type (100), 2” diameter, with a resistivity of 1–5 Ω·m and 300 microns
thickness, previously cleaned using the standard MOS process [22,23,26] Molecular hydro-
gen (H2) fluxes (25 and 100 standard cubic centimeter per minute (sccm)) were used to
grow SRO films, two samples of single-layer (S-L) (SRO25 and SRO100) and two samples
of double-layer (D-L) (SRO25/100 and SRO100/25) were obtained and studied. The HFCVD
system used 11 tungsten filaments energized at 74 volts with a current of 38.4 amps to
reach a temperature of 2000 ◦C that dissociated the molecular hydrogen. The inlet of the
hydrogen flow was located placed below the incandescent filaments at a distance (filament
source distance, fsd) of 6 mm, obtaining thus the volatile precursors that were deposited
and adsorbed on the surface of the heated substrate below the quartz sources at a distance
(source substrate distance, ssd) of 8 mm [27,28]. The deposition time (dt) for the S-L SRO
films was 3 min, whereas, for the D-L SRO films, it was 5 min [27–33]. Once the SRO films
were deposited, they were annealed at 1100 ◦C for 60 min in an N2 environment. Finally,
the top contact placed on the film SRO was indium tin oxide (ITO); due to these films
having good transparency and conductivity, for the deposit of ITO, the spray pyrolysis
method was used [31] through a nebulizer at a deposition temperature of 450 ◦C. The
ITO solution (0.2 M) was prepared in a methanol base containing indium chloride InCl3
(Aldrich 99.9) and tin chloride pentahydrate SnCl4 5H2O (Aldrich 98); the percentage
of SnCl4 5H2O was 8%. The contact used on the back of the silicon substrate was gold
(Au) deposited by sputtering [32], at a vacuum pressure of 50 mTorr and a DC of 25 mA,
using a gold target with a purity of 4N. On the other hand, the manufacture of structure
S2 began with the deposit of the polysilicon (Pn+) as back contact on quartz substrates
which were previously cleaned with xylene, acetone, and deionized water. It started with
phosphine deposit through the LPCVD system [33], using as a precursor the SiH4 in an
atmosphere restricted to a pressure of 1.5 torr and a flux level of 3.4 standard liters per
minute (slpm), at 650 ◦C, for 20 min. Then phosphine doping of polysilicon was performed,
and a re-diffusion time of 15 min at 1000 ◦C with flow levels at 1000 and 500 sccm of
nitrogen and oxygen was used, respectively. It continued with the polysilicon oxidation
with an oxygen flow level at 1000 sccm at 1100 ◦C, for 20 min. Ultimately we removed the
phosphosilicate glass (PSG) glass formed on the sample surface with H2O: HF solution
in a 7:1 ratio. After that were deposited the S-L (SRO25 and SRO100) and D-L (SRO25/100
and SRO100/25) SRO films by using the HFCVD system, exposing a strip of polysilicon
(subsequent contact). Finally, the ITO was deposited as the top contact.

The thickness and refractive index of the SRO films deposited on Si substrates were
characterized by the ellipsometer Fairfield Model NJ 07004-2113. All the SRO films were
measurement as-grown (as-G) and with thermal annealing (T-A). The silicon excess in the
composition of the SRO films was measured with an XPS and PHI ESCA-5500 using a
monochromatic Al radiation source with a 1486 eV power.

For this work, the electrical characterization of the heterojunctions was performed
with a Keithley source model 2400 controlled by a computer through general purpose
interface bus (GPIB) using a LabVIEW® software obtaining the current-voltage (I-V) curves.
This equipment had the capacity to apply up to ±200 V with a resolution of 5 mV and
measure from 10 pA to 105 mA [34]. To obtain EL spectra was used an optical fiber
connected to the spectrometer ocean optics, which in turn connected and controlled by a
computer through Spectra software.
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3. Results and Discussion

Table 1 shows the results of the thicknesses, refractive indices (η), excess silicon (Xsi),
and oxygen deficiency (XO) of the SRO25, SRO100, SRO25/100, and SRO100/25 films. By using
Ellipsometry and XPS, characterizations to SRO films as-G and T-A were obtained. All T-A
SRO films show a decrease in their thickness concerning that of as-G SRO films.

Table 1. Thickness, refractive indices, and excess silicon of the SRO25, SRO100, SRO25/100, and SRO100/25.

Sample
As-Grown (As-G) Thermal Annealing (T-A)

Thickness nm Refractive
Indices η

XO% XSi% Thickness nm Refractive
Indices η

XO% XSi%

Si/SRO25 322.9
2.46 ± 0.03 −9.7 9.9

296.3
1.30 ± 0.04 −6.2 5.3Q/Pn+/SRO25 351.8 319.6

Si/SRO100 319.6
2.04 ± 0.35 −9.5 10.0

283.5
1.02 ± 0.08 −5.0 5.0Q/Pn+/SRO100 339.0 306.6

Si/SRO25/100 592.3
1.46 ± 0.06

583.3
1.93 ± 0.31Q/QPn+/SRO25/100 654.3 611.7

Si/SRO100/25 578.9 1.51 ±
0.002

560.5
2.05 ± 0.65Q/QPn+SRO100/25 668.2 599.3

According to [8], the refractive index in the T-A S-L SRO films decreases as the oxygen
in films SRO increases. This indicates an increase in the XSi in the composition of the
SRO films. In our T-A SRO samples refractive index decreased tending to the value of the
refractive index of SiO2 ≈ 1.46, while the refractive index of SRO as-G tended to approach
the refractive index of Si ≈ 3.42. Therefore, the results obtained contradicted what was
reported in other studies; however, it was observed that for the double layer, the refractive
indices and XSi increased with T-A as is reported in our and other studies.

In Figure 1 the silicon and oxygen concentration profiles in XPS and the percentage of
silicon and oxygen in the single-layer films of SRO25 and SRO100 are shown. It can see that
the XSi of the SRO films decreased from 9.9% to 5.3% and from 10.0% to 5.0% for SRO25
and SRO100 films with T-A, respectively. It can also be seen that the refractive index (η) was
2.46 and 2.04 to SRO25 and SRO100 films as-G, respectively, and with T-A, the η decreases
to 1.3 and 1.02, respectively, where we had an oxygen deficiency of −9.7% and −9.5% for
SRO25 and SRO100 as-G, while the oxygen deficiencies for the T-A SRO films were −6.2%
and −5.0%, respectively.

To explain the behaviors that occur with respect to the silicon and oxygen contents and
the refractive indices, we have that in a previous investigation [23], SRO films deposited
under the same conditions and using the same HFCVD equipment as the used in this
research were analyzed, in that previous research, the same behavior is observed. In
this case, it is was explained that the films deposited at a lower hydrogen flux level
(25 sccm) without annealing present a higher content of silicon, just as in the results of
this investigation, in the HRTEM images of the quoted research, it is shown that the films
tend to present agglomerations of amorphous silicon of varied sizes but in general more
significant than 15 nm, in the case of higher hydrogen fluxes level (>100 sccm), the silicon
content decreases, such case yields that the HRTEM images show a decrease in the size
of the silicon agglomerates, when the films are thermally annealed, a diffusion of silicon
and oxygen occurs where it is formed a SiO2–SiOx matrix where silicon agglomerates with
sizes smaller than 2 nm are immersed, these agglomerates show in some cases crystalline
orientations, but their conformation also contains silicon in the amorphous state and
oxidized terminals, this restructuring in the material causes the change in the refractive
indices and silicon content.
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(d) SRO100 T-A.

Unusual behavior is the presence of a refractive index lower than the value of SiO2,
which the SRO100 film presents after annealing, this behavior has been reported in [35],
and the explanation given to this phenomenon is that SiOx film has a more amorphous
structure than that of the SiO2 film, this correlates with the fact that the SiOx film is less
dense and therefore has a lower refractive index [21]. This phenomenon is also discussed
arguing where it is established that the crystalline regions are separated by O-rich regions,
these denoting Si and O dominated areas which are clearly separated, where the decrease
Xsi is related with O-rich regions.

The different behaviors between S-L and D-L could be explained as the S-L SRO films
have a thinner thickness with a deposit time of 3 min, this deposit parameter permitted
to SRO films to have more amorphous silicon and Xsi bigger, besides less Xo was clearly
observed. Therefore, non-stoichiometric silicon oxide was much less stable, when is applied
the annealing the Xsi decreases and oxygen increases due to O-rich regions, therefore
refractive index decreased. The D-L SRO films had a thicker thickness with a deposit
time of 5 min, and other conditions of deposited were realized; between layer and layer
deposited, there was some like annealing. Therefore, a behavior difference was obtained,
and the refractive index increased in a similar manner with our other works.

All these SRO films were used to fabricate 16 structures (type MIS and MIM), of which
eight structures are of type S1 (S1 = MIS) (Au/Si/SRO/ITO), and eight structures are of
type S2 (S2 = MIM) (Q/Pn+/SRO/ITO), both types of structures were deposited with SL
and DL both as-G and T-A. Figure 2 depicts the schematic diagram of the fabricated devices
identified as S1 and S2 structures. Table 2 lists the nomenclature of the manufactured
devices and their mnemonics, with which we will refer to them hereafter.
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Figure 2. S1 (MIS) and S2 (MIM) structures fabricated D-L SRO films.

Table 2. Metal Insulator Semiconductor and Metal Insulator Metal structures with S-L and double
layer (D-L) SRO films both as-G and T-A.

Structure 1 (S1)
Mnemonics

Structure 2 (S2)
Mnemonics

MIS MIM

Au/Si/SRO25as-G/ITO S125as-G Q/Pn+/SRO25as-G/ITO S225as-G

Au/Si/SRO100as-G/ITO S1100as-G Q/Pn+/SRO100as-G/ITO S2100as-G

Au/Si/SRO25/100as-G/ITO S125/100as-G Q/Pn+/SRO25/100as-G/ITO S225/100as-G

Au/Si/SRO100/25as-G/ITO S1100/25as-G Q/Pn+/SRO100/25as-G/ITO S2100/25as-G

Au/Si/SRO25T-A/ITO S125T-A Q/Pn+/SRO10T-A/AZO S225T-A

Au/Si/SRO100T-A/ITO S1100T-A Q/Pn+/SRO25T-A/AZO S2100T-A

Au/Si/SRO25/100T-A/ITO S125/100T-A Q/Pn+/SRO25/10T-A/AZO S225/100T-A

Au/Si/SRO100/25T-A/ITO S1100/25T-A Q/Pn+/SRO10/25T-A/AZO S2100/25T-A

The pristine I-V curves obtained from both the as-G and T-A S1 and S2 structures with
S-L and D-L are shown in Figures 3 and 4, respectively. All were measured with the same
voltage sweep from 0 V to 35 V after 35 V to 0 V, followed by 0 V to −35 V and closing
the cycle from −35 V to 0 V, with the protection of circuit short of 100 mA. At first sight,
the I-V curves corresponding to S1as-G and S2as-G structures exhibited current peaks with
ups and downs at low voltages in both positive and negative polarizations, while those
corresponding to S1T-A and S2T-A showed the typical characteristics of the I-V curves for
MOS structures. On the other hand, it is also observed that the I-V curves illustrated higher
currents for S125T-A to major voltages. The behavior of the hysteresis is shown clearly in
the I-V curves of S1 and S2.

3.1. Curves I-V Pristine of Structures

In the pristine I-V characteristic curves of Figures 3 and 4, different behaviors were
identified which we will describe shortly as follows: Number 1 in these pristine I-V
curves, it is observed that the S-L structures reached higher amounts of current in the first
measurement as shown in Figure 3a,b than the D-L structures of Figure 3c,d. Another
trend that structures presented was that films without annealing showed higher and lower
peaks in current measurements at low voltages in both positive and negative polarizations.
It was also observed in this behavior a sudden increase in current at a specific voltage.
This phenomenon is linked with the nanostructure and its crystallinity which yields that
the agglomeration of many electrons trapped in the Si-nps prevent the trapped charge’s
movement and block electrical conduction [36–38]. Therefore, this can lead to the creation
and annihilation of preferential conductive pathways generated by adjacent stable Si-nps
and defects such as unstable silicon nanoclusters (Si-ncls) and others through structural
changes and the possible creation of defects due to Si–O, and Si–Si [38]. Furthermore, on the
return of the curve, it showed an increase in the current regarding the first measurement,
where a charge trapping and state of less resistance to that of the first curve was observed.
This behavior is due to the formation of conductive paths in the material; therefore, the
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return path was not the same, and the charge trapping was formed. This behavior is
known as hysteresis [35–38]. This behavior was observed in all the I-V curves of the
structures, and this effect occurred in both direct (DP) and reverse (RP) polarizations. But
it is most noticeable in structures with heating treatment as well as in S-L SRO films with
both polarizations, while in D-L SRO films the hysteresis in positive polarization was
observed better. Number 2 in this case, the charge transport phenomenon was identified as
a Coulombic Blockade, and its behavior was observed when the current increased sharply
at a specific voltage, and it remained in this current as the voltage increased, this was so that
since there was electrical conduction due to formation of a trapped electron configuration
blocks [5], also in the resistive switching memory structures with SiOx or SRO, this behavior
was attributed to the presence of a point charge which induced throughout the space the
appearance of a force field which broke down in the process [6–13] moving the current to
a state of low resistance. Number 3 current curve was identified as a region of negative
differential resistance (NDR), almost always observed after the Coulombic Block. The
form it presented was a series of tiny current jumped close to each other, called resistive
switching, according to Yao et al., [38,39]. This means that, for a range of values of the
applied voltage, an increase in voltage caused current to decrease rather than increase and
takes place when electrons traveled at the same average speed; the space charge domain no
longer grew, but the electrons continued their journey, and since the electric field was not
large enough to form additional domains [39–41], then a negative differential resistance
region was created, this phenomenon was best observed in the as-G structures.
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The curves of the T-A D-L S1, Figure 3c,d and the as-G S-L S2 Figure 4a,b present
more significant hysteresis or charge trapping [34] than the T-A S2 Figure 4c,d and S1
as-G Figure 3a,b which means that in the T-A S1 and S-L as-G S2 samples, respond to the
creation-annihilation of conductive paths due not only to the Si-ncs but also to defects in
the oxide found in the heterojunctions with SRO films according to Kalnitsky et al. [41].
This negative-differential-resistance behavior in SRO/Si structures was observed through
current-voltage (I-V) measurements, and the application of the electric field caused the
electrical potentials to be distorted, favoring the quantum tunneling of electrons between
the silicon-nanocrystal and the traps of oxide.
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The graphs of current versus voltage for the S1 MIS and S2 MIM structures in
Figures 5 and 6 are the best of five measurements of each structure and are graphed in
semi-logarithmic form. In the monolayers, we observed a current regime in the order of
milliamperes when applying voltages between −25 to 25 volts, showing current variations
in the as-G structures. However, the T-A structures showed a linear relationship between
current and voltage until the current was maintained, and occasionally it dropped and
suddenly increased, this happens again at that voltage, and current for which was possible
to observe bright dots (electroluminescence) this phenomenon was observed only in the S1
MIS structures. We point out that in the S2 structures, no bright dots were observed. On the
other hand, the as-G D-L structures showed abrupt increases and drops in current when
increasing voltage, it was attributed to the creation and annihilation of conductive paths in
the material [38–46]. Further, we observed the Coulombic Blockade in these T-A structures.
The sweeps with forward and reverse polarization yielded a current behavior similar to
that of the S-L structures but with a current regime in the order of microamperes, where at
this current and with voltages greater than 30 volts it was possible to observe greater bright
points, suggesting the release of charge trapping in the SRO film, generating the conductive
paths at currents and voltages greater to microampere and 30 volts, respectively [41].

3.2. Conduction Mechanisms

The fact that the S1 and S2 structures presented similar results in forward and reverse
polarization suggested that the carrier transport in this type of material was carried out
through similar mechanisms [44,45] for both structures. To understand the transport
mechanisms of the S-L and D-L SRO films, current density (J) measurements as a function
of the electric field (E), in reverse polarization of the I-V curves plotted in Figures 5 and 6
were analyzed due to these structures showed good electroluminescence. The reverse
polarization occurred when the gate contact (ITO) was polarized with a negative voltage
regarding substrate.
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In general, four conductions mechanisms contributed to the carrier transport in these
SRO films, namely: Ohmic (O), Hopping (H), Poole–Frenkel (PF), and Fowler–Nordheim
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(FN) [34]. The current density-electric field (J-E) analysis depended on the dielectric thick-
ness and the electric field applied to the MOS structure.

Figures 7 and 8 show the devices analyzed here in the semi-logarithmic J-E curves
in reverse polarization for S1T-A and S2T-A, structures respectively. Furthermore, in the
inserts of each figure are shown, the specific J-E graphs according to the conduction
mechanisms in each section of the J-E curve are highlighted with linear regions that
correspond to the Ohmic (O), Hopping (H), Poole–Frenkel (PF) and Fowler–Nordheim
(FN) conduction mechanisms [34,46].

As can be seen, there were several conduction mechanisms in the J-E curve of these
structures. That is, for low electric fields (≤1.6 MV/cm), the carriers reached enough energy
to overcome the energy barrier at the Si/SRO interface and dominate the Ohmic conduction
mechanism, as is shown in the inserts of Figures 7a and 8a,c. Another predominant
conduction mechanism was observed in intermediate conduction regime at low electric
fields, in both S-L and D-L SRO films, this is called Hopping conduction (H) [34,47–50],
as seen in J-E curves in Figures 7b–d and 8b,d, and it was originated by the trapped
electrons jumping from one trap to another within the film SRO. Also, the energy of the
trapped electrons may be less than the maximum energy of the potential barrier between
the two traps; in this case, the trapped electrons may have continued traveling using the
tunneling mechanism.

On the other hand, the Poole–Frenkel conduction mechanism was reported in SRO
films where some electrons were found in traps and by thermal excitation were released
so they could be conducted within the conduction band of the SRO films by applying an
electric field through the dielectric SRO, then electrons crossed the Coulomb barrier which
was reduced by the electric field and then increasing the probability of that an electron
would be thermally excited from the trap becoming free to travel in the conduction band
of the dielectric. The Poole–Frenkel (P-F) conduction mechanism depended strongly on
the electric field, and it was independent of temperature, and the electric field was limited
to low values (2 MV/cm) [34,47]; one can see this conduction mechanism in the inserts of
Figures 7a and 8a–d.

Additionally, the tunneling Fowler–Nordheim conduction mechanism has been pro-
posed for the SRO films containing Si-ncs or silicon islands where electrons can tunnel by
the effect of the electric field existing between the Si-ncs or silicon islands and generated by
the potential barrier with a triangular shape (or another one) [34,51]. This generally occurs
in not very thin dielectric films (>3.5 nm) and at high electric fields (>2 MV/cm), allowing
carriers to overcome or tunnel barrier heights from one trap to another. The FN mechanism
is the one that dominates [34,42–52].

EL emission occurs under reverse bias and is originated due to charge injection
through conductive pathways and radiative recombination processes between energetic
states of traps or defects [53]. It has been reported that when the electroluminescent
emission is presented in the form of points, it originates from the efficiently excited emission
of defects in the oxide and/or of a few Silicon nanoparticles (Si-nps) [54]. The Si-nps within
the SRO films are randomly distributed so that various conductive paths are created;
under this assumption, the current does not flow uniformly through the entire area of the
capacitor but passes through conductive discreet paths within the oxide. An increase in
the total current will result discreetly in a rise in the current density in each conductive
path, which results in a more significant number of radiative recombination events and,
therefore, a greater electroluminescent intensity [47]. As the current increases, more charges
flow through the Si-nps and can break off some of the Si–Si bonds (creating E centers).
Consequently, the conductive paths are annihilated, resulting in current drops [48].

Figure 9(a1) just shows this behavior where current increases and drops and the emis-
sion of points with different colors can be observed, it possibly indicates the intervention of
different defects involved or as it is more commonly reported Si-nps of different sizes are
participating [50]. In [50], it is said that electrons and holes are injected into Si-QD (quan-
tum dots) by F-N (Fowler–Nordheim) tunneling through the SiOx matrix. The existence of
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immersed Si-QDs leads to a decrease in the activation voltage of the F-N tunneling and
creates a path for the carriers from the Si substrate to the ITO contact.
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According with what it was obtained in this research, the FN conduction mechanism
was presented in all structures when EL occurred, before this, the Poole–Frenkel (PF)
conduction mechanism occurred at lower electric fields, which is related to electrons
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trapped in traps or defects which were excited towards the conduction band of the oxide.
The full area EL emission obtained was due to the optimization of the injection of the
carriers through the material by the cancellation of preferential conductive paths [49].

As the density of Si-nps increased, a uniform network of conductive paths became
possible, allowing for uniform charge flows across the entire area. Meanwhile, as the
density of Si-nps decreased, the distance between them increased, reducing the number
of available paths, with a resulting set of discrete and preferential conductive pathways
within the oxide. Bright spots appeared when structures were operating within a region of
high conduction. These jumps and drops in luminescence were due, respectively, to the
appearance and disappearance of luminescent dots on the surface of the devices. After
the current drop, the EL points disappeared completely, and EL was obtained in the
entire area [55].

3.3. Electroluminescent Structures

Figure 9(a1,b1,c1,d1) shows the reverse polarization (R.P.) I-V curves, Figure 9(a2,b2,c2,d2)
shows the electroluminescent spectra, and from Figure 9(a3,b3,c3,d3), we can observe the
bright dots and full electroluminescent bright area in each one of the respective pho-
tographs, belonging to the (Au/Si/SRO/ITO) S1 MIS-structures made up with S-L and
D-L SRO films taking into account different deposit parameters.

From Figure 9(a1), the T-A S125 MIS-structure in R.P. and XSi = 5.3%, the current
curve exhibited that when having −20 volts an abrupt current drop from 10 mA to 130 uA
happened, at the same time brightly colored dots appeared. As the voltage varied to more
negative values, the number of brightly colored dots also increased; however, due to the
current drop in which it remained low, such fact provoked that the T-A S125 structure did
not present a uniform EL emission over the whole area. The phenomenon that we report
with this structure was similar to that published in [48] when the carriers did not flow
uniformly through the whole structure area, but they passed through discrete conductive
paths within the SRO film, as shown in Figure 10. Consequently, the structure showed
a spectrum with two outstanding peaks, one emission peak centered at around 450 nm
and the other one at around 580 nm; these emission peaks remained practically at the
same wavelength, but their intensities were increased as the voltages were more negative,
as shown in Figure 9(a2). These EL spectra emission bands at 450 nm were associated
with defects in neutral oxygen vacancies (NOVs), while the other emission of 580 nm was
attributed to positively charged oxygen vacancies [10,24]. It has been reported that the EL
emission peak placed in the blue band region increased its excitation voltage due to the
contribution of small silicon nanoparticles (Si-nps) [44].
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The EL spectra of the T-A S1100 MIS-structure and XSi = 5.0% are shown in Figure 9(b2);
we can see that when applying −15 V with a current of 63 uA, bright white dots started
to appear, at once when voltage increase bright white dots were more intense, the EL
spectrum intensity of the bright dots increased to the maximum emission with −25 V and
80 uA. This event was caused by holes that were attracted to the silicon surface, creating
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an accumulation layer, and the holes from this layer were injected toward the ITO/SRO
and electrons from the ITO gate to the SRO/Si substrate interfaces. However, since the
major contribution of current came from the tunneling of electrons instead of holes for
MOS on p-type Si, the meeting point was closer to the SRO/Si interface, and then the
recombination happened, both in the SRO film and the Si substrate surface, as reported
in other works [34,44–48]. The latter gave rise to the EL emission spectra of the T-A S1100
structure showing three prominent emission peaks at around 450, 530, and 640 nm being
the more intense one at 450 nm. Besides, the peaks at 530 nm of the four spectra showed a
slight blue-shift. However, the peaks at 640 nm lay in this band. The two bands gave rise
to intense white EL at high injection currents. The image inserted in Figure 9(b3) depicts
dispersed bright white dots at −15 V with a low current of 63 uA, and such dots maintained
a greater intensity when current is increased at 600 uA, which are presented as a white
light spectrum, contributing to the blue, green and orange bands, such colored emissions
are attributed to a competition between defects and Si-ncs, as should be expected due to
the mixed material; however, as has been previously reported, the emission was mainly
due to defects, especially NOV and NBOHCS ones [10,24].

Regarding the best T-A S125/100 MIS-structure shown in Figure 9(c1,c2,c3), it presented
a blue color full-area emission when applying −55 V at 108 uA, showing an EL emission lo-
cated at the 460 nm band blue whose intensity was greater than 30,000 a.u. Figure 11 shows
the progress of how the blue spectrum was emitting, starting with dots and then filling the
entire area of the structure. Such an emission originated by the radiative emissions from
the weak oxygen bonds (WOBs) and neutral oxygen vacancies centers (NOVs). The key
factors which contributed to this emission were thermal annealing, presence of Si-related
defects, D-L structure, high voltage bias with low currents, and the radiative recombination
in localized states related to Si-O bonds. On the other hand, in accordance with [38–43],
blue light emission was attributed to defects associated with excess silicon, which was
correlated with the increase of the refractive index of 1.93 of this SRO25/100 films, in the
same sense [47] reports that full area emission obtained is due to the optimization of carrier
injection through the material by the annulation of preferential conductive paths. That is to
say, [34,47] it could be related to the Si-nps density that when going to a uniform network
of conductive paths, this charge uniformly flowed through the whole structure area.
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Finally, the T-A S1100/25 MIS-structure presents an outstanding lateral emission fo-
cused mainly on its borders structure, as observed in Figure 9(d3). This phenomenon
was provoked due to the establishment of conductive pathways that the Si nanocrystals
generate and that allow conduction through the dielectric matrix, producing EL emission
in spatial regions belonging to the thinnest layer of the film (ends). Regarding EL intensity
spectra, Figure 9(d2), each broad peak was attributed to defects and Si-nps. It has also been
reported that amorphous Si-nps required lower voltages but higher currents to achieve the
same EL intensity as their crystalline form [56].

In Figure 9(d2), the wide-band emission of the structure is shown, spanning from
450 nm to 1000 nm. Evidently, multiple carrier recombination channels contributed to
this emission spectrum. Therefore, to be sure of the emission mechanisms of the device, a
deconvolution is plotted in Figure 12 to fit the peaks of the EL spectra, which according
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to [23] were attributed to (NBOHC) E’ ≡Si-O-O≡Si+ centers and non-bonded oxygen hole
centers at the wavelengths 617 nm and 685 nm while localized luminescent centers (LLC)
at the interface of nc-Si with SiO2 were the emission mechanisms observed in the peaks
fitted for the wavelengths of 825 and 890 nm.

Nanomaterials 2021, 11, x FOR PEER REVIEW 16 of 21 
 

 

recombination in localized states related to Si-O bonds. On the other hand, in accordance 
with [38–43], blue light emission was attributed to defects associated with excess silicon, 
which was correlated with the increase of the refractive index of 1.93 of this SRO25/100 films, 
in the same sense [47] reports that full area emission obtained is due to the optimization 
of carrier injection through the material by the annulation of preferential conductive 
paths. That is to say, [34,47] it could be related to the Si-nps density that when going to a 
uniform network of conductive paths, this charge uniformly flowed through the whole 
structure area. 

 
Figure 11. Progress of the blue emission of the complete area. 

Finally, the T-A S1100/25 MIS-structure presents an outstanding lateral emission fo-
cused mainly on its borders structure, as observed in Figure 9(d3). This phenomenon was 
provoked due to the establishment of conductive pathways that the Si nanocrystals gen-
erate and that allow conduction through the dielectric matrix, producing EL emission in 
spatial regions belonging to the thinnest layer of the film (ends). Regarding EL intensity 
spectra, Figure 9(d2), each broad peak was attributed to defects and Si-nps. It has also 
been reported that amorphous Si-nps required lower voltages but higher currents to 
achieve the same EL intensity as their crystalline form [56]. 

In Figure 9(d2), the wide-band emission of the structure is shown, spanning from 450 
nm to 1000 nm. Evidently, multiple carrier recombination channels contributed to this 
emission spectrum. Therefore, to be sure of the emission mechanisms of the device, a de-
convolution is plotted in Figure 12 to fit the peaks of the EL spectra, which according to 
[23] were attributed to (NBOHC) E’ ≡Si-O-O≡Si+ centers and non-bonded oxygen hole 
centers at the wavelengths 617 nm and 685 nm while localized luminescent centers (LLC) 
at the interface of nc-Si with SiO2 were the emission mechanisms observed in the peaks 
fitted for the wavelengths of 825 and 890 nm. 

 
Figure 12. Fitting of the EL emission spectrum peaks of the wide-band EL emission spectrum of 
the T-A S1 100/25 structure. 
Figure 12. Fitting of the EL emission spectrum peaks of the wide-band EL emission spectrum of the
T-A S1 100/25 structure.

In this device T-A S1100/25, the emission was on the edge of the electrode due to the
electrode having a high resistance for conduction; this did not permit the emission on
the surface of the electrode as it is shown in Figure 9(d3). The conduction was easier
by the electrode edge, which produced the radiative recombination and emission. The
mechanism responsible for the surface-electroluminescence at the edge was related to the
recombination of electron-hole pairs injected through enhanced current paths within the
silicon-rich oxide film [51].

A photograph of the only T-A S225 MIM-structure presented some needles-and-points
of EL emission. This was reverse polarized at two different voltages, as shown in Figure 13,
along with its EL response. As can be seen in Figure 13c, the central area of the structure
had some bright lines and dots with increasing voltage. This can be attributed to the
formation of a small number of preferential conductive pathways within the SRO film,
which connected the upper electrode to the lower one. In this structure, the conduction
through the active layer was not uniform but rather through discrete pathways, causing
light emission to be observed only at the points corresponding to the places where conduc-
tion occurred. Additionally, there is a report [52] that oxygen-related defects rather than
silicon nanocrystals are present in their SRO films with low excess silicon, the reason for
which it is not possible to conform the EL emission. On the other hand, the EL spectra of
the SRO film-based MIM-structure were very low intensity remaining at the wavelength
between 600–700 nm as the voltage increased, shown in Figure 13b. According to [23],
these are attributed to (NBOHC) E’ ≡Si-O-O≡Si+ centers and non-bonded oxygen hole
centers. This behavior was similar for all values of the T-A SRO films.
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Therefore, this MIM S2 structure showed no high EL activity, exhibiting only a few
bright dots’ flashes, compared to the amount of more continuous dots in MIS S1 structures.

On the other hand, to obtain the emission efficiencies in the best structures, it was
necessary to know the current density (Jd) and the current density in emission (Je). Jd was
obtained through the I-V curves shown in Figure 5a,c, for structures S125 and S125/100,
respectively, while Je was obtained from the I-V curves shown in Figure 9(a1,c1), for
structures S125 and S125/100, which present electroluminescence in points and complete
area, respectively. The samples S125 and S125/100 have the current emission densities of
317 mA/cm2 y 19.8 A/cm2, respectively. The efficiencies were obtained with the equation
η =

(
Iem

Iem+Id

)
[57]. Therefore, at −50 V, their corresponding efficiencies were 3.2% and

19.7%, so the S25 and S125/100 respectively. So, the S25/100 structure had the highest emission
current density and efficiency among these structures. This result may be related to the
thinnest thicknesses of the SRO films in the S125/100 structure, which caused the free
electrons in the SRO film to suffer less scattering during transport [57]. However, the SRO
film should also not be too thin; otherwise, the film could be easily broken.

4. Conclusions

The S1 and S2 structures were fabricated with S-L and D-L nanometric SRO films
deposited by HFCVD. It has been proved that such structures are excellent conductors
and emitters. The D-L SRO structure improved the EL response compared to an S-L one.
Likewise, it observed improved electrical conductivity in MIS structures with SRO films
with high XSi interspersed with the emitter layers, resulting in an excellent structure to
be used as an electroluminescent device. In respect to the electrical and optical properties
of the S1 MIS structure compared to S2 MIM structure based on S-L and D-L SRO films,
it is concluded that the first structure it could be used as an efficient light source for an
optoelectronic circuit, while the second was not possible to conform to the EL emission due
to that oxygen-related defects rather than that silicon nanocrystals were present in their
SRO films with low excess silicon. In this sense, MIS integration seems to be the best way
to achieve structures for silicon optoelectronic circuits.

For all S1and S2 structures, the charge-carriers transport was dominated in different
voltage domains by the Ohmic, Hopping, Poole–Frenkel and Fowler–Nordheim Conduc-
tion mechanisms, with the latter being responsible for activating the broadcast in the limit
condition without the trap.

It was found the presence of a finite number of preferential conductive pathways
within the SRO film which connect the upper electrode to the lower one as has been
proved by the EL of the S125T-A structure whose central area exhibits bright color dots
which are brighter as increasing reverse voltage. These discrete pathways define the
conduction through the active layer, causing emission light only at points located at
positions where the pathways exist. Thus, multiple conductive pathways will produce
numerous electroluminescent spots until the full area is obtained, such as the case of the
S125/100T-A structure, such structured blue light EL emission was detected whose intensity
increased when increasing both reverse voltage and current. Furthermore, there is a
report [47] that oxygen-related defects rather than silicon nanocrystals are present in the
SRO films with low excess silicon.
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