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Introduction
Systemic sclerosis (SSc, scleroderma) is a multi-
system connective tissue disorder characterized 
by immune system activation/dysregulation, vas-
culopathy and progressive fibrosis of the skin and 
internal organs.1 Although the pathogenesis of 
SSc is extremely heterogeneous and complex, it 
appears that disease onset and progression may 
be orchestrated by the interplay between genetics 
and specific environmental agents.1 Indeed, the 
exposition to chemical compounds (i.e. silica or 
organic solvents) or infectious agents has long been 
associated with increased disease susceptibility.2 

More recently, a new trend of investigations is 
increasingly reporting aberrant epigenetic modifi-
cations in genes related to the pathogenesis of 
SSc, suggesting that both genetics and epigenetics 
may play pivotal roles in SSc development.2

Epigenetics refers to the study of stable and 
mitotically heritable modifications in both gene 
expression and function that do not involve 
changes in the DNA sequence. Epigenetic modi-
fications are deeply influenced by environmental 
factors and may contribute to the breakdown of 
immune tolerance and the development of SSc in 
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individuals with a particular genetic background.2,3 
In particular, several studies have focused on 
genetic and epigenetic differences in an attempt 
to explain the female prevalence of SSc.2,3 Indeed, 
like many other autoimmune diseases, SSc pre-
sents a striking female predominance, with a sex 
ratio (F/M) ranging from 5:1 to 12:1.4,5 However, 
the reason for this gender imbalance has yet to be 
completely understood. Moreover, SSc female 
preponderance and multiple clinical features of 
the disease vary in different geographical areas 
and ethnicities6 and depend on the age, as sug-
gested by the higher F/M incidence ratio of SSc 
during the childbearing years with respect to the 
postmenopausal years.7 It is also noteworthy that 
female preponderance merely reflects a different 
disease incidence between the sexes, but not a 
different disease severity. Indeed, male SSc 
patients usually have a more severe prognosis 
compared to female patients.8

Besides a short summary of the genetic back-
ground of SSc, in this review we will provide a 
comprehensive overview of the most recent discov-
eries regarding the epigenetic modifications which 
may offer insights into the pathophysiology of SSc. 
A particular focus will be given to the genetic and 
epigenetic modifications responsible for alterations 
in X chromosome-related gene expression that 
may underlie SSc gender dimorphism.

Genetic background of SSc
Although SSc is not inherited in a Mendelian 
fashion, a large body of evidence indicates that 
multiple gene variants may influence both disease 
susceptibility and differences in clinical expres-
sion and progression.9 The overall genetic burden 
is modest (i.e. only 2.6% of patients’ siblings 
develop SSc),10 but the incidence of SSc is higher 
in individuals with a family history than in the 
general population.11 Indeed, a positive family 
history for SSc significantly increases the relative 
risk by 15–19-fold in siblings and by 13–15-fold 
in first-degree relatives.12 The involvement of 
genetics in SSc pathogenesis is further supported 
by a racial difference in disease prevalence and 
clinical manifestations, as testified by the evi-
dence that some ethnic groups or subpopulations 
have an increased SSc prevalence compared to 
the general population.12

To date, the most susceptible locus for SSc is the 
major histocompatibility complex (MHC), a genetic 

region of chromosome 6 with high gene density and 
long-range linkage disequilibrium patterns. In 
humans, the MHC is one of the most polymor-
phic regions of the genome and its gene products 
are called human leukocyte antigen (HLA) com-
plex. Some HLA variants have been associated 
with SSc (HLA-DRB1*01, HLA-DRB1*11, HLA-
A*30, and HLA-A*32), while others (HLA-
DRB1*07, HLA-B*57, and HLA-Cw*14) are 
protective against the disease. The HLA-class I 
complexes HLA-A, B, C, and G and HLA-class II 
complexes HLA-DP, DQ, and DR have been 
reported to increase the risk of developing 
SSc.12,13 As far as non-HLA genes are concerned, 
several candidate genes have been implicated in 
SSc susceptibility. However, they all appear to be 
shared by other autoimmune diseases and do not 
explain the clinical heterogeneity of SSc.9,13,14

Recently, whole-exome sequencing (WES) stud-
ies in SSc patients have identified variants in 
ATP8B4, a gene encoding a phospholipid trans-
porter, as a novel locus for SSc susceptibility and 
progression in European Americans but not in 
African Americans.15,16 WES has also been spe-
cifically performed in patients with diffuse cuta-
neous SSc (dcSSc), reporting a significant 
association of the extracellular matrix-related 
pathway with enrichment of variants within the 
COL4A3, COL4A4, COL5A2, COL13A1, and 
COL22A1 genes.17 Collectively, it is clear that 
modifications in DNA sequence alone cannot 
explain SSc heterogeneity, as further indicated 
by the evidence that monozygotic twins, even if 
sharing identical DNA sequences, present low 
concordance rates for the disease and may dis-
play different clinical phenotypes.2,11 Apart from 
inheritance, in the development of SSc a major 
role could therefore be played by epigenetic 
modifications.14,18,19

Epigenetics of SSc
As already mentioned, genetic abnormalities and 
the concomitant influence of environmental 
agents cannot fully explain SSc heterogeneity. In 
this context, epigenetic modifications that are 
able to modulate gene expression without alter-
ing the DNA sequence are regarded as a unique 
crossroad between genetics and environmental 
factors.2 Epigenetic mechanisms include DNA 
methylation, histone modifications, long non-
coding RNAs (lncRNAs) and microRNAs 
(miRNAs).
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DNA methylation
DNA methylation is the most widely investigated 
epigenetic mechanism. The process is catalyzed 
by specific enzymes called DNA methyltrans-
ferases (DNMTs) and consists of the transfer of a 
methyl group from S-adenyl methionine to the 
pyrimidine C5 position of cytosine residues, form-
ing 5-methylcytosine (5-mC). This usually occurs 
on CpG sites, which are sequences characterized 
by a cytosine preceding a guanine nucleotide.9,20 
DNMTs are classified into ‘maintenance DNMTs’ 
(DNMT1, DNMT2), which are involved in 
maintaining the existing pattern of DNA methyl-
ation during cell replication, and ‘de novo 
DNMTs’ (DNMT3a, DNMT3b and DNMT3L), 
which control methylation during embryonic 
development.9,20 If the promoter region of a gene 
is sufficiently methylated, the transcription of that 
gene will be inhibited due to the reduced capabil-
ity of transcription factors to bind to the gene pro-
moter. On the contrary, a low methylation of the 
promoter activates DNA transcription.9,20 The 
active demethylation of DNA, which is linked to 
transcriptional activation and gene expression, 
consists of the removal of the methyl group, with 
the conversion of 5-mC to 5-hydroxymethylcyto-
sine (5-hmC). This conversion is an oxidation 
reaction catalyzed by the ten eleven translocation 
(TET) family of enzymes.21

The DNA methylation state has been extensively 
studied in a variety of autoimmune diseases includ-
ing systemic lupus erythematosus, rheumatoid 
arthritis, multiple sclerosis and Sjögren’s syn-
drome.22,23 As far as SSc is concerned, abnormali-
ties in DNA methylation have been mainly 
reported in autosomal genes of fibroblasts, immune 
cells and endothelial cells.24

Fibroblasts. SSc is characterized by persistently 
activated fibroblasts responsible for an excessive 
production of collagen and other extracellular 
matrix components. As reported in a genome-
wide DNA methylation study, the pathological 
phenotype of SSc fibroblasts seems to be deter-
mined by an altered global hypomethylation 
state.25 In this large-scale analysis, fibroblasts 
from the dcSSc and the limited cutaneous SSc 
(lcSSc) subsets revealed different and characteris-
tic methylation patterns, with 916 CpG hypo-
methylated sites in lcSSc fibroblasts as compared 
with 1653 CpG hypomethylated sites in dcSSc 
fibroblasts. In particular, an abnormal DNA 
methylation profile was detected in several genes 
involved in fibrosis-related pathways (i.e. 

transforming growth factor-β (TGF-β) and 
Wnt/β-catenin signaling pathways), highlighting 
the potential role of DNA methylation changes in 
SSc pathogenesis.25

Conversely, increased promoter methylation and 
consequent downregulation of friend leukemia 
integration 1 (Fli1) transcription factor resulting 
in enhanced type I collagen gene expression have 
been reported in SSc fibroblasts.26 Fli1 acts as an 
important suppressor of type I collagen gene tran-
scription and has been found to be constitutively 
downregulated in cultured dermal fibroblasts 
from clinically involved SSc skin.27,28 Of note, 
treatment of SSc fibroblasts with DNA methyl-
transferase inhibitor 2-deoxy-5-azaC (5-aza) could 
reverse Fli1 downregulation and normalize type I 
collagen expression.26 In another study, altered 
DNA methylation at Krüppel-like factor 5 
(KLF5) gene promoter, which encodes a tran-
scription factor that works synergistically with 
Fli1, contributed to impaired KLF5-Fli1 activity 
in SSc fibroblasts.29

In addition, fibroblasts from SSc patients were 
found to exhibit a hypermethylation profile of the 
promoters of genes encoding for the endogenous 
Wnt antagonists dickkopf-related protein 1 
(DKK1) and secreted-frizzled protein 1 (SFRP1), 
with a consequent pathological activation of canon-
ical Wnt/β-catenin signaling and a Smad-dependent 
fibrotic response.30,31 Of note, inhibition of DNA 
methylation with 5-aza completely restored DKK1 
and SFRP1 expression and reduced the activation 
of canonical Wnt/β-catenin signaling, effectively 
inhibiting the fibrotic process either in vitro in cul-
tured SSc fibroblasts or in vivo in the bleomycin-
induced scleroderma mouse model.31

A recent DNA methylation analysis in SSc fibro-
blasts showed a significant hypermethylation in 
the promoter of poly(ADP-ribose)polymerase-1 
(PARP1), a NAD+-dependent DNA repair 
enzyme, whose reduced expression was found to 
contribute to persistent fibroblast activation and 
progression of fibrosis.32 Remarkably, treatment 
of SSc fibroblasts with 5-aza gradually increased 
PARP1 expression, strengthening the notion that 
hypermethylation of PARP1 promoter is respon-
sible for its downregulation in SSc.32

As far as active DNA demethylation is concerned, 
its involvement in the pathogenesis of SSc is sup-
ported by the evidence that, among TET family 
members, TET1 expression was found to be 
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specifically upregulated under hypoxic conditions 
via hypoxia-inducible factor (HIF)-1α-
independent pathways in SSc fibroblasts, but not 
in normal fibroblasts. Interestingly, such aberrant 
TET1 expression in SSc fibroblasts was accom-
panied by global DNA hypomethylation.33

Immune cells. Similar to dermal fibroblasts, a 
global hypomethylation pattern was first reported 
in SSc CD4+ T cells, presumably due to a reduced 
expression of DNMT1.34 A subsequent genome-
wide DNA methylation analysis in both CD4+ 
and CD8+ T cells revealed a predominant hypo-
methylation profile in type I interferon (IFN)-
related genes such as IFI44L, IFITM1, MX1 and 
PARP9 associated with an increase in circulating 
levels of type I IFN, suggesting that hypomethyl-
ation and consequent upregulation of the IFN 
signaling pathway might be critical in SSc patho-
genesis.35 Widespread hypomethylation status of 
CpG sites located at genes involved in type I IFN 
signaling in CD4+ T cells from SSc and other 
autoimmune diseases was confirmed in a very 
recent genome-wide DNA methylation study.36 
Moreover, in SSc peripheral blood mononuclear 
cells (PBMCs), the analysis of the methylation 
status of 16 CpG sites at the promoter region of 
IRF7, a gene encoding a type I IFN transcription 
factor associated with the production of autoanti-
bodies in SSc,37 revealed a significant hypometh-
ylation profile in comparison to healthy cells.38

Another gene whose promoter region was found to 
be hypomethylated in SSc CD4+ T cells is ITGAL, 
which encodes CD11a, a cell surface antigen 
involved in T cell stimulation.39 In particular, the 
extent of ITGAL hypomethylation was found to be 
inversely correlated with the scleroderma disease 
activity index determined by skin thickness, 
patient-reported worsening of symptoms, digital 
necrosis, and inflammation markers.39

The unique type I IFN signature found in SSc 
stimulated further studies focused on SSc plas-
macytoid dendritic cells (pDCs), that is special-
ized antigen-presenting cells capable of 
immediately producing a massive amount of type 
I IFN upon activation.40 Interestingly, a higher 
methylation status of the runt-related transcrip-
tion factor 3 (RUNX3) gene was correlated with 
lower RUNX3 expression in SSc patients. 
RUNX3 transcription factor is known to contrib-
ute to differentiation and regulation of the den-
dritic cell lineage, and its downregulation was 
found to impair pDC functionality in mouse 

models. Notably, specific pDC RUNX3 ablation 
resulted in an increase in the severity of bleomy-
cin-induced skin inflammation and fibrosis with 
respect to wild type mice. Thus, it has been pro-
posed that RUNX3 might play an important role 
in regulating pDC function and the fibrotic pro-
cess in SSc pathogenesis.40

Finally, although peripheral blood cells of patients 
with SSc display an increased expression of several 
selectin and integrin genes such as ITGB2, encod-
ing integrin β2 protein, no significant differences 
between SSc patients and healthy individuals were 
observed in the methylation status of the ITGB2 
promoter, suggesting that its upregulation is prob-
ably due to other yet unknown mechanisms.41

Endothelial cells. At variance with fibroblasts and 
immune cells, notions regarding an altered DNA 
methylation in endothelial cells from patients 
with SSc are limited to a single study reporting a 
reduced expression of the bone morphogenic pro-
tein receptor II (BMPRII) and consequent 
decrease in cell survival and apoptosis resistance 
in SSc microvascular endothelial cells (MVECs) 
compared with healthy cells.42 Indeed, through 
BMPRII, bone morphogenic proteins coordinate 
cell proliferation, differentiation and survival. In 
this study, the downregulation of BMPRII expres-
sion was attributable to heavily methylated CpG 
sites in the BMPRII gene promoter region, as 
demonstrated by the evidence that treatment of 
SSc MVECs with the DNA methyltransferase 
inhibitor 5-aza could normalize BMPRII expres-
sion levels and restore cell apoptotic response to 
levels comparable to healthy cells.42

The most relevant SSc-related global and gene-
specific DNA methylation modifications are 
listed in Table 1.

Histone post-translational modifications
While DNA is primarily methylated, histone pro-
teins can undergo a wide array of post-translational 
modifications, representing the target of another 
major epigenetic regulatory mechanism. Histones 
are conserved nuclear proteins forming the core 
center of nucleosomes, the basic subunits of eukary-
otic chromatin consisting of 146 base pairs of DNA 
wrapped around an octamer of two pairs of four 
core histones (H2A, H2B, H3, and H4). Histone 
post-translational modifications include lysine acet-
ylation, lysine and arginine methylation, serine and 
threonine phosphorylation, lysine ubiquitination, 
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Table 1. Summary of epigenetic modifications in SSc.

Epigenetic process Modification Cell type Effect References

Global DNA methylation

 ↓ Fibroblasts Profibrotic Altorok et al.25

 ↓ CD4+ T cells Supposed increased 
expression of autoimmune-
related genes in lymphocytes

Lei et al.34

 Skewed X 
chromosome 
inactivation

PBMCs Immunosenescence, 
autoantibody production

Kanaan et al.43

 Ozbalkan et al.44

Gene-specific DNA methylation

Fli1 ↑ Fibroblasts Profibrotic Wang et al.26

KLF5 ↑ Fibroblasts Profibrotic Noda et al.29

DKK1, SFRP1 ↑ Fibroblasts Profibrotic Dees et al.31

PARP1 ↑ Fibroblasts Profibrotic Zhang et al.32

IFN-related genes (IFI44L, 
IFITM1, MX1, PARP9)

↓ CD4+ and CD8+ 
T cells

Increased IFN production Ding et al.35

Chen et al.36

IRF7 ↓ PBMCs N.D. Rezaei et al.38

ITGAL ↓ CD4+ T cells Increased proliferation 
of CD4+ T cells, IgG 
overproduction by B cells, and 
excessive collagen synthesis 
by fibroblasts

Wang et al.39

RUNX3 ↑ pDCs Profibrotic Affandi et al.40

BMPR2 ↑ MVECs Proapoptotic Wang and 
Kahaleh42

CD40L (X chromosome) ↓ CD4+ T cells Altered immune response Lian et al.45

ARX, HSFX1, IL1RAPL2 (X 
chromosome)

↑ PBMCs Disease susceptibility Selmi et al.46

ZBED1, ZNF41, PGMRC1 (X 
chromosome)

↓ PBMCs Disease susceptibility Selmi et al.46

FOXP3 (X chromosome) ↑ CD4+ T cells Treg reduction Wang et al.47

Global histone acetylation

 ↓ HDAC2, HDAC7
H4 hyperacetylation

B cells B cell dysfunction Wang et al.48

 altered
H3K4me3, H3K27ac

Monocytes Altered phenotype Van der Kroef 
et al.49

 ↑ HDAC5 Endothelial cells Impaired angiogenesis Tsou et al.50

(Continued)
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sumoylation, citrullination, ADP-ribosylation, and 
proline isomerization. These modifications serve as 
signals and regulate the transcription process. 
Histone modifications can affect the structure of 
nucleosomes in two ways: (a) the alteration in the 
electrostatic charge of the histone results in a con-
formational change and (b) protein-binding is 
altered by the modification.61 Of note, there is a 
complex interplay between histone modifications 
and DNA methylation. Emerging evidence, 
indeed, indicates that the modification state of 
DNA can affect the methylation pattern of accom-
panying histones, while the histone lysine methyla-
tion state of chromatin can in turn influence 
modification of the DNA itself. In particular, it has 
been reported that DNA methylation, which 

results in chromatin compaction, elicits additional 
effects including histone deacetylation and meth-
ylation. In fact, biochemical works studying 
methyl-CpG binding proteins revealed that these 
proteins not only specifically associate with meth-
ylated CpG sites, but also bind to a multitude of 
different chromatin modifying enzymes, including 
histone deacetylases and histone lysine methyl-
transferases.62 On the other hand, it has also been 
shown that DNA methylation by de novo methyl-
transferases DNMT3a/b is dependent on pre-
existing histone methylation.62

Aberrant gene expression resulting from histone 
post-translational modifications is known to be 
involved in SSc pathogenesis. In particular, 

Epigenetic process Modification Cell type Effect References

 ↓ SIRT1, 3, 7 Fibroblasts Profibrotic Chu et al.51

 Wyman et al.52

 Sosulski et al.53

 ↑ p300 Fibroblasts Profibrotic Ghosh et al.54

Gene-specific histone acetylation

KLF5 H3, H4 
hypoacetylation

Fibroblasts Profibrotic Noda et al.29

FLI1 H3, H4 
hypoacetylation

Fibroblasts Profibrotic Noda et al.29

 Wang et al.55

Global histone methylation

 ↑ H3K27me3
↑ EZH2

Fibroblasts, 
endothelial cells

Profibrotic, impaired 
angiogenesis

Xiao et al.56

 Tsou et al.57

 ↑ H3K27me3
↑ EZH2

Fibroblasts Antifibrotic Krämer et al.58

 ↓ H3K27me3
↑ JMJD3

CD4+ T cells N.D. Wang et al.59

 H3K9 hypomethylation
↓ SUV39H2
↑ JHDM2

B cells N.D. Wang et al.48

Gene-specific histone methylation

FOSL2 ↓ H3K27me3
↑ JMJD3
= UTX

Fibroblasts Profibrotic Bergmann et al.60

PBMC, peripheral blood mononuclear cell; pDC, plasmacytoid dendritic cell: MVEC, microvascular endothelial cell; N.D., not determined;  
SSc, systemic sclerosis.

Table 1. (Continued)
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histone acetylation and methylation are the 
most commonly described epigenetic modifica-
tions in SSc.

Histone acetylation/deacetylation. Acetylation is 
the most common histone modification and is 
tightly controlled by the balance of two antago-
nizing enzymes, namely histone acetyltransferases 
(HATs) and histone deacetylases (HDACs). 
HATs catalyze the addition of an acetyl group 
from acetyl coenzyme A to the lysine side chains 
of histones, neutralizing their positive charge and 
weakening their interaction with DNA. By lead-
ing to a more open chromatin conformation, his-
tone acetylation enables the binding of the 
transcriptional machinery, and is thus generally 
followed by transcriptional activation. In contrast, 
HDACs remove acetyl groups from target his-
tones, restoring their positive charge and leading 
to a closed chromatin structure. Histone deacety-
lation is therefore involved in the suppression of 
gene expression.61

Over the past few years, several studies highlighted 
the potential effect of chromatin deacetylation in 
SSc pathogenesis. In 2014, Noda and coworkers 
reported a significant lower expression of KLF5 in 
SSc dermal fibroblasts compared with healthy 
fibroblasts, and attributed this downregulation to 
a significant suppression of the acetylated forms of 
histones H3 and H4 in the KLF5 gene promoter.29 
Indeed, the recovery of KLF5 expression levels 
was obtained after treating SSc fibroblasts with 
the HDAC inhibitor trichostatin A.29 A similar 
epigenetic repression was also observed for the 
promoter of FLI1 gene.29,55 As KLF5 and Fli1 
synergistically inhibit the expression of connective 
tissue growth factor (CTGF), which is known to 
be a regulator of tissue remodeling and fibrosis, 
their epigenetic repression in fibroblasts from SSc 
patients might contribute to the increased CTGF 
expression and the consequent profibrotic pheno-
type observed in these cells.29

Recent data support the notion that histone modi-
fications are associated with B cell development, 
activation, differentiation, apoptosis, and autoan-
tibody production.48 In this context, a study aimed 
at clarifying the mechanisms underlying B cell 
activation in SSc reported a significant decrease in 
the expression of the histone deacetylases HDAC2 
and HDAC7 and concomitant global histone H4 
hyperacetylation in B cells from SSc patients. In 
that study, the degree of histone H4 acetylation 
positively correlated with disease activity and the 

expression of HDAC2 protein negatively corre-
lated with skin thickness, suggesting that a dys-
regulation of histone acetylation might contribute 
to B cell dysfunction in the pathogenesis of SSc.48

Besides fibroblasts and B cells, histone modifica-
tions at a genome-wide level have been implicated 
in the altered phenotype of SSc monocytes.49

An indirect role of histone deacetylation in the 
fibrotic process of SSc has been suggested based 
on the evidence that treatment of SSc skin fibro-
blasts with trichostatin A suppressed TGF-β-
induced mRNA expression of type I collagen and 
fibronectin and prevented dermal deposition of 
extracellular matrix in experimental sclero-
derma.63 The contribution of histone acetylation 
to SSc pathogenesis is further supported by aber-
rant cell-specific expression patterns of the his-
tone-modifying enzymes regulating this epigenetic 
process. Indeed, endothelial cells isolated from 
patients with SSc were found to display an 
increased expression of HDAC5, a histone dea-
cetylase regulating several genes involved in angi-
ogenesis, suggesting that HDAC5 may contribute 
to the disrupted angiogenic process in SSc.50 
Moreover, a decrease in the levels of sirtuins 
SIRT1, SIRT3 and SIRT7, which are class III 
HDACs regulating TGF-β signaling in fibro-
blasts, was found in dermal and pulmonary SSc 
fibroblasts, indicating a possible role of these pro-
teins in the pathogenesis of SSc-related multior-
gan fibrosis.51–53 Indeed, both SIRT1 and SIRT3 
activation with resveratrol or hexafluoro, respec-
tively, was shown to ameliorate fibrosis either in 
vitro or in vivo.51,64

Finally, a high expression of the p300 HAT, 
whose availability guides the fibrotic process, has 
been reported in SSc skin biopsies and in TGF-
β-treated fibroblasts. Increased p300 accumula-
tion was associated with histone hyperacetylation, 
whereas p300 depletion or selective pharmaco-
logical blockade of its acetyltransferase activity 
attenuated TGF-β-induced responses in fibro-
blasts. Thus, it has been suggested that targeted 
disruption of p300-mediated histone acetylation 
might represent an additional strategy against 
fibrotic diseases.54 In a very recent study, chroma-
tin accessibility and transcriptome profiling cou-
pled with targeted epigenetic editing revealed the 
constitutive activation of a previously unanno-
tated TGFB2 gene enhancer maintained through 
epigenetic memory in fibroblasts isolated from 
clinically affected SSc skin. In particular, it could 
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be demonstrated that elevated acetylation of his-
tone H3 on lysine 27 (H3K27ac) and occupancy 
by p300 were the main epigenetic modifications 
responsible for the activation of the TGFB2 
enhancer and the consequent maintenance of a 
profibrotic state in SSc fibroblasts.65

A summary of SSc-related global and gene-spe-
cific histone acetylation modifications is reported 
in Table 1.

Histone methylation/demethylation. Besides acet-
ylation, histones can be methylated by histone 
methyltransferases (HMTs), which transfer up to 
three methyl groups from S-adenosyl-l-methio-
nine to the lysine or arginine residues of the his-
tone tail, as well as demethylated by histone 
demethylases (HDMs). Unlike DNA methyla-
tion, histone methylation can result in either 
increased or suppressed transcription of the 
nearby gene, typically depending on the specific 
methylated residue. In general, methylation of 
histone 3 on lysine 4 (H3K4) is associated with 
active chromatin and gene expression, whereas 
methylation of histone 3 on lysine 9 (H3K9) and 
trimethylation of histone H3 on lysine 27 
(H3K27me3) are associated with condensed het-
erochromatin and transcriptional repression. In 
particular, H3K27me3, mediated by the two his-
tone-lysine N-methyltransferases enhancer of 
zeste homolog 1 and 2 (EZH1 and EZH2) and 
the two histone demethylases jumonji domain-
containing protein 3 (JMJD3) and UTX, repre-
sents a particular histone modification which 
seems to play a central role in SSc.60 Indeed, 
reduced H3K27me3 levels at the promoter of 
FOSL2, a gene encoding the profibrotic tran-
scription factor fos-related antigen 2 (FRA2) 
whose expression is increased in SSc fibroblasts, 
have been detected in either SSc or TGF-β-
treated fibroblasts compared to control cells.60 
Such a decrease inversely correlated with an 
increase in JMJD3 expression, whereas the 
expression of UTX remained unchanged.60 Of 
note, the blockade of JMJD3 with the inhibitor 
GSKJ4 increased H3K27me3 levels, significantly 
limiting the aberrant activation of SSc fibroblasts 
and exerting antifibrotic effects in both bleomycin 
and topoisomerase-I mice models of dermal 
fibrosis.60 In addition, EZH2 blockade with its 
inhibitor 3-deazaneplanocin A (DZNep) was 
found to ameliorate lung fibrosis in a scleroderma 
mouse model and to prevent fibrosis and restore 
normal angiogenesis in SSc fibroblasts and endo-
thelial cells, respectively.56,57 These data further 

support the importance of H3K27me3 in SSc and 
provide evidence that EZH2 might play a critical 
role in SSc-related fibrosis and vasculopathy. The 
role of EZH2 in SSc had also been examined in a 
previous study, but with conflicting results.58 
Indeed, Krämer et al. showed that treatment with 
DZNep exacerbated fibrosis in SSc dermal fibro-
blasts and in the bleomycin mouse model of sclero-
derma. However, as neither EZH2 nor H3K27me3 
levels were determined after DZNep treatment, it 
is uncertain whether EZH2 was effectively inhib-
ited in SSc fibroblasts and, as far the mouse model 
is concerned, it is likely the dosing regimen used 
might have been insufficient to achieve EZH2 inhi-
bition.58 Besides SSc fibroblasts, a reduced 
H3K27me3 pattern inversely correlated with 
JMJD3 levels was also reported in SSc CD4+ T 
cells, reinforcing the notion that JMJD3 may rep-
resent the specific histone demethylase responsi-
ble for H3K27me3 changes in SSc.59

Finally, as far as B cells are concerned, a global 
histone H3K9 hypomethylation was observed in 
B cells isolated from SSc patients compared with 
controls.48 In particular, the decrease in total 
H3K9 methylation was attributable to the con-
comitant reduction in the methyltransferase 
SUV39H2 and induction of the histone demethy-
lase JHDM2. In addition, decreased H3K9 meth-
ylation was positively correlated with the degree 
of SUV39H2 protein reduction but did not cor-
relate with skin thickness and disease activity.48

The most important SSc-related global and gene-
specific histone methylation modifications are 
included in Table 1.

Non-coding RNAs
LncRNAs. LncRNAs comprise a large class of 
transcribed RNA molecules (more than 200 
nucleotides long) that are not translated into pro-
teins but are able to regulate gene expression both 
at the transcriptional and post-transcriptional 
levels.66 LncRNAs have been reported to be criti-
cally involved in several biological and immuno-
logical processes, including different pathways 
related to innate immunity.66 However, their role 
in SSc pathogenesis remains poorly understood. 
With the use of next-generation sequencing, an 
in-depth transcriptomic analysis of deregulated 
lncRNAs in skin tissue from SSc patients identi-
fied 676 lncRNAs differentially expressed 
between patients and healthy individuals.67 Inter-
estingly, 257 lncRNAs out of the 676 identified 
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were classified as antisense lncRNAs, which are 
supposed to function as co-regulators of their 
sense genes. Among them, the top three deregu-
lated antisense lncRNAs were CTBP1-AS2, 
OTUD6B-AS1 and AGAP2-AS1, whose expres-
sion was strongly correlated with the expression 
of their paired sense genes.67 A strong deregula-
tion of OTUD6B-AS1 in SSc skin biopsies was 
also reported in a recent RNA sequencing study.68 
In particular, OTUD6B-AS1 was found to be sig-
nificantly downregulated either in SSc fibroblasts 
or in healthy dermis after treatment with platelet-
derived growth factor. Moreover, when healthy 
fibroblasts were silenced for OTUD6B-AS1 in 
order to mimic the downregulation seen in SSc 
patients, they showed increased Cyclin D1 expres-
sion, reduced proliferation and suppressed apop-
tosis. Collectively, these data suggest that 
OTUD6B-AS1 regulates fibroblast proliferation 
and apoptosis via cyclin D1 expression, shedding 
light on a possible novel apoptosis resistance 
mechanism that might be relevant for SSc patho-
genesis.68 In another recent study, a total of 
542,500 transcripts were profiled in PBMCs from 
SSc patients and healthy donors, and only the 
heterogeneous nuclear ribonucleoprotein U 
processed transcript (ncRNA00201) lncRNAs 
was found to be significantly downregulated in 
SSc patients.69 The authors also observed that 
ncRNA00201 alone may control different bio-
logical pathways closely related to the three main 
features of SSc, namely immune/inflammatory 
response, vasculopathy and fibrosis, thus provid-
ing new insights into disease pathogenesis and 
opening new avenues for the design of therapeutic 
strategies.69 In addition, by RNA sequencing, a 
group of lncRNAs related to the IFN and 

anti-viral response were shown to be modulated 
in a type I IFN-dependent manner in human 
monocytes in response to TLR4 activation.70 
Among these lncRNAs, the negative regulator of 
the IFN response (NRIR) was found to be signifi-
cantly upregulated in SSc monocytes and to affect 
the expression of IFN-stimulated genes. Thus, 
dysregulation of NRIR in SSc monocytes might 
partly contribute to the aberrant IFN response 
present in SSc patients.70 Finally, another lncRNA 
recently reported to be implicated in SSc patho-
genesis is HOX transcript antisense RNA 
(HOTAIR) that was found to induce profibrotic 
activation and myofibroblastic transformation of 
dermal fibroblasts in vitro by driving the specific 
methylation profile of the histone methyltransfer-
ase EZH2, which in turn increases Notch tran-
scription through the methylation and consequent 
repression of the negative regulator of Notch 
expression miRNA-34a.71

Table 2 includes a list of the most relevant lncR-
NAs involved in SSc pathogenesis.

MiRNAs
MiRNAs are short (20–25 nucleotides) single-
stranded non-coding RNAs that function as 
post-transcriptional regulators of gene expres-
sion, leading to translational suppression by 
binding to the 3′ untranslated region (UTR) of 
specific mRNAs. MiRNAs are expressed in a tis-
sue and cell type-specific manner and show a 
close interplay with other epigenetics mecha-
nisms, such as DNA methylation and histone 
modifications.20,61,66,73 MiRNAs regulate a vari-
ety of biological processes such as cell growth, 

Table 2. LncRNAs implicated in SSc.

LncRNAs Modification Cell type/tissue Effect References

CTBP1-AS2, 
AGAP2-AS1

↑ Skin Differentially expressed between SSc 
patients and healthy controls

Messemaker et al.67

OTUD6B-AS1 ↓ Fibroblasts, skin Differentially expressed between SSc 
patients and healthy controls; antiapoptotic

Messemaker et al.67

 Takata et al.68

ncRNA00201 ↓ PBMCs Regulates genes and pathways involved in 
vasculopathy, fibrosis and autoimmunity

Dolcino et al.69

NRIR ↑ Monocytes Aberrant IFN response Mariotti et al.70

TSIX 
(X chromosome)

↑ Fibroblasts, serum Profibrotic Wang et al.72

LncRNA, long non-coding RNA; NRIR, negative regulator of the IFN response; PBMC, peripheral blood mononuclear cell; SSc, systemic sclerosis.
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differentiation, and immune functions and have 
been extensively implicated in SSc, where they 
seem to be mainly implicated in the fibrotic pro-
cess. In this context, one of the most studied 
miRNAs is miR-29a, which is known to bind the 
3′ UTR of the COL1A1 gene and to exhert 
potent antifibrotic effects.74 MiR-29a was found 
to be significantly downregulated in SSc fibro-
blasts, SSc skin biopsies and skin samples from 
bleomycin-treated mice, while its induced over-
expression in SSc fibroblasts decreased type I 
and type III collagen synthesis, supporting the 
notion that miR-29a may play an important role 
in SSc-related fibrosis.74,75 The antifibrotic effect 
of miR-29a is further sustained by the evidence 
that this miRNA reduces the expression of TGF-
β-activated kinase 1 binding protein 1 (TAB1), a 
protein involved in the downregulation of tissue 
inhibitor of metalloproteinase 1 (TIMP1) 
expression and collagen degradation.76 Another 
antifibrotic miRNA able to regulate type I col-
lagen expression is miR-196a, which was found 
to be significantly reduced both in dermal fibro-
blasts and the skin of SSc patients.77,78 Several 
members of the let-7 family of miRNAs have 
also been shown to be involved in SSc dysregu-
lated fibrosis. Among these, miR-let-7d and 
miR-let-7a were reported to be significantly 
downregulated in skin biopsies from SSc 
patients.79,80 MiR-let-7d levels were negatively 
correlated with patient pulmonary arterial pres-
sure, which suggests a potential role for this 
miRNA in the regulation of SSc-related pulmo-
nary hypertension,79 while miR-let-7a down-
regulation, also found in SSc serum and 
fibroblasts, was implicated in the abnormally 
increased expression of type I collagen.80 In 
addition, the intraperitoneal administration of 
miR-let-7a to mice with bleomycin-induced 
scleroderma improved the cutaneous fibrotic 
process, suggesting a possible use of miR-let-7a 
analogs as antifibrotic drugs.80 Collagen produc-
tion was found to be induced in SSc fibroblasts 
also by the suppression of miR-135b and the 
concomitant activation of STAT6-dependent 
interleukin-13 (IL-13) signaling.81 In addition, 
reduced levels of miR-135b were found in SSc 
serum and monocytes and the expression of this 
miRNA was proposed to be regulated by meth-
ylation events.81 Another miRNA that is down-
regulated in SSc fibroblasts and mediates 
antifibrotic effects is miR-132. By using a specific 
3′ UTR luciferase assay, it was demonstrated 
that miR-132 directly downregulates methyl cap 
binding protein 2 (MeCP2), a transcriptional 

regulator which positively modulates the expres-
sion of extracellular matrix through epigenetic 
repression of the Wnt antagonist sFRP-1 with 
consequent enhanced Wnt signaling and fibro-
sis.82 However, the role of MeCP2 in SSc-related 
fibrosis remains controversial, because another 
study reported an antifibrotic effect of this tran-
scriptional factor in dermal fibroblasts, with 
overexpression of MeCP2 in early dcSSc fibro-
blasts proposed as a possible defence mechanism 
to counteract the profibrotic nature of the disease 
in its early stages.83 Using miRNA array analysis, 
a recent study indicated that miR-202-3p was 
increased in SSc skin and demonstrated that 
miR-202-3p upregulation contributed to the 
suppression of matrix metalloproteinase 1 
(MMP1) and a consequent increase in collagen 
deposition.84 Thus, miR-202-3p appears to func-
tion as a novel profibrotic miRNA in SSc. 
Another miRNA which has been found to be 
overexpressed in the serum, affected skin and 
explanted fibroblasts from SSc patients is miR-
155.85–87 Moreover, it has recently been demon-
strated that in SSc fibroblasts the activation of 
the NOD, LRR and pyrin domain- containing 3 
(NLRP3) inflammasome drives miR-155 expres-
sion via IL-1 autocrine signaling, that further 
enhances IL-1 transcription leading to increased 
collagen production and consequent fibrosis.87 
Besides collagen, miRNAs are also thought to 
contribute to the regulation of other SSc-related 
molecules or cytokines. For instance miR-150, 
which is the direct regulator of integrin-β3, a key 
molecule that is known to be overexpressed in 
SSc dermal fibroblasts and to activate TGF-β 
signaling, was found to be constitutively down-
regulated in SSc fibroblasts.88 The induced over-
expression of this miRNA in SSc fibroblasts 
downregulated integrin-β3, phosphorylated 
Smad3 and type I collagen expression, while 
miR-150 knockdown in healthy fibroblasts 
exerted an opposite effect.88

Aside from exclusively regulating collagen pro-
duction and fibroblast functionality, several miR-
NAs such as miR-21, miR-145, miR-193b and 
miR-130b have been implicated in both SSc vas-
culopathy and the associated fibrotic alterations. 
MiR-21 and miR-145 are two miRNAs closely 
related to the TGF-β signaling Smad pathways, 
as the profibrotic miR-21 downregulates the 
expression of Smad7 and is a promoter of 
endothelial-to-mesenchymal transition, while the 
antifibrotic miR-145 inhibits Smad3.73 MiR-21 
was found to regulate apoptosis in SSc fibroblasts89 
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and to be overexpressed in skin biopsies, fibro-
blasts and serum from SSc patients as well as in 
healthy MVECs treated with SSc serum, with 
inhibitors of miR-21 attenuating the TGF-β-
driven upregulation of profibrotic markers.89–92 
Similarly, miR-146b, miR-130b, miR-31 and 
miR-34a were found to be upregulated in skin tis-
sues and fibroblasts of SSc patients and in healthy 
MVECs stimulated with SSc serum.92,93 In con-
trast, the antifibrotic miR-145 was found to be 
reduced both in SSc skin and fibroblasts and in 
SSc serum-treated MVECs.92 Although these 
miRNAs are known to regulate several mecha-
nisms involved in the pathogenesis of SSc such as 
toll-like receptors (TLRs), TGF-β and Wnt signal-
ing pathways, further studies are needed to clarify 
their role fully in both the fibrotic and vascular 
aspects of the disease. Another miRNA which is 
thought to connect SSc vasculopathy and fibro-
proliferation is miR-193b, whose concentrations 
have been found to be decreased in fibroblasts and 
skin from SSc patients, resulting in a concurrent 
upregulation of urokinase-type plasminogen acti-
vator (uPA).94 As an increase in uPA levels is 
known to inhibit apoptosis and stimulate vascular 
smooth muscle cell proliferation, miR-193b down-
regulation might contribute to proliferative vascu-
lopathy in SSc.94

As far as immune cells are concerned, a recent 
study has revealed a significant overexpression of 
miR-618 in SSc pDCs.95 In this work, it was sug-
gested that miR-618 upregulation leads to the 
downregulation of IFN regulator factor 8, a cru-
cial transcription factor for dendritic cell develop-
ment. Indeed, miR-618 overexpression inhibited 
pDC differentiation and activation and led to 
increased production of IFNα upon TLR9 stimu-
lation.95 In addition, an upregulation of miRNA-
5196 in peripheral blood monocytes from patients 
with SSc was recently reported.96 As this miRNA 
exerts antifibrotic effects by inhibiting the expres-
sion of TIMP1 and FRA2, two proteins playing 
an important role in SSc development, the 
authors proposed that its overexpression might 
serve as a compensatory mechanism to reverse 
the profibrotic phenotype in SSc monocytes.96

MiRNAs can be detected not only inside the cells, 
but also in several body fluids, including serum, 
plasma and saliva.9 Although it has been supposed 
that there is an immediate degradation of circulat-
ing miRNAs by RNases, once they are secreted 
into extracellular spaces they can be stabilized in 
at least four ways: (a) protected in shedding 

vesicles; (b) covered under membranous 
microvescicles called exosomes; (c) surrounded 
by apoptotic cells; and (d) complexed with pro-
teins or lipoproteins.9 In order to identify novel 
blood-based biomarkers, several studies have ana-
lyzed a broad range of circulating miRNAs in SSc. 
In 2015, the analysis of 45 circulating miRNAs in 
plasma from SSc patients and healthy individuals 
identified 21 miRNAs differentially expressed 
between the two groups. In particular, the differ-
ent miRNA profile comprised miRNAs belonging 
to the miRNA-17~92 cluster, miR-16, miR-223, 
and miR-638.97 In the same year, miR-223, miR-
181b, miR-342-3p and miR-184 were found to be 
differentially expressed between the limited and 
diffuse cutaneous SSc subsets, while miR-409, 
miR-184, miR-92a, miR-29a and miR-101 were 
reported to correlate with the disease autoanti-
body profiles.98 In a subsequent work, the screen-
ing of 758 serum miRNAs identified 30 miRNAs 
that were significantly increased in patients with 
SSc with respect to controls. Among these, miR-
483-5p was elevated in patients with early stage 
SSc.99 In addition, an increase in six profibrotic 
miRNAs, including the previously mentioned 
miR-483-5p, and a reduction in ten antifibrotic 
miRNAs were found in serum exosomes isolated 
from SSc patients compared to healthy controls. 
Interestingly, exosomes isolated from patients 
with SSc were able to stimulate normal human 
dermal fibroblasts to express profibrotic genes, 
suggesting that exosomal miRNAs may contribute 
to spread fibrotic signals to distant sites not yet 
affected.99,100 Finally, two recent studies based on 
bioinformatics analysis were performed to identify 
miRNAs that are differentially expressed in SSc 
and might potentially contribute to disease patho-
genesis. In the first study, the authors reported in 
SSc patients with interstitial lung disease (ILD) a 
panel of differentially expressed miRNAs involved 
in pathways related to inflammation and fibroblast 
regulation, providing novel insights into the molec-
ular mechanisms underlying the pathogenesis of 
SSc-ILD.101 In the second study, miR-4484 was 
identified as having the highest (18-fold) upregu-
lation in SSc patients compared to healthy sub-
jects. Moreover, bioinformatics analysis of 
miR-4484 target genes showed that this miRNA is 
potentially involved in the TGF-β signaling path-
way, extracellular matrix-receptor interaction and 
MMP expression, and might therefore contribute 
to pathological fibrosis in SSc.102

Table 3 summarizes the main miRNAs that have 
been implicated in SSc.
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Table 3. MiRNAs implicated in SSc.

miRNAs
(chromosome)

Expression Cell type/tissue Target gene Effect References

miR-29a
(chromosome 7)

↓ Fibroblasts
Skin
Skin of bleomycin-treated 
mice

COL1A1
COL3A1
TAB1

Antifibrotic Maurer et al.74

Jafarinejad-
Farsangi et al.75

 Ciechomska et al.76

miR-196a
(chromosome 12)

↓ Fibroblasts
Skin

COL1A1
COL1A2

Antifibrotic Makino et al.77

Honda et al.78

miR-let-7d
(chromosome 9)

↓ Skin N.D. N.D. Izumiya et al.79

miR-let-7a
(chromosome 9)

↓ Fibroblasts
Skin
Serum

COL1A1
COL1A2

Antifibrotic Makino et al.80

miR-135b
(chromosome 1)

↓ Fibroblasts
Serum
Monocytes

STAT6 Antifibrotic O’Reilly et al.81

miR-132
(chromosome 17)

↓ Fibroblasts MeCP2 Antifibrotic Henderson et al.82

miR-202-3p
(chromosome 10)

↑ Skin MMP1 Profibrotic Zhou et al.84

miR-155
(chromosome 21)

↑ Fibroblasts
Skin
Serum

CSNK1A1
SHIP1

Profibrotic Yan et al.85

Dolcino et al.86

Artlett et al.87

miR-150
(chromosome 19)

↓ Fibroblasts ITGB3 Antifibrotic Honda et al.88

miR-21
(chromosome 17)
 

↑ Fibroblasts
Skin
Serum
SSc serum-treated MVECs

SMAD7 Profibrotic
Antiapoptotic

Henry et al.73

Jafarinejad-
Farsangi et al.89

miR-145
(chromosome 5)
 

↓ Fibroblasts
Skin
SSc serum-treated MVECs

SMAD3 Antifibrotic Henry et al.73

Zhou et al.92

miR-146b
(chromosome 10)
miR-130b
(chromosome 22)
miR-31
(chromosome 9)
miR-34a
(chromosome 1)

↑ Fibroblasts
Skin
SSc serum-treated MVECs

N.D. N.D. Zhou et al.92

Lou et al.93

miR-193b
(chromosome 16)

↓ Fibroblasts
Skin

PLAU Regulation of 
uPA expression

Iwamoto et al.94

miR-618
(chromosome 12)

↑ pDCs IRF8 Inhibition 
of pDCs 
differentiation

Rossato et al.95

(Continued)
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miRNAs
(chromosome)

Expression Cell type/tissue Target gene Effect References

miR-5196
(chromosome 19)

↑ Monocytes TIMP1
FRA2

Antifibrotic Steen et al.97

miR-17~92
(autosomal)
miR-16
(chromosome 13)
miR-223
(X chromosome)
miR-638
(chromosome 19)

Differentially 
expressed 
between 
SSc patients 
and healthy 
controls

Plasma N.D. N.D. Steen et al.97

miR-223
(X chromosome)
miR-181b
(chromosome 1)
miR-342
(chromosome 14)
miR-184
(chromosome 15)

Differentially 
expressed 
between 
lcSSc and 
dcSSc

Plasma N.D. N.D. Wuttge et al.98

miR-409-3p
(chromosome 14)
miR-184
(chromosome 15)
miR-92a
(X chromosome)
miR-29a
(chromosome 7)
miR-101
(chromosome 1)

Correlating 
with the 
disease 
autoantibody 
profiles

Plasma N.D. N.D. Wuttge et al.98

miR-483-5p
(chromosome 11)

↑ Serum N.D. Profibrotic Chouri et al.99

miR-let-7a-5p
(chromosome 9)
miR-26b-5p
(chromosome 2)
miR-29b-3p
(chromosome 7)
miR-129-5p
(chromosome 7)
miR-133a-3p
(chromosome 18)
miR-140-5p
(chromosome 16)
miR-145-5p
(chromosome 5)
miR-146a-5p
(chromosome 5)
miR-196a-5p
(chromosome 12)
 miR-200a-3p
(chromosome 1)
miR-223-3p
(X chromosome)

↓ Serum exosomes N.D. Antifibrotic Chouri et al.99

Wermuth et al.100

Table 3. (Continued)

(Continued)
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X-linked genetic and epigenetic 
modifications in SSc
As already mentioned, SSc presents a striking 
female predominance and the X chromosome, 
which contains many gender and immune-related 
genes, may play a role in this sex-biased preva-
lence.105 Thus, in the second part of this review we 
will provide an overview of genetic variations in 
genes located on the X chromosome and the main 
X-linked epigenetic modifications that can influ-
ence SSc susceptibility and clinical phenotype.

X-linked single nucleotide polymorphisms
A possible association between single nucleotide 
polymorphisms (SNPs) in IL-13 receptor subunit 
α1 (IL13RA1) and α2 (IL13RA2) genes and SSc 
was investigated in a Caucasian population com-
prising 97 women affected by SSc and 109 sex-
matched healthy controls.106 IL13RA1 and 
IL13RA2 genes are located on the X chromosome 
and their products are receptors for IL-13, a 

cytokine playing an important role in normal tis-
sue repair and Th2-mediated pathological fibro-
sis. In this study, IL13RA2 rs638376G allele 
frequency was higher in SSc patients and in the 
subgroup with dcSSc than in controls, while the 
IL13RA2 rs5946040G allele was more common 
only in patients with dcSSc with respect to 
controls.106

IL-1 receptor-associated kinase 1 (IRAK1, encoded 
by the IRAK1 gene) is a serine/threonine protein 
kinase able to regulate NF-κB activity and known 
to be involved in the TLR pathway.107 An associ-
ation between some IRAK1 SNPs and dcSSc as 
well as anti-topo-I positive SSc patients was found 
in a discovery cohort including 849 SSc female 
patients and 625 sex-matched controls.107 The 
replication cohort confirmed a strong association 
between the IRAK1 rs1059702 TT risk genotype 
and both the dcSSc and anti-topo I-positive SSc 
subsets.107 However, in a subsequent study by 
Carmona et al., the IRAK1 SNP rs1059702 was 

miRNAs
(chromosome)

Expression Cell type/tissue Target gene Effect References

miR-let-7g-5p
(chromosome 3)
miR-17-5p
(chromosome 13)
miR-21-5p
(chromosome 17)
miR-23b-5p
(chromosome 9)
miR-29a-3p
(chromosome 7)
miR-150-5p
(chromosome 19)
miR-155-5p
(chromosome 21)
miR-215-5p
(chromosome 1)
miR-503-5p
(X chromosome)

↑ Serum exosomes N.D. Profibrotic Chouri et al.99

Wermuth et al.100

miR-4484
(chromosome 10)

↑ Serum MMP21 Profibrotic Rusek et al.102

miR-92a
(X chromosome)

↑ Fibroblasts
Serum
TGF-β-treated healthy 
fibroblasts

MMP1 Profibrotic Sing et al.103

miR-542-3p
(X chromosome)

↓ Fibroblasts BIRC5 Proapoptotic Vahidi Manesh 
et al.104

pDC, plasmacytoid dendritic cell: MVEC, microvascular endothelial cell; N.D., not determined; SSc, systemic sclerosis; TGF-β, transforming growth 
factor beta.

Table 3. (Continued)
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found to be associated only with the susceptibility 
to SSc-related lung fibrosis.108 In the same study, 
the rs17345 SNP of MECP2, a gene encoding the 
protein MeCP2, which participates in epigenetic 
mechanisms binding to methylated DNA, was 
found to be associated with the dcSSc subtype in 
women of Caucasian ancestry.108 However, as 
IRAK1 and MECP2 genes are in moderate link-
age disequilibrium, the real contribution of these 
genes to the susceptibility to SSc remains to be 
fully clarified.107,108

The X chromosome-located FOXP3 gene is pri-
marily expressed in regulatory T cells (Treg) and 
encodes forkhead box P3 (FOXP3), a transcrip-
tion factor that regulates T cell activation. 
Polymorphisms in this gene have been reported to 
alter FOXP3, causing Treg dysfunction and the 
consequent development of autoimmune dis-
eases.109,110 A case control study evaluating the 
possible influence of FOXP3 SNPs rs3761548 
and rs2280883 in SSc susceptibility was per-
formed in a population of 228 Italian SSc patients 
(206 women and 22 men) and 239 healthy sub-
jects. The authors found that the rs2280883 
genetic variant was associated with the presence 
of anti-centromere antibodies and the lcSSc sub-
set only in female patients.109 In a second study, 
the same authors investigated the association of 
FOXP3 rs2294020, inducible T cell co-stimula-
tory (ICOS) rs6726035 and ICOS ligand (ICOSL) 
rs378299 SNPs with either SSc susceptibility or 
the progression towards the disease in an Italian 
population. Although no significant associations 
were found between these SNPs and SSc suscep-
tibility, the occurrence of FOXP3 rs2294020 in 
female patients was found to be correlated with a 
decreased time to progression from early to defi-
nite SSc.110 Even if these findings need to be rep-
licated in a larger cohort and other populations, 
rs2294020 may be considered a disease-modify-
ing gene variant rather than a disease-susceptibil-
ity SNP in SSc.110 In a recent study, Vreca et al.111 
performed an analysis of both gene variants and 
mRNA expression levels of IRAK1 and its regula-
tor miR-146a in SSc patients compared with 
healthy controls. Although neither IRAK1 
rs3027898 nor miR-146a rs2910164 variants 
were directly associated with SSc susceptibility, 
miR-146a rs2910164 genotype and allele distri-
bution correlated with the presence of lung fibro-
sis.111 As far as gene expression is concerned, 
both IRAK1 and miR-146a were found to be 
downregulated in PBMCs from SSc patients, 
with a strong negative correlation between IRAK1 

and miR-146a expression levels when SSc patients 
were stratified by gender. Indeed, a significant 
increase in miR-146a expression in male SSc 
patients was accompanied by decreased IRAK1 
mRNA levels, suggesting a direct regulation of 
IRAK1 gene expression by this specific miRNA.111

Finally, a case–control study involving a total of 
461 individuals of Italian Caucasian origin (228 
SSc patients and 233 healthy control subjects) 
was performed in order to evaluate a possible 
association between the rs4898 of the TIMP1 
gene and SSc susceptibility and digital ulcers.112 
Indeed, TIMP1, which is an inhibitor of MMPs, 
was found to be increased in SSc serum and 
excessively produced by dermal fibroblasts iso-
lated from SSc patients. In that study, TIMP1 
rs4898 did not show any association with SSc in 
male subjects, while women with C/C or T/C 
genotypes appeared to be less prone to the devel-
opment of digital ulcers, suggesting that this SNP 
may play a protective role in the susceptibility to 
SSc in women, particularly to digital ulcer 
formation.112

X-linked epigenetic modifications in SSc
X-linked DNA methylation. DNA methylation is 
known to play a central role in X-chromosome 
inactivation in women, a mechanism of dosage 
compensation evolved to balance the levels of 
X-linked gene products between genders. Indeed, 
as women have two X chromosomes whereas men 
have only one, in the early stages of female 
embryogenesis one of the two X chromosomes is 
randomly silenced, leading to the formation of the 
heterochromatic Barr body. As a result, both men 
and women have only one active X chromosome 
(Xa).113 Several studies have shown that DNA 
methylation of the inactive X (Xi) is crucial for 
the maintenance of its inactive state. In particular, 
it has been demonstrated that the CpG islands 
have a tendency to be methylated on Xi and 
unmethylated on Xa.114 As the process of inacti-
vation involves randomly one of the two X chro-
mosomes and is irreversible during the lifetime of 
the cell and its offspring, each tissue of an adult 
woman is composed of cells expressing either the 
maternal or the paternal X chromosome, a phe-
nomenon called female mosaicism.5 Not all the 
genes on Xi are silenced, as those located in pseu-
doautosomal regions, that is regions of the X 
chromosome homologous to the Y one, escape 
X-inactivation. Besides pseudoautosomal region 
genes, other genes may escape silencing.115
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As several autoimmune diseases are known to 
have a striking female preponderance, numerous 
studies evaluated the involvement of different 
methylation profiles in X-linked genes in these 
pathologies.43,116,117 As far as SSc is concerned, a 
few studies hypothesized that the female gender 
bias of the disease could be explained by either 
the reactivation of genes that are typically silenced 
in the Xi chromosomes or the inhibition of genes 
normally expressed in the Xa chromosomes of 
female patients. In particular, the CD40L pro-
moter region on Xi was found to be demethylated 
in CD4+ T cells from SSc female patients, result-
ing in female-specific CD40 ligand (CD40L/
CD154/TRAP) overexpression.45 Of note, the 
interaction between CD40 ligand and its receptor 
CD40 plays a pivotal role in various autoimmune 
diseases including SSc.45 In fact, the combination 
of the CD40 ligand (on T cells) and CD40 (on B 
cells) acts as a signal to initiate immune responses, 
including B cell activation and differentiation, 
and the production of pathogenic autoantibod-
ies.45 In another study, genome-wide methylation 
profiles analyzed in PBMCs from monozygotic 
twins discordant and concordant for SSc demon-
strated consistent differences between the investi-
gated twins only in genes located on the X 
chromosome.46 In particular, the biostatistical 
analysis identified 18 hypermethylated and 25 
hypomethylated genes that included transcription 
factors (ARX, HSFX1, ZBED1, ZNF41) and 
surface antigens (IL1RAPL2, PGRMC1) 
involved in cell proliferation, apoptosis, inflam-
mation and oxidative stress. Therefore, it has 
been suggested that the X chromosome genes, 
with different methylation profiles in monozy-
gotic twin pairs, may be candidates for SSc sus-
ceptibility.46 Finally, it has been observed that a 
reduced expression of FOXP3, a key transcrip-
tion factor that regulates Treg generation, was 
due to hypermethylation of the FOXP3 promoter 
region in CD4+ T cells of SSc patients.47 This 
hypermethylation status contributed to a reduced 
number of Tregs and was suggested to influence 
disease severity.47

X-chromosome inactivation by DNA methylation 
is random, with an equal probability for the mater-
nally or paternally derived X chromosome to be 
inactivated. This results in a mosaic distribution 
of cells, approximately half with the paternally 
derived Xi chromosome and half with the mater-
nally derived Xi chromosome. However, when the 
inactivation of one X chromosome is favored over 
the other, leading to an uneven number of cells 

with each chromosome inactivated, skewed (non-
random) X chromosome inactivation occurs (i.e. 
silencing of the same X chromosome in most cells 
of a specific tissue) (Figure 1). A skewed result is 
defined as one allele being inactivated at >75%, 
while extreme skewing represents an inactivation 
of >90%. Skewed X chromosome inactivation, 
although infrequent, may take place in normal 
women, and can be a primary event occurring in 
embryonic stem cells (primary non-random inac-
tivation), or can be acquired with age. However, 
an extremely skewed pattern has the potential to 
unmask unfavorable X-linked alleles carrying 
mutations, thus leading to disease onset. Indeed, 
extreme X chromosome inactivation skewing (or 
loss of mosaicism) is often associated with a vari-
ety of diagnoses, including premature ovarian 
failure, recurrent spontaneous abortion, some 
cancers and several autoimmune disorders includ-
ing SSc.118 In this context, skewed X chromo-
some inactivation has been observed in PBMCs 
of patients with SSc.43,44 Interestingly, a signifi-
cant proportion of women with SSc have been 
found to manifest higher frequencies of PBMCs 
with X monosomy than healthy women over 
50 years of age.119 Both extreme X chromosome 
inactivation skewing and X monosomy may con-
tribute to haploinsufficienty of X-linked genes, a 
condition that in peripheral lymphocytes has been 
proposed to be responsible for immunosenes-
cence and autoantibody production. However, in 
SSc, skewed X chromosome inactivation is not 
sufficient to explain the onset of the disease and 
should be considered as a possible cofactor in its 
pathogenic cascade. Indeed other factors, includ-
ing genomic predisposition and environmental 
factors, are supposed to contribute to the disease 
phenotype.

A summary of the principal X-linked DNA modi-
fications described in SSc is shown in Table 1.

X-linked non-coding RNAs. Increasing evidence 
supports a dysregulated expression pattern of 
X-linked non-coding RNAs in autoimmune dis-
eases such as systemic lupus erythematosus, 
rheumatoid arthritis and Sjögren’s syn-
drome.120,121 As far as SSc is concerned, the 
lncRNA TSIX was found to be upregulated in 
dermal SSc fibroblasts, where it stabilizes type I 
collagen mRNA thus fostering collagen deposi-
tion. Moreover, TSIX levels were increased also 
in the serum of SSc patients, suggesting that this 
lncRNA might serve as a diagnostic disease bio-
marker (Table 2).72
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Among non-coding RNAs, about 10% of miR-
NAs are located on X chromosome and may 
escape inactivation or be subjected to skewed X 
inactivation. As the X chromosome is known to 
contain the largest number of immune-related 
genes of the whole human genome, a dysregula-
tion of X-linked miRNAs may influence immune 
response in women.122 As already discussed, 
many miRNAs have been found to be dysregu-
lated both in the circulation and skin of SSc 
patients and to be primarily involved in the mod-
ulation of fibrosis.20–24 Among these, only few 
dysregulated X-linked miRNAs have been 
observed in SSc (Table 3).87,97,103 In particular, 
two studies reported elevated miR-92a levels in 
SSc serum87,103 and dermal fibroblasts,103 as well 
as in normal fibroblasts cultured in the presence 
of TGF-β.103 Furthermore, the induction of miR-
92a overexpression in normal fibroblasts resulted 
in MMP-1 downregulation, suggesting that higher 
miR-92a levels might contribute to increased col-
lagen deposition in SSc.103 However, a subsequent 
study evaluating plasma miRNA profiles reported 
lower levels of the miRNA-17~92 cluster in SSc 

patients with respect to healthy individuals.97 
Finally, a significant downregulation in dermal 
SSc fibroblasts was reported for miR-542-3p. 
In particular, decreased miR-542-3p led to 
increased expression of survivin, a protein that 
belongs to the inhibitor of apoptosis (IAP) pro-
tein family. Thus, miR-542-3p downregulation 
might contribute to foster apoptosis resistance in 
SSc fibroblasts.104 Other miRNAs located on the 
X chromosome, such as miR-106a, miR-223, 
miR-221 and miR-503-5p, were found to be 
dysregulated in the circulation of SSc patients, 
although their functional significance in disease 
pathogenesis remains to be fully clarified.97,100

A schematic representation of the most important 
X-linked epigenetic mechanisms implicated in 
SSc pathogenesis is summarized in Figure 2.

Conclusion
Over the past few years, growing evidence has sug-
gested that SSc pathophysiology is the result of a 
complex interplay between genetic predisposition, 

Figure 1. Schematic representation of skewed X chromosome inactivation. X chromosome inactivation occurs 
randomly, with an equal probability for the maternally or paternally derived X chromosome to be inactivated, 
resulting in a mosaic distribution of cells (50:50). Skewed X chromosome inactivation occurs when the 
inactivation of one X chromosome is favored over the other, leading to an uneven number of cells with each 
chromosome inactivated (>50:<50).
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environmental factors and epigenetics. Genetic 
variants thus far associated with SSc, although 
identified in studies performed on a large scale, 
are not sufficient to explain the multiple altered 
biological processes underlying this autoimmune 
disorder. Moreover, it has become clear that 
exposure to specific environmental agents partici-
pates in modulating both the epigenome (i.e. the 
set of chemical modifications of chromatin, alter-
ations in chromatin constituents, and changes in 
the spatial chromatin organization that regulate 
gene expression) and the genetic disease predis-
position. As outlined in this review, epigenetic 
modifications may have a pivotal contribution in 
the pathogenesis of SSc, mainly in the context of 
the disease-related fibrotic phenotype. Unlike 
genetic mutations, epigenetics consists of reversi-
ble changes amenable to modifications in divid-
ing cells. Thus, a deeper exploration of the 

complex epigenetic mechanisms underlying dis-
ease onset and development are extremely impor-
tant to favor the development of novel promising 
therapeutic strategies for the treatment of SSc. 
Furthermore, epigenetic marks are emerging as 
attractive biomarkers for disease diagnosis, moni-
toring and even prediction and assessment of the 
therapeutic response. It is also well known that 
SSc affects mainly the female gender while men 
are usually exposed to a more aggressive disease. 
Therefore, the contribution of the X chromosome 
to the development of SSc still remains to be 
unveiled. In fact, its role in the onset and rapid 
evolution of the disease in men is a matter of 
future investigation. Thus, further in-depth studies 
of X chromosome-linked epigenetic modifications 
are needed to provide novel insights into SSc 
female predominance and possibly to identify new 
promising gender-specific therapeutic targets.

Figure 2. Schematic representation of the main X-linked epigenetic modifications in systemic sclerosis 
(SSc). SSc is characterized by a striking female predominance which is not reflected by a greater disease 
severity. Indeed, male SSc patients usually have a more severe prognosis compared to women. The causes 
of this gender imbalance have yet to be completely understood, but it appears that the X chromosome, which 
is known to contain the largest number of immune-related genes of the whole human genome, may play an 
important role in this sex-biased prevalence. X-linked epigenetic modifications reported to be altered and 
implicated in SSc pathogenesis are DNA methylation and non-coding RNAs. When altered, DNA methylation, 
which is known to play a central role in the X-chromosome inactivation in women, has the potential to 
reactivate genes typically silenced in the inactivated chromosome or inhibit genes normally expressed in 
the activated chromosome, thus fostering autoimmunity susceptibility and leading to SSc onset. In addition, 
a dysregulated expression pattern of X-linked non-coding RNAs (lncRNAs and miRNAs) has been shown to 
influence both the fibrotic and the apoptotic processes.
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On the basis of the most recent advances, there is 
realistic hope that integrating epigenetic data with 
genomic, transcriptomic, proteomic and metabo-
lomic analyses may provide in the future a better 
picture of the functional implications in SSc, pav-
ing the right way for a better understanding of 
disease pathogenesis and the development of 
innovative therapeutic approaches.
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